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Abstract
In this article, we propose an optimal control of hepatitis B virus (HBV) infection model. We use four control

functions in this model to show the effect of quarantine, vaccination, treatment and rapid test in minimizing the
infection between individuals. We apply Pontryagin maximum principle to study these four controls. We solve the

mathematical model without control and after adding control functions by finite difference scheme. We show the
results graphically. In addition, we study the HBV spatio-temporal model numerically and discuss the truncation

error and the stability of its numerical scheme.
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1. Introduction

In the last few years, mathematical modeling has been widely used to investigate the transmission anddynamics
of infectious diseases. Hepatitis B is a contagious disease caused by HBV that primarily affects the human liver
and causes cancer or failure of the liver. Transmission of this disease has many causes including food and drink,
transfusion of contaminated blood, sexual relations, use of personal items of the infected person and from the infected
mother to the newborn child. Khan et al. [8] created a mathematical epidemiological model of hepatitis B disease.
Ahmad et al. [1] investigated a fractional order model that describes the dynamics of hepatitis B. Zou et al. [17]
established a mathematical model for understanding the dynamical transmission and the spread of hepatitis B virus
infection in China which provided an approximate estimate of the basic reproduction number. Sharomi and Malik
[14] demonstrated that optimal control theory has proven to be a successful tool in understanding ways to prevent
the spread of infectious diseases. Akbari and Asheghi [2] proposed an optimal control mathematical problem for an
HIV infection model. Saha and Samanta [13] suggested a compartmental model for the transmission of HIV/AIDS
including treatment and Pre-exposure prophylaxis (PrEP). Zorom et al. [16] presented a treatment and prevention
model for malaria with two different control variables. Gaff [7] suggested the most effective mitigation strategy to
reduce the number of people infected by balancing treatment and vaccination that applied to models with different
cost scenarios. Raza et al. [12] studied the dynamical behavior of human-immune efficiency-virus by investigating a
nonlinear delayed model. Manna and Hattaf [10] established and analyzed a new mathematical differential equations
model for understanding the dynamics of hepatitis B virus (HBV) infection. Bachraoui et al. [4] investigated a
fractional diffusive model for hepatitis B virus infection. Subchan et al. [6] discussed the mathematical modeling
of cholera disease spread. Zaman et al. [15] introduced time delay control strategy to combat SIR epidemic model.
Alrabaiah et al. [3] established a mathematical controlled model to study the dynamical behavior of the hepatitis B
virus. Neilan et al. [11] formulated a mathematical model to include such basic components as a highly contagious and
short-lived bacterial condition, a separate category for mild human infection and diminished disease immunity. Koura
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et al. [9] introduced a numerical study of a spatio-temporal coronavirus pandemic. Anwarud et al. [5] established
a control model in order to eliminate the hepatitis B virus from the population and demonstrated that the control
model did exist.

This article is arranged as follows: In section 2, the mathematical model and numerical solution of the temporal
model are presented. In section 3, the implementation of the optimal control problem and numerical simulation are
given. The spatio-temporal model and its numerical solution with studying of the truncation error and stability of
this numerical scheme are introduced in section 4. In section 5, the conclusion of the illustrated outcomes.

2. Mathematical model

The literature reveals that the different stages of hepatitis B, along with factors such as migration, hospitalization
and vaccination, significantly influence the spread and control of the disease. To the best of our knowledge, no
mathematical model has yet been proposed that incorporates these various phases alongside the effects of treatment,
migration and vaccination. Developing such a model would provide a more comprehensive understanding of the
dynamics of hepatitis B transmission and control. To formulate the hepatitis B virus model [8], we divide the population
of humans into seven categories: susceptible people S(t), people with inactive infection Il(t), people with mild infection
I(t), chronically infected people Ic(t), hospitalized people Ih(t), recovered people R(t) and vaccinated individuals V (t).
The temporal model (2.1) consists of seven ordinary differential equations for the dynamic transmission of the hepatitis
B virus:

dS

dt
= Λ1Λ2(1− αIc(t)) + θV (t)− (ωI(t) + ρωIc(t) + γ3 + d0 + µ)S(t),

dIl
dt

= (ωI(t) + ρωIc(t))S(t)− (η1 + d0 + µ)Il(t),

dI

dt
= −(β1 + γ1 + d0 + µ)I(t) + η1Il(t),

dIc
dt

= η3γ1I(t)− (β2η2 + d0 + d1 − Λ1Λ2α)Ic(t),

dIh
dt

= β2Ic(t) + β1I(t)− (β3 + d0 + d2)Ih(t),

dR

dt
= η2Ic(t) + (1− η3)γ1I(t) + β3Ih(t)− d0R(t),

dV

dt
= Λ1(1− Λ2) + γ3S(t)− (θ + d0)V (t),

(2.1)

with initial values S(0), Il(0), I(0), Ic(0), Ih(0), R(0) and V (0) ≥ 0.

In system (2.1), Λ1 is the newborn rate, Λ2 is the rate of newborns without vaccination, α is the proportion of
the population with infections inherited from parents and θ is the rate of acquired immunity from vaccination after
weaning. The parameters β1, β2 and β3 describe the transmission rate from I class to Ih class, the transmission rate
from Ic class to Ih class and the recovery rate in Ih class, respectively. ω is the transfer degree, while ρ is the reduced
transfer degree. The parameters η1, η2 and η3 describe transmission rate from Il class to I class, transmission rate
from Ic class to R class and recovery failure rate in I class, respectively. d0, d1 and d2 are the death rates in natural
death, Ic class death and Ih class death, respectively. µ is the peregrination rate.

2.1. Region of stability. In this subsection, we introduce some important indicators that help us explain the spread
of the pandemic in the population. The number of new infections caused by an infectious individual in a disease-free
population is defined as the reproduction number R0. If R0 > 1, the epidemic will spread, while it will be confined if
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(c) η1, ω, Λ2 = 0.3 (d) η1, ω, Λ2 = 0.1

Figure 1. Stability region for the disease-free equilibrium point.

R0 < 1. Reproduction number R0 for the temporal system (2.1) discussed in [8] as follows:

R0 =
γ1S0η3η1ρω

(d0 + η1 + µ) (β1 + γ1 + d0 + µ) (−αΛ1Λ2 + β2η2 + d0 + d1)

+
S0η1ω

(d0 + η1 + µ) (β1 + γ1 + d0 + µ)
,

(2.2)

where S0 defined as

S0 =
Λ1 (d0Λ2 + θ)

d0 (γ3 + d0 + θ + µ) + θµ
. (2.3)

The stability region of the disease-free equilibrium point shows (η1,ω,Λ2) space in Figure 1a. The values of parameters
are discussed in [8] as Λ1 = 0.0121, α = 0.11, θ = 0.1, β1 = 0.36, β2 = 0.59, β3 = 0.311, ρ = 0.16, η2 = 0.0000684,
η3 = 0.885, d0 = 0.0069, d1 = 0.002, d2 = 0.002 and µ = 0.95.
In Figures 1(b, c, d), we find that the region of stability increases with a decrease in the value of Λ2, so we can get a
stable solution with small values of (η1,ω,Λ2). The values of η1, ω and Λ2 are taken from the stability region study as
0.016, 0.95 and 0.32, respectively.

2.2. Numerical solution of temporal HBV model. The numerical solution of the temporal model (2.1), we apply
the forward finite difference scheme as in the following steps:
Step 1: Discretize the domain by dividing the domain of t ∈ [0, 50] with step size ∆t = 1.
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Step 2: Apply the forward finite difference method to approximate the derivatives in the differential equations. For
each equation in the system (2.1), replace the derivatives with forward finite difference approximations:

∂S

∂t
=

(S)
m+1
j − (S)

m
j

∆t
. (2.4)

Step 3: Discretize the system of equations and convert it into a system of algebraic equations as follows:

(S)
m+1

= (S)
m

+ ∆tθ(V )m + ∆tΛ1Λ2

(
1− α(Ic)

m + 1
)

−∆t
(
ω(I)m + ρω(Ic)

m + γ3 + d0 + µ
)

(S)m,
(2.5)

(Il)
m+1

= (Il)
m

+ ∆t
(
ω(I)m + ρω(Ic)

m
)

(S)m

−∆t
(
η1 + d0 + µ

)
(Il)

m
,

(2.6)

(I)m+1 = (I)
m −∆t

(
β1 + γ1 + d0 + µ

)
(I)m + ∆tη1(Il)

m
, (2.7)

(Ic)
m+1

= (Ic)
m

+ ∆tη3γ1(I)
m

−∆t
(
β2η2 + d0 + d1 − Λ1Λ2α

)
(Ic)

m
,

(2.8)

(Ih)
m+1

= (Ih)
m −∆t

(
β3 + d0 + d2

)
(Ih)

m
+ ∆tβ2(Ic)

m

+ ∆tβ1(I)
m
,

(2.9)

(R)m+1 = (R)
m

+ ∆tη2(Ic)
m

+ ∆t
(

1− η3

)
γ1(I)

m
+ ∆tβ3(Ih)

m

−∆td0(R)m,
(2.10)

(V )m+1 = (V )
m

+ ∆tΛ1

(
1− Λ2

)
+ ∆tγ3(S)

m

−∆t
(
θ + d0

)
(V )m.

(2.11)

Step 4: With the initial conditions S(0) = 100, Il(0) = 100, I(0) = 80, Ic(0) = 70, Ih(0) = 50, R(0) = 40 and
V (0) = 40. Update the values of the variables at each grid point based on the solution obtained.
Step 5: Repeat iteratively and use Mathematica 12 package to maintain numerical results for system (2.1) using the
forward finite difference method as shown in Figure 2 with blue color.

3. Optimal control problem

In this section, we use optimal control theory for the HBV model (2.1). We apply four different controls to minimize
the infection and spread of the HBV in the community. The first control ui is the prevention or quarantine control
which reduces infection by minimizing contact between infected and healthy individuals. The second control uv denotes
the vaccination control to reduce infection. The third control ur denotes a rapid test for people in the Il category to
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identify infections and quarantine them. The fourth control ut regards treatment control.
This discussion leads us to the following optimal control problem:

dS

dt
= Λ1Λ2(1− αIc(t)) + θV (t)− (ωI(t) + ρωIc(t))(1− ui)S(t)

− (γ3uv + d0 + µ)S(t),

dIl
dt

= (ωI(t) + ρωIc(t))(1− ui)S(t)− (η1(1− ur) + d0 + µ)Il(t),

dI

dt
= −(β1ut + γ1 + d0 + µ)I(t) + η1urIl(t),

dIc
dt

= η3γ1I(t)− (β2utη2 + d0 + d1 − Λ1Λ2α)Ic(t),

dIh
dt

= β2utIc(t) + β1utI(t)− (β3ut + d0 + d2)Ih(t),

dR

dt
= η2Ic(t) + (1− η3)γ1I(t) + β3utIh(t)− d0R(t),

dV

dt
= Λ1(1− Λ2) + γ3uvS(t)− (θ + d0)V (t).

(3.1)

Now, we define an objective function:

J(ui(t), uv(t), ur(t), ut(t)) =∫ t

0

(k1Il + k2I + k3Ic + k4Ih + 0.5k5u
2
i (t) + 0.5k6u

2
v(t) + 0.5k7u

2
r(t)

+ 0.5k8u
2
t (t))dt,

(3.2)

subject to the control system (3.1), t denotes the final time of the treatment and the parameters ki with i = 1, 2, ..., 7
are the weight factor for the balancing constants. The quadratic expressions of ui(t), uv(t), ur(t) and ut(t) are nonlinear
costs of intervention. The controls defined above are continuous Lebesgue integrable, we aim to minimize the objective
function (3.2) for minimizing HBV infection between people by finding optimal controls u∗i (t), u

∗
v(t), u

∗
r(t) and u∗t (t)

such that:

J(u∗i (t), u
∗
v(t), u

∗
r(t), u

∗
t (t)) =

min{J(ui(t), uv(t), ur(t), ut(t)) : (ui(t), uv(t), ur(t), ut(t)) ∈ U},
(3.3)

where U denoted to be a measurable control set:

U = {(ui(t), uv(t), ur(t), ut(t)) : [0, t]→ [0, 1]}. (3.4)

3.1. characterization of optimal control. The necessary conditions for the existence of optimal control should
satisfy Pontryagin’s maximum principle which states that if u∗i (t), u

∗
v(t), u

∗
r(t), u

∗
t (t) ∈ U are an optimal control for

(3.2) with a fixed final time t, then there exists an adjoint vector with seven adjoint variables λi for i = 0, 1, 2, ..., 7
associated to the state variables S, Il, I, Ic, Ih, V and R. This principle converts the optimal control system (3.1) with
the objective function (3.2) into a problem of minimizing a Hamiltonian H with the controls (ui, uv, ur, ut).
The Hamiltonian of this problem is defined as:

H =k1Il + k2I + k3Ic + k4Ih + 0.5k5u
2
i (t) + 0.5k6u

2
v(t) + 0.5k7u

2
r(t)

+ 0.5k8u
2
t (t) + λ1

dS

dt
+ λ2

dIl
dt

+ λ3
dI

dt
+ λ4

dIc
dt

+ λ5
dIh
dt

+ λ6
dR

dt
+ λ7

dV

dt
.

(3.5)
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Theorem 3.1. There exist adjoint variables λi(t), i = 1, 2, 3, ..., 7, associated to the state variables S, Il, I, Ic, Ih, V
and R such that the optimal controls u∗i (t), u

∗
v(t), u

∗
r(t), u

∗
t (t) and the solution S∗, I∗l , I

∗, I∗c , I
∗
h, V

∗ satisfy universality
conditions. Furthermore, we have the controls:

u∗i = min

{
1,max

[
0,

(λ∗2 − λ∗1)(ωI∗ + ρωI∗c )S∗

k5

]}
,

u∗v = min

{
1,max

[
0,

(λ∗1 − λ∗7)(γ∗3S
∗)

k6

]}
,

u∗r = min

{
1,max

[
0,
−(λ∗3 − λ∗2)η2I

∗
l

k7

]}
,

u∗t = min

{
1,max

[
0,

(λ∗3 − λ∗5)β1I
∗ + (λ∗4 − λ∗5)β2I

∗
c + (λ∗5 − λ∗6)β3I

∗
h

k8

]}
.

Proof. Using the transverse condition, the system describes the adjoint variables achieved by differentiating the Hamil-
tonian as follows:

dλ1

dt
= −∂H

∂S
,
dλ2

dt
= −∂H

∂Il
,
dλ3

dt
= −∂H

∂I
,

dλ4

dt
= − ∂H

∂IC
,
dλ5

dt
= −∂H

∂Ih
,
dλ6

dt
= −∂H

∂R
,

dλ7

dt
= −∂H

∂V
.

So, the adjoint system can be written as:

dλ1

dt
= 1 + λ1(ωI + ρωIc)(1− ui) + λ1(γ3uv + d0 + µ)

− λ2(ωI + ρωIc)(1− ui)− λ7γ3uv,

dλ2

dt
= −k1 + λ2(η1(1− ur) + d0 + µ)− λ3η1ur,

dλ3

dt
= −k2 + ω(1− ui)Sλ1 − ω(1− ui)Sλ2 + λ3(β1ut + γ1 + d0 + µ)

− λ4η3γ1 − λ5β1ut − λ6(1− η3)γ1,

dλ4

dt
= −k3 + Λ1Λ2αλ1 + ρω(1− ui)Sλ1 − ρω(1− ui)Sλ2

+ (β2η2ut + d0 − Λ1Λ2α)λ4 − β2utλ5 − η2λ6,

dλ5

dt
= −k4 + (β2ut + d0 + d2)λ5 − β3utλ6,

dλ6

dt
= d0λ6,

dλ7

dt
= −λ1θ + (θ + d0)λ7.

(3.6)

The optimality conditions are given by:

∂H

∂ui
=
∂H

∂uv
=
∂H

∂ur
=
∂H

∂ut
= 0. (3.7)



CMDE Vol. *, No. *, *, pp. 1-16 7

Furthermore, we have the following controls

ui =
(λ2 − λ1)(ωI + ρωIc)S

k5
,

uv =
(λ1 − λ7)(γ3S)

k6
,

ur =
−(λ3 − λ2)η2Il

k7
,

ut =
(λ3 − λ5)β1I + (λ4 − λ5)β2Ic + (λ5 − λ6)β3Ih

k8
.

(3.8)

So, the optimal control will be

u∗i = min

{
1,max

[
0,

(λ∗2 − λ∗1)(ωI∗ + ρωI∗c )S∗

k5

]}
,

u∗v = min

{
1,max

[
0,

(λ∗1 − λ∗7)(γ∗3S
∗)

k6

]}
,

u∗r = min

{
1,max

[
0,
−(λ∗3 − λ∗2)η2I

∗
l

k7

]}
,

u∗t = min

{
1,max

[
0,

(λ∗3 − λ∗5)β1I
∗ + (λ∗4 − λ∗5)β2I

∗
c + (λ∗5 − λ∗6)β3I

∗
h

k8

]}
.

(3.9)

�

3.2. Numerical simulation of optimal control problem. In this subsection, we solve the optimal control system
(3.1) with the optimal control characterization (3.9) and adjoint system (3.6) numerically with the finite difference
scheme. First, we descreatize the optimal control system (3.1) to get the following equations:

(S)
m+1

=(S)
m

+ τΛ1Λ2

(
1− α(Ic)

m
)
− τ
(

(ω(I)mj + ρω(Ic)
m)(1− (ui)

m)

(S)m+1
)
− τ
(
γ3(uv)

m + d+ µ
)

(S)m+1 + τθ(V )m,
(3.10)

(Il)
m+1

=(Il)
m

+ τ
(
ω(I)m + ρω(Ic)

m
j

)
(1− (ui)

m)(S)m

− τ
(
η1(1− (ur)

m) + d+ µ
)

(Il)
m+1

,
(3.11)

(I)m+1 = (I)
m − τ

(
β1(ut)

m + γ1 + d+ µ
)

(I)m+1 + τη1(ur)
m(Il)

m
, (3.12)

(Ic)
m+1

= (Ic)
m

+ τη3γ1(I)
m − τ

(
β2η2(ut)

m + d+ d1 − Λ1Λ2α
)

(Ic)
m+1

, (3.13)

(Ih)
m+1

=(Ih)
m

+ τβ2(ut)
m(Ic)

m
j − τ

(
β3(ut)

m + d+ d2

)
(Ih)

m+1

+ τ(ut)
mβ1(I)

m
,

(3.14)

(R)m+1 =(R)
m

+ +τη2(Ic)
m
j + τ

(
1− η3

)
γ1(I)

m
j + τβ3(ut)

m(Ih)
m

− τd(R)m+1,
(3.15)

(V )m+1 = (V )
m

+ τΛ1

(
1− Λ2

)
+ τγ3(uv)

m(S)
m − τ

(
θ + d

)
(V )m+1. (3.16)
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Also, discretize the optimal control characterization equations as follows:

(ui)
m = min

{
1,max

[
0,

((λ2)m − (λ1)m)(ω(I)m + ρω(Ic)
m)(S)m

k5

]}
, (3.17)

(uv)
m = min

{
1,max

[
0,

((λ1)m − (λ7)m)(γ3(S)m)

k6

]}
(3.18)

(ur)
m = min

{
1,max

[
0,
−((λ3)m − (λ2)m)η2(Il)

m

k7

]}
, (3.19)

(ut)
m = min

{
1,max

[
0,

((λ3)m − (λ5)m)β1I
∗ + ((λ4)m − (λ5)m)β2(Ic)

m + ((λ5)m − (λ6)m)β3(Ih)m

k8

]}
.

(3.20)

Also, discretize the adjoint equations as follow:

(λ1)
m+1

=(λ1)
m

+ 1 + (λ1)
m+1

(ω(I)m + ρω(Ic)
m)(1− (ui)

m)

+ (λ1)
m+1

(γ3(uv)
m + d+ µ)− (λ2)

m+1
(ω(I)m + ρω(Ic)

m)

(1− (ui)
m)− (λ7)

m+1
γ3(uv)

m,

(3.21)

(λ2)
m+1

=(λ2)
m − k1 + (λ2)m(η1(1− (ur)

m) + d+ µ)− (λ3)mη1(ur)
m, (3.22)

(λ3)
m+1

=(λ3)
m − k2 + ω(1− (ui)

m)(S)m(λ1)m − ω(1− (ui)
m)(S)m(λ2)m

− (λ4)mη3γ1 + (λ3)m(β1(ut)
m + γ1 + d+ µ)− (λ5)mβ1(ut)

m

− (λ6)m(1− η3)γ1,

(3.23)

(λ4)
m+1

=(λ4)
m − k3 + Λ1Λ2α(λ1)m + ρω(1− (ui)

m)S(λ1)m

− ρω(1− (ui)
m)(S)m(λ2)m + (β2η2(ut)

m + d− Λ1Λ2α)(λ4)m

− β2(ut)
m(λ5)m − η2(λ6)m,

(3.24)

(λ5)
m+1

=(λ5)
m − k4 + (β2(ut)

m + d+ d2)(λ5)m − β3(ut)
m(λ6)m, (3.25)

(λ6)
m+1

=(λ6)
m

+ d(λ6)
m
, (3.26)

(λ7)
m+1

=(λ7)
m − (λ1)mθ + (θ + d)(λ7)m. (3.27)

Taking into account λi(tf ) = 0, i = 1, 2, 3, ..., 7 and tf represent the final time and ki = 1 with i = 1, 2, ..., 7.We solve
the optimal state system (3.1) and the adjoint state system (3.6) by forward and backward finite difference schemes,
respectively. Using Mathematica 12 package, the optimal control problem is solved with an iterative scheme via an
initial guess for the control variables. The new values of control variables are computed and then we repeat previous
steps with the new control variable to get new values for state and adjoint variables until we reach the optimal state.
The sub-graphs in Figure 2 show the dynamics of susceptible, infected individuals in four categories, recovered and
vaccinated individuals. It can be observed from the results that four controls considered in this simulation are very
effective in reducing the severity of infection among people as shown in Figures 2(b, c, d, e). Also, Figure 2 shows
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the numerical solution of the HBV system before and after applying four types of optimal control together. We find
that all infection categories decrease over time as shown in blue color. However, after applying optimal control to this
system, we notice in Figure 2b in red color that the numbers in the Il category decrease more clearly. This category
is considered the most dangerous type of infection, as it does not show clear symptoms and can transmit the disease
to other people, increasing the infection rate. We also observe a reduction in the numbers in Figures 2(c, d, e), where
the number of patients in these categories also decreases significantly. Over time, the number of people receiving
vaccinations decreases as shown in Figure 2g, due to the reduction in the number of infected individuals. Additionally,
we notice an increase in the number of recovered patients over time as illustrated in Figure 2f. In Figure 3, we apply
two types of optimal control only: isolation and vaccination. We observe that the number of infections decreases in
the four Infection categories as shown Figures 3(b, c, d, e), but to a lesser extent than the results obtained by applying
all four controls together. As in Figure 3b, the number of individuals in the latent category (is the most dangerous)
decreases, but not as significantly as in Figure 2b. Therefore, we urge governments to implement all four controls to
reduce the number of infections, increase the number of recoveries and ultimately eradicate HBV over time.

4. spatio-temporal study

4.1. spatio-temporal mathematical model of HBV. In this subsection, we present a numerical simulation of the
spatio-temporal model of the hepatitis B virus, which can be defined as follows:

∂S

∂t
= M1

∂2S

∂x2
+ Λ1Λ2(1− αIc(t)) + θV (t)

− (ωI(t) + ρωIc(t) + γ3 + d0 + µ)S(t),

∂Il
∂t

= M2
∂2Il
∂x2

+ (ωI(t) + ρωIc(t))S(t)− (η1 + d0 + µ)Il(t),

∂I

∂t
= M3

∂2I

∂x2
− (β1 + γ1 + d0 + µ)I(t) + η1Il(t),

∂Ic
∂t

= M4
∂2Ic
∂x2

+ η3γ1I(t)− (β2η2 + d0 + d1 − Λ1Λ2α)Ic(t),

∂Ih
∂t

= M5
∂2Ih
∂x2

+ β2Ic(t) + β1I(t)− (β3 + d0 + d2)Ih(t),

∂R

∂t
= M6

∂2R

∂x2
+ η2Ic(t) + (1− η3)γ1I(t) + β3Ih(t)− d0R(t),

∂V

∂t
= M7

∂2V

∂x2
+ Λ1(1− Λ2) + γ3S(t)− (θ + d0)V (t),

(4.1)

with initial conditions (4.2) and homogeneous Neumann boundary conditions (4.3):

S(0, x) = 2S0x(1− x), Il(0, x) = 2Il0x(1− x),

I(0, x) = 2I0x(1− x), Ic(0, x) = 2Ic0x(1− x),

Ic(0, x) = 2Ih0
x(1− x), R(0, x) = 2R0x(1− x),

V (0, x) = 2V0x(1− x).

(4.2)

∂S(t, 0)

∂x
=
∂S(t, 1)

∂x
= 0,

∂Il(t, 0)

∂x
=
∂Il(t, 1)

∂x
= 0,

∂I(t, 0)

∂x
=
∂I(t, 1)

∂x
= 0,

∂Ic(t, 0)

∂x
=
∂Ic(t, 1)

∂x
= 0,

∂Ih(t, 0)

∂x
=
∂Ih(t, 1)

∂x
= 0,

∂R(t, 0)

∂x
=
∂R(t, 1)

∂x
= 0,

∂V (t, 0)

∂x
=
∂V (t, 1)

∂x
= 0.

. (4.3)
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Figure 2. Comparison of the temporal model results with and without controls.
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Figure 3. Comparison of the temporal model results with two types of controls and without controls.
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This model consists of seven partial differential equations that represent the prevalence of B virus disease, where x, t
represent space and time, respectively. The initial conditions are set in such a manner that the proportion of infected
people reach its maximum value in a specific area of space and then decreases slightly as one moves away from this
area. The boundary conditions are used in the form of homogeneous Neumann for the reason that when an epidemic
spreads in a certain area this condition guarantees that people will not enter or leave this area and this is called a
complete closure. The model can then be used to detect changes in infectious diseases and their regional variations
over time.

4.2. Numerical simulation and graphical results. In this subsection, we introduce a numerical study of the
spatio-temporal model of HBV (4.1) as in the following steps:
Step1: Beginning with dividing the domain of x ∈ [0, 1] and t ∈ [0, 50] into 102 × 50 cubes with step size h = 0.1 and
∆t = 1, we apply finite difference scheme as follows:

∂S

∂t
=

(S)
m+1
j − (S)

m
j

∆t
,

∂2S

∂x2
=
n(S)

m+1
j+1 − 2(S)

m+1
j + (S)

m+1
j−1

∆x2
.

(4.4)

Step 2: By discretizing the system (4.1) and its boundary conditions (4.3), we get the following system of equations:

(S)
m+1
j =(S)

m
j +

∆tM1

(∆x)2

(
(S)

m+1
j+1 − 2(S)

m+1
j + (S)

m+1
j−1

)
+ ∆tθ(V )mj

+ ∆tΛ1Λ2

(
1− α(Ic)

m
j + 1

)
−∆t

(
ω(I)mj + ρω(Ic)

m
j + γ3 + d0 + µ

)
(S)m+1

j ,

(4.5)

(Il)
m+1
j =(Il)

m
j +

∆tM2

(∆x)2

(
(Il)

m+1
j+1 − 2(Il)

m+1
j + (Il)

m+1
j−1

)
+ ∆t

(
ω(I)mj

+ ρω(Ic)
m
j

)
(S)mj −∆t

(
η1 + d0 + µ

)
(Il)

m+1
j ,

(4.6)

(I)m+1
j =(I)

m
j +

∆tM3

(∆x)2

(
(I)m+1

j+1 − 2(I)m+1
j + (I)m+1

j−1

)
−∆t

(
β1 + γ1

+ d0 + µ
)

(I)m+1
j + ∆tη1(Il)

m
j ,

(4.7)

(Ic)
m+1
j =(Ic)

m
j +

∆tM4

(∆x)2

(
(Ic)

m+1
j+1 − 2(Ic)

m+1
j + (Ic)

m+1
j−1

)
+ ∆tη3γ1(I)

m
j

−∆t
(
β2η2 + d0 + d1 − Λ1Λ2α

)
(Ic)

m+1
j ,

(4.8)

(Ih)
m+1
j =(Ih)

m
j +

∆tM5

(∆x)2

(
(Ih)

m+1
j+1 − 2(Ih)

m+1
j + (Ih)

m+1
j−1

)
+ ∆tβ2(Ic)

m
j

+ ∆tβ1(I)
m
j −∆t

(
β3 + d0 + d2

)
(Ih)

m+1
j ,

(4.9)

(R)m+1
j =(R)

m
j +

∆tM6

(∆x)2

(
(R)m+1

j+1 − 2(R)m+1
j + (R)m+1

j−1

)
+ ∆tη2(Ic)

m
j

+ ∆t
(

1− η3

)
γ1(I)

m
j + ∆tβ3(Ih)

m
j −∆td0(R)m+1

j ,

(4.10)
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Figure 4. 3D graphical numerical results of the spatio-temporal HBV model.

(V )m+1
j =(V )

m
j +

∆tM6

(∆x)2

(
(V )m+1

j+1 − 2(V )m+1
j + (V )m+1

j−1

)
+ ∆tΛ1

(
1− Λ2

)
+ ∆tγ3(S)

m
j −∆t

(
θ + d0

)
(V )m+1

j ,

(4.11)

Step 3: Solve the algebraic system (4.5)-(4.11).
Step 4:Update the values of the variables at each grid point based on the solution obtained.
Step 5: Repeat iteratively,
where the diffusion coefficients are Mi = 0.01, i = 1, 2, 3, ..., 7 and the graphical simulation of the numerical solution
as shown in Figure 4. It is very clear that staying away from the place of infection reduces the spread of the virus.
This displays the importance of isolation to stop the spread of the disease.
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4.3. Truncation Error. In this subsection, we look at the proposed scheme’s consistency. By using Taylor expansion
with the system (4.1), we get:

ΨS =
(S)

m+1
j − (S)

m
j

∆t
− M1

(∆x)2

(
(S)

m+1
j+1 − 2(S)

m+1
j + (S)

m+1
j−1

)
− θ(V )mj

− Λ1Λ2

(
1− α(Ic)

m
j + 1

)
+
(
ω(I)mj − ρω(Ic)

m
j + γ3 + d0 + µ

)
(S)m+1

j ,

(4.12)

ΨS =

(
∂S

∂t
+

∆t

2!

∂2S

∂t2
+

∆t2

3!

∂2S

∂t2
+ ...

)
− Λ1Λ2

(
1− α(Ic)

m
j + 1

)
− θ(V )mj

− M1

(∆x)2

(
∆x2

(∂2S

∂x2
+ 2

∆x2

4!

∂4S

∂x4
+ ...

))
+
(
ω(I)mj − ρω(Ic)

m
j

+ γ3 + d0 + µ
)
∗

(
(S)j

m + ∆t
∂S

∂t
+

∆t2

2!

∂2S

∂t2
+
τ3

3!

∂2S

∂t2
+ ...

)
,

(4.13)

ΨS =
∂S

∂t
− M1(∆x)2

(∆x)2

∂2S

∂x2
+ (S)j

m
(
ω(I)mj − ρω(Ic)

m
j + γ3 + d0 + µ

)
− Λ1Λ2

(
1− α(Ic)

m
j + 1

)
− θ(V )mj −

2M1∆x4

(4!∆x)2

∂4S

∂x4

+ ∆t

((
ω(I)mj − ρω(Ic)

m
j + γ3 + d0 + µ

)(∂S
∂t

+ ...
))

,

(4.14)

ΨS = −2M1∆x2

4!

∂4S

∂x4
+ ∆t

((
ω(I)mj − ρω(Ic)

m
j + γ3 + d0 + µ

)(∂S
∂t

+ ...
))

. (4.15)

So,ΨS → 0 as ∆x→ 0 and ∆t→ 0.
Also, we can be obtained the relations for Il, I, Ic, Ih, R and V as follows:

ΨIl = −2M2∆x2

4!

∂4Il
∂x4

+ ∆t

((
η1 + do + µ

)(∂Il
∂t

+ ...
))

,

ΨI = −2M3∆x2

4!

∂4I

∂x4
+ ∆t

((
β1 + γ1 + d0 + µ

)(∂I
∂t

+ ...
))

,

ΨIc = −2M3∆x2

4!

∂4Ic
∂x4

+ ∆t

((
β2η2 + d0 + d1 − Λ1Λ2α

)(∂Ic
∂t

+ ...
))

,

ΨIh = −2M3∆x2

4!

∂4Ih
∂x4

+ ∆t

((
β3 + d0 + d2

)(∂Ih
∂t

+ ...
))

,

ΨR = −2M3∆x2

4!

∂4R

∂x4
+ ∆t

((
d0

)(∂R
∂t

+ ...
))

,

ΨV = −2M3∆x2

4!

∂4V

∂x4
+ ∆t

((
d0 + θ

)(∂V
∂t

+ ...
))

,

(4.16)

then from the previous Equations (4.15) and (4.16), we find that ΨS ,ΨIl ,ΨI ,ΨIc ,ΨIh ,ΨR,ΨV → 0 as ∆x → 0 and
∆t→ 0. Hence, this scheme has an accuracy of O(∆t,∆x2).
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4.4. Von-Neumann stability for numerical scheme. This subsection proves that the proposed numerical scheme
is stable at Von Neumann. First, we define:

(S)mj = φms e
iξsj∆x, (S)m+1

j = φm+1
s eiξsj∆x,

(S)m+1
j+1 = φm+1

s eiξs(j+1)∆x.
(4.17)

Substituting from (4.17) into (4.5) and nonlinear terms, we get

(S)
m+1
j

(
1 + 2y1 + ∆t

(
ω(I)mj + ρω(Ic)

m
j + γ3 + d0 + µ

))
− y1

(
(S)

m+1
j+1 + (S)

m+1
j−1

)
= (S)

m
j + ∆tΛ1Λ2

(
1− α(Ic)

m
j + 1

)
+ ∆tθ(V )mj .

(4.18)

Now, we define the amplification factor as Es =
(S)

m+1
j

(S)
m
j

and substitute in (4.18), we get

Es

(
1 + 2y1 + ∆t

(
γ3 + d0 + µ

))
+ ∆tν̇1

))
− y1

(
Ese

−iξs∆x + Ese
iξs∆x

)
= 1, (4.19)

where y1 is mesh ratio which equals to ∆tM1

(∆x)2 and ν̇1 = ω(I)mj + ρω(Ic)
m
j then, we get

Es

(
1 + ∆t

(
ν̇1 + γ3 + d0 + µ

)
+ 4y1 sin2(

ξs∆x

2
)

)
= 1. (4.20)

Then

ES =
1

1 + ∆t
(
ν̇1 + γ3 + d0 + µ

)
+ 4y1 sin2( ξS∆x

2 )
, (4.21)

which implies that ES ≤ 1 is the necessary and sufficient condition for the error to remain bounded and maintain
numerical stability.
Similarly, by following the same previous steps, we obtain

EL =

∣∣∣∣∣∣ 1

1 + ∆t
(
η1 + d0 + µ

)
+ 4y1 sin2( ξl∆x2 )

∣∣∣∣∣∣ ≤ 1,

EI =

∣∣∣∣∣∣ 1

1 + ∆t
(
β1 + γ1 + d0 + µ

)
+ 4y1 sin2( ξI∆x

2 )

∣∣∣∣∣∣ ≤ 1,

EC =

∣∣∣∣∣∣ 1

1 + ∆t
(
β2η2 + d0 + d1 − Λ1Λ2α

)
+ 4y1 sin2( ξC∆x

2 )

∣∣∣∣∣∣ ≤ 1,

EH =

∣∣∣∣∣∣ 1

1 + ∆t
(
β3 + d0 + d2

)
+ 4y1 sin2( ξH∆x

2 )

∣∣∣∣∣∣ ≤ 1,

ER =

∣∣∣∣∣∣ 1

1 + ∆t
(
d0

)
+ 4y1 sin2( ξR∆x

2 )

∣∣∣∣∣∣ ≤ 1,

EV =

∣∣∣∣∣∣ 1

1 + ∆t
(
θ + d0

)
+ 4y1 sin2( ξV ∆x

2 )

∣∣∣∣∣∣ ≤ 1.

(4.22)
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All inequalities in (4.21) and (4.22) show that the proposed scheme is Von-Neumann stable.

5. Conclusion

We formulated a mathematical model for HBV infection with optimal control theory. The optimal control system
was edited using four different types of controls. The optimality system has been solved and the results were great for
infection reduction. The spatio-temporal model was constructed and numerically solved. In addition, the study was
conducted for the stability and consistency of the numerical scheme. Numerical results of the spatio-temporal model
showed the importance of quarantine to stop the spread of the disease.
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