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Abstract
In this paper, we present a numerical method to approximate the solution of the multi-term time fractional

diffusion-wave equation (M-TFDWE). The proposed method represents the solution as a sum of shifted Gegenbauer
polynomials (SGP) with unknown coefficients. By using the operational matrix of fractional integration and integer

derivatives based on SGPs, the M-TFDWE is converted into a system of algebraic equations. The convergence

analysis of this numerical method are also discussed. Finally, we provide two examples to illustrate the accuracy
of the proposed method.
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1. Introduction

Fractional calculus extends the concepts of differentiation and integration to non-integer orders. Due to the non-
local and memory effects inherent in fractional derivatives, fractional differential equations (FDEs) can more accurately
model real-life phenomena than traditional integer-order equations. As a result, many fields such as physics, engi-
neering, and chemistry-including solid mechanics [23], bioengineering [11], and electrochemistry [16] employ fractional
order models (for more applications of FDEs, see [5, 18, 26]). Analytical solutions of FDEs are often difficult to find,
prompting the development of various numerical methods such as finite difference and meshless methods [10, 13–15, 17],
the operational matrix method [28, 30], the collocation method [19, 24, 27], and wavelets [8, 25].

Recently, spectral methods have gained traction due to their numerous advantages. They offer high numerical
accuracy, allowing for precise solutions with a minimal number of degrees of freedom and thus reducing computational
costs. Given the non-local and memory effects of fractional operators, global numerical methods like spectral methods
are preferred over local methods. Spectral methods can be categorized into Galerkin, tau, and collocation methods,
and they typically use orthogonal polynomials such as Jacobi, Gegenbauer, Laguerre, and Hermite polynomials as basis
functions. Various researchers have applied spectral methods to solve FDEs. For instance, Yaghoubi et al [31] solved
the fractional pantograph partial differential equation using shifted Gegenbauer polynomials (SGPs). Ahmed et al [3]
served SGPs as the basis for the tau spectral method in the space-time fractional telegraph equation. Doha et al [6]
introduced a Chebyshev-based spectral method, while Gupta and Kumar [7] employed a spectral collocation method
for the fractional mobile-immobile advection-dispersion equation. Rashidinia and Mohmedi [22] used a spectral method
for solving parabolic fractional partial differential equations and Abo-Gabal et al.[2] proposed a spectral tau method
for time fractional partial differential equations. Pourbabaee and Saadatmandi [20] introduced the Bernoulli-based
spectral tau approach for distributed time fractional partial differential equations, and Abbaszadeh et al.[1] described
a spectral collocation method for the space fractional reaction-diffusion equation.
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In this paper, we concentrate on the multi-term time fractional diffusion-wave equation (M-TFDWE):

c
0D

α
t u(x, t) +

m∑
l=1

cl
c
0D

αl
t u(x, t) = uxx(x, t) + f(x, t) (x, t) ∈ [0, 1]× [0, 1] , (1.1)

subjected to conditions

u(x, 0) = τ1(x), ut(x, 0) = τ2(x), (1.2)

u(a, t) = g1(t), u(b, t) = g2(t), (1.3)

where 1 < α1 < α2 < . . . < αm < α < 2, cl ≥ 0 l = 1, 2, . . . ,m. In (1.1), u(x, t) is the unknown function and
f(x, t) is a smooth function, τ1(x), τ2(x), g1(t), g2(t) are continuous functions. Some numerical approaches have been
investigated for numerical solving the M-TFDWE. Kumar et al.[9] presented a numerical method based on the finite
difference and a meshless local collocation method. Yaseen et al.[33] introduced a finite difference based on cubic
trigonometric B-spline for solving the M-TFDWE. Yang et al. [32] investigated a spectral collocation method (SCM)
with convergence analysis. Molavi-Arabshahi et al. [12] proposed the generalized Laguerre SCM for the M-TFDWE.
Heydari et al. [8] applied the Legendre wavelet for the time fractional diffusion-wave equation (TFDWE). Rashidinia
and Mohmedi [21] proposed a spectral collocation approach based on Legendre polynomials.

In this study, we use a spectral collocation method utilizing Gegenbauer polynomials to solve the M-TFDWE. The
solution is approximated by a series of shifted Gegenbauer polynomials (SGPs). By employing the operational matrix
of derivatives and fractional integration for these polynomials, we derive a system of algebraic equations. Then, the
numerical solution is obtained by solving this system. The structure of this paper is as follows: section 2 reviews
some preliminaries on fractional calculus and Gegenbauer polynomials. Section 3 discusses function approximation.
The proposed spectral collocation method based on SGPs is developed in section 4. Section 5 covers the convergence
analysis of the numerical approach. To demonstrate the effectiveness of the proposed method, two examples are
provided in section 6. The conclusion is presented in section 7.

2. Preliminaries and definitions

In this section, we review various definitions and fundamental properties related to fractional integration and
differentiation [5, 18], as well as shifted Gegenbauer polynomials [3, 4, 29, 31].

Definition 2.1. The Riemann-Liouville fractional integral of order γ > 0 of a function u(t) on t = (0, T ] is given as:

0I
γ
t u(t) =

1

Γ(γ)

∫ t

0

(t− σ)γ−1u(σ)dσ =
1

Γ(γ)
tγ−1 ∗ u(t), (2.1)

where ∗ denotes the convolution operator.

Definition 2.2. The Caputo fractional derivative of order γ > 0 of a function u(t) on t = (0, T ] is defined as:

0D
γ
t u(t) = 0I

m−γ
t Dmu(t) =

1

Γ(m− γ)

∫ t

0

(t− σ)m−γ−1u(m)(σ)dσ, (2.2)

where m = dγe

These operators have some properties as following:

• 0I
γ
t t
β = Γ(β+1)

Γ(β+γ+1) t
β+γ β > −1,

• 0I
γ
t (c1u1(t) + c2u2(t)) = c1 0I

γ
t u1(t) + c2 0I

γ
t u2(t),

• 0I
γ
t D

γ
0,tu(t) = u(t)−

∑m−1
r=0 u(r)(0) t

r

r! .

Theorem 2.3. Let q ∈ [1,∞), h ∈ L1 and s ∈ Lq. Then h ∗ s ∈ Lq and

‖h ∗ s‖q ≤ ‖h‖1 ‖s‖q. (2.3)

Proof. [31]. �
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Definition 2.4. ([3, 31]) The well known Gegenbauer polynomials Cλm(x) of degree m and order λ > −1
2 defined on

the interval [−1, 1] in terms of Jacobi polynomials J
(α,β)
m are

Cλm(x) =
Γ(λ+ 1

2 ) Γ(m+ 2λ)

Γ(2λ) Γ(m+ λ+ 1
2 )
J

(λ− 1
2 ,λ−

1
2 )

m λ 6= 0,

some properties of Gegenbauer polynomials are as follows:

(i) They are orthogonal with respect to the weighted function wλ(x) = (1− x2)λ−
1
2 .∫ 1

−1

Cλm(x)Cλn(x)wλ(x)dt =
Γ(2λ+ n)π 21−2λ

Γ(n+ 1)(n+ λ)(Γ(λ))2
δmn

where δmn is the Delta-Kronecher function.
(ii) Gegenbauer polynomials satisfy in the following recurrence relation:

(m+ 2)Cλm+2(x) = 2(λ+m+ 1)xCλm+1(x)− (2λ+m)Cλm(x),

where Cλ0 (x) = 1, Cλ1 (x) = 2λx.

By using the new variable x = 2t− 1, we can get the shifted Gegenbauer polynomials on the interval [0, 1] as follows:

Cλm(t) =
Γ(λ+ 1

2 )

Γ(2λ)

m∑
k=0

(−1)m−kΓ(m+ k + 2λ)

Γ(k + λ+ 1
2 )(m− k)!k!

tk, (2.4)

such that∫ 1

0

Cλm(t)Cλn(t)wλ(t)dt = Θλ
mδmn,

where wλ(x) = (x− x2)λ−
1
2 and

Θλ
m =

(Γ(λ+ 1
2 ))2Γ(m+ 2λ)

(Γ(2λ))2(2m+ 2λ)m!
. (2.5)

3. Function approximation

Let u(t) be a square integrable function on [0, 1], so it expresses as a series of the shifted Gegenbauer polynomials
as

u(t) =

∞∑
r=0

urC
λ
r (t).

In general, u(t) can be approximated by a truncated series of the shifted Gegenbauer polynomials as

u(t) '
M∑
r=0

urC
λ
r (t) = LT (t)U, (3.1)

where

ur =
1

Θλ
r

∫ 1

0

u(t)Cλr (t)wλ(t)dt,

Θλ
r is definded in (2.5) and

U = [u0, u1, . . . uM ]T , L(t) = [Cλ0 (t), Cλ1 (t), . . . CλM (t)]T . (3.2)

Similarly, for 2D cases, u(x, t) defined on [0, 1] × [0, 1] may be approximated by a truncated series of the shifted
Gegenbauer polynomials as

uM (x, t) =

M∑
m=0

M∑
n=0

νmnC
(λ)
m (x)C(λ)

n (t) = (LT (t)⊗ LT (x))~U, (3.3)
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with U=


ν00 ν01 . . . ν0M

ν10 ν11 . . . ν1M

...
... . . .

...
νM0 νM1 . . . νMM

,

and

νmn =
1

Θλ
m

1

Θλ
n

∫ 1

0

∫ 1

0

uM (x, t)Cλm(x)Cλn(t)wλ(x)wλ(t)dxdt, (3.4)

for m = 0, 1, . . . ,M and n = 0, 1, . . . ,M .

Definition 3.1. The family of monomials are as follows:

wk = tk, k = 0, 1 . . . , M,

the vector form of m-th monomial functions is defined as

ω(t) = [w0, w1, . . . , wm] . (3.5)

Theorem 3.2. Let L(t) and ω(t) are the vector forms of shifted Gegenbauer polynomials and monomials defined in
(3.2) and (3.5), respectively. Then

ω(t) = ρ L(t), (3.6)

where

ρ =


ρ00 ρ01 . . . ρ0M

ρ10 ρ11 . . . ρ1M

...
... . . .

...
ρM0 ρM1 . . . ρMM

 , (3.7)

and

ρqj =

j∑
i=0

2 (−1)j−i Γ(2λ) (j + λ) j! Γ(i+ j + 2λ) Γ(i+ q + λ+ 1
2 )

(j − i)! i! Γ(i+ λ+ 1
2 ) Γ(j + 2λ) Γ(i+ 2λ+ q + 1)

, (3.8)

for q = 0, 1, . . . , M, j = 0, 1, . . . , M .

Proof. [30] �

Theorem 3.3. ([28]) Let L(t) is the vector form of the shifted Gegenbauer polynomials definded in (3.2). Then:

0I
α
t L(t) ' IαL(t), (3.9)

where Iα = [ι(i, j)]i,j=0,1,...,M is the (M + 1)× (M + 1) matrix and given as follows:

ι(i, j) =

i∑
k=0

j∑
f=0

(−1)i+j−k−f

Γ(λ+ 1
2 )Γ(i+ k + 2λ)j!(j + λ)(Γ(λ))2(Γ(λ+ 1

2 ))2Γ(2λ+ j + f)Γ(α+ k + f + λ+ 1
2 )

21−4λπΓ(2λ+ j)Γ(λ+ f + 1
2 )(j − f)!f !Γ(2λ)Γ(α+ k + f + 2λ+ 1)

.

Proof. [28] �
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The n-th derivative of the L(t) is defined as follows:

dn

dtn
L(t) =

dn

dtn
ρ−1w(t) = ρ−1DnρL(t), (3.10)

where ρ is defined in (3.7)-(3.8), and D is a (M + 1)× (M + 1) matrix as follows

D =


0 0 . . . 0 0
1 0 . . . 0 0
...

... . . .
... 0

0 0 . . . M 0

 .
4. The shifted Gegenbauer spectral collocation method (SGSCM)

In this section, we describe SGSCM for solving the M-TFDWE. The reformulated of the M-TFDWE defined in
(1.1) can be constructed using fractional Riemann- Liouville integral of order α as follows:

u(x, t) +

m∑
l=1

cl 0I
α−αl
t u(x, t) = a 0I

α
t uxx(x, t) +H(x, t). (4.1)

Where H(x, t) = (τ1(x) + tτ2(x))[1 +
∑m
l=1 cl

tα−αl

Γ(α−αr+1) ] + 0I
α
t f(x, t)

For using the spectral collocation method, at the first step u(x, t) is approximated by terms of shifted Gegenbauer
polynomials as given in (3.3). Then, we have:

0I
α
t uxx(x, t) '

M∑
i=0

M∑
j=0

uij
d2

dx2
C

(λ)
i (x) 0I

α
t C

(λ)
j (t) = (LT (t)ITα ⊗ LT (x)DT

2 )~U,

using properties of the Kronecker product, we get

0I
α
t uxx(x, t) ' (LT (t)⊗ LT (x))(ITα ⊗DT

2 )~U, (4.2)

then, for l = 1, . . . ,m

0I
α−αl
t u(x, t) '

M∑
i=0

M∑
j=0

uijC
(λ)
i (x) 0I

α−αl
t C

(λ)
j (t) = (LT (t)ITα−αl ⊗ L

T (x)ITM+1)~U (4.3)

= (LT (t)⊗ LT (x))(ITα−αl ⊗ I
T
M+1)~U,

where IM+1 is the identity matriax of order M+1. Finally, let H(x,t) can be written as a series of SGPs, so

H(x, t) ' HM (x, t) =

M∑
i=0

M∑
j=0

HijC
λ
i (x)Cλi (x) = (LT (t)⊗ LT (x)) ~H, (4.4)

where

Hij =
1

Θλ
m

1

Θλ
n

∫ 1

0

∫ 1

0

HM (x, t)Cλm(x)Cλn(t)wλ(x)wλ(t)dxdt, (4.5)

By replacing (3.3), (4.2),(4.3), and (4.4) in relation (4.1), the residual function RM (x, t) is given as follows:

RM (x, t) =
[
(LT (t)⊗ LT (x)) +

m∑
l=1

(LT (t)⊗ LT (x))(ITα−αl ⊗ I
T
M+1)− (LT (t)⊗ LT (x))(ITα ⊗DT

2 )
]
~U (4.6)

− (LT (t)⊗ LT (x)) ~H.

We can generate (M + 1)(M − 1) equations as follows

RM (xm, tn) = 0, m = 2, 3, . . . ,M, n = 1, 2, . . . ,M + 1, (4.7)
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where {xm}M+1
m=1 and {tn}M+1

n=1 are Legendre-Gauss- Lobatto nodes (LGLs).Then, substituting (3.3) in (1.3), and using
LGLs as follows

(LT (tn)⊗ LT (x1))~U = g1(tn) n = 1, 2, . . . ,M + 1, (4.8)

(LT (tn)⊗ LT (xM+1))~U = g1(tn) n = 1, 2, . . . ,M + 1, (4.9)

we get 2(M + 1) equations. Finally, using (4.7) - (4.9), we can obtain ~U by solving the linear system of equations as

A~U = ~b.

5. Convergence analysis

In this section, we study the error of the numerical approach defined in section 4. In error analysis, the usual
procedure is the camparsion of the numerical solution uN with an appropriate orthogonal projection PNu of the exact
soution u in suitable Sobolev spaces.
Let PM is the set of polynomials of degree up to M. The orthogonal projection is defined as PM : L2

wλ
(Λ) 7→ PM such

that

(PMu− u, υ) = 0 ∀υ ∈ PM. (5.1)

To measure the trancation error of PMu− u, we introduce following spaces.

Definition 5.1. ([3]) Let Λ = (0, 1) and wλ(x) = (x− x2)
1
2 . We define the Hilbert space L2

wλ
(Λ) as

L2
wλ

(Λ) =

{
u : Λ 7→ R| u is measurable and ‖u‖L2

wλ
=

∫
Λ

u2(x)wλ(x) dx <∞
}
. (5.2)

Definition 5.2. ([3]) Let n ∈ N. The weighted Sobolev space Hn
wλ

(Λ) is defined as follows

Hn
wλ

(Λ) =

{
u| ∂

i

∂xi
u ∈ L2

wλ
(Λ) 0 ≤ i ≤ n

}
, (5.3)

with semi-norm and norm by

|u|n,wλ = ‖ ∂
n

∂xn
u‖wλ , ‖u‖n,wλ =

(
n∑
i=0

|u|2i,wλ

) 1
2

. (5.4)

Due to [3], for u ∈ Hn
wλ

(Λ), ϑ ≤ n we have

‖PMu− u‖Hϑwλ (Λ) ≤ cM ς(ϑ,n) ‖u‖Hnwλ (Λ), (5.5)

where

ς(ϑ, n) =


2ϑ− n− 1

2 ϑ > 1,
3
2ϑ− n 0 ≤ ϑ ≤ 1,

ϑ− n ϑ < 0.

Definition 5.3. ([3]) Let Ω = Λ×Λ, ρM (x, t) = span
{
Cλi (x)Cλj (t), i, j = 0, 1, . . . ,M

}
. The Hilbert space Hb,a

wλ
(Ω) is

defined as

Hb,a
wλ

(Ω) =

{
u : Ω 7→ R|u is measurable on Ω and

∂m+n

∂xm∂tn
u ∈ L2

wλ
(Ω) 0 ≤ m ≤ b 0 ≤ n ≤ a

}
, (5.6)

where

‖u‖2
Hb,awλ

=

b∑
m=0

a∑
n=0

‖ ∂m+n

∂xm∂tn
u‖2H2

wλ
(Ω),
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and Hb,0
wλ

= L2
wλ

(Λt;H
b
wλ

(Λx)), H0,a
wλ

= Ha
wλ

(Λt;L
2
wλ

(Λx)) with following norms

‖u‖2
Hb,0wλ

=

∫ 1

0

‖u(., t)‖2Hawλ (Λx)dt ‖u‖
2
H0,a
wλ

=

a∑
i=0

‖∂
iu

∂ti
‖2L2

wλ
(Ω). (5.7)

Let the orthogonal projection PM,M : L2
wλ

(Ω) 7→ ρM , i.e.,

PM,M (u(x, t)) = uM (x, t) ∀u(x, t) ∈ L2
wλ

(Ω).

Then, due to [3], we have

‖u− uM‖L2
wλ

(Ω) ≤ c1M−b‖u‖Hb,0
wλ(Ω)

+ c2M
−a‖u‖H0,a

wλ(Ω)
≤Mmax(−b,−a)(c1‖u‖Hb,0

wλ(Ω)
+ c2‖u‖H0,a

wλ(Ω)
). (5.8)

Now, we will investigate the convergence analysis of the proposed method in the following thmrem.

Theorem 5.4. Let u(x, t), uM (x, t) are the exact and numerical solution of the Equation (1.1) subjected to initial and
boundary conditions (1.2)- (1.3), and H (x,t) defined in (4.1) can be approximated by a series of GLPs. Then

‖RM (x, t)‖L2
w(β)

(Ω) −→ 0 (5.9)

Proof. uM (x, t) satisfies at the Equation (4.1) as follows

uM (x, t) +

m∑
l=1

cl 0I
α−αl
t uM (x, t) =0 I

α
t

∂2

∂x2
uM (x, t) +H (x, t) +RM (x, t). (5.10)

Subtracting (5.10) and (4.1) we have

‖RM (x, t)‖L2
wλ

(Ω) = ‖eM (x, t) +

m∑
l=1

cl 0I
α−αl
t eM (x, t)− 0I

α
t

d2

dx2
eM (x, t)−HM (x, t) +H(x, t)‖L2

wλ
(Ω), (5.11)

where eM (x, t) = u(x, t)− uM (x, t). From (5.11), we get

‖RM (x, t)‖L2
wλ

(Ω) ≤ ‖eM (x, t)‖L2
wλ

(Ω) +

m∑
l=1

|cl| ‖0Iα−αlt eM (x, t) ‖+ ‖0Iαt
d2

dx2
eM (x, t)‖L2

wλ
(Ω) (5.12)

+ ‖HM (x, t)−H(x, t)‖L2
wλ

(Ω).

Now, we find the boundary for each terms of right side (5.12). By (5.8), for sufficiently large M, the following relation
can be concluded

‖eM (x, t)‖L2
wλ

(Ω) −→ 0, (5.13)

and
m∑
l=1

|cl| ‖0Iα−αlt eM (x, t) ‖L2
wλ

(Ω) ≤ C1

m∑
l=1

‖0Iα−αlt eM (x, t) ‖L2
wλ

(Ω), (5.14)

for every l = 1, . . . ,m, using (2.1), (2.3), and (5.8)

‖0Iα−αlt eM (x, t) ‖L2
wλ

(Ω) ≤
1

Γ(α− αl)
‖tα−αl−1‖1 ‖eM (x, t)‖L2

wλ
(Ω) ≤ C2‖eM (x, t)‖L2

wλ
(Ω) (5.15)

using (5.8), we conclude ‖eM (x, t)‖L2
wλ

(Ω) −→ 0. So, we have

‖0Iα−αrt eM (x, t) ‖L2
wλ

(Ω) −→ 0. (5.16)

Then, using (2.1), (2.3) and (5.7) we get

‖0Iαt
d2

dx2
eM (x, t)‖L2

wλ
(Ω) ≤

1

Γ(α)
‖tα−1‖1 ‖ d

2

dx2
eM (x, t)‖L2

wλ
(Ω) ≤ C2‖eM (x, t)‖H0,2

wλ
,
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then using(5.5), for sufficiently large M, we get ‖eM (x, t)‖H0,2
wλ
−→ 0 and

‖0Iαt
d2

dx2
eM (x, t)‖L2

wλ
(Ω) −→ 0. (5.17)

From (5.8), for H(x, t) ∈ L2
wλ

(Ω), we can conclude

‖HM (x, t)−H(x, t)‖L2
wλ

(Ω) ≤ c1M−m‖H‖Hm,0wλ
(Ω) + c2M

−n‖H‖H0,n
wλ

(Ω),

so, when M is enough large

‖HM (x, t)−H(x, t)‖L2
wλ

(Ω) −→ 0, (5.18)

by using (5.13), (5.16), (5.17), and (5.18) in (5.12) the result can be obtained. �

6. Numerical examples

In this section, we evaluate the efficiency of the shifted Gegenbauer spectral collocation method. We compute the
following errors:

L2 =

(
M+1∑
m=1

|u(xm, T )− uM (xm, T )|2
) 1

2

,

L∞ = max(|u(xm, tn)− uM (xm, tn)|),
where {u(xm, tn)}m,n=1,...,M+1 and {uM (xm, tn)}m,n=1,...,M+1 are the exact and numerical solutions at the collocation
nodes, respectively. All computations were performed using Matlab 2016 on a laptop with an Intel Core i5-2450M
CPU @ 2.50 GHz, 2 cores. In the following two examples, we consider two sets of collocation nodes for comparison:

• Gauss-Legendre lobatto nodes (GLL),
• Equal spaced nodes (Es).

Example 6.1. Consider the following equations as

c
0D

α
t u(x, t) =

∂2u(x, t)

∂x2
+ q(x, t) (x, t) ∈ (0, 1)× [0, 1],

with initial conditions

u(x, 0) = 0, ut(x, 0) = 0,

and boundary conditions

u(0, t) = 0, u(1, t) = 0,

where

q(x, t) = 6
t3−α

Γ(4− α)
x1+α(1− x)− t3(1 + α)xα−1(α− (2 + α)x),

and u(x, t)= t3x1+α(1− x).

In Table 1, the L2-errors and L∞-errors for λ = 1.25 and various α values using GLL nodes are presented. Table 2
provides the L2-errors and L∞-errors for λ = 1.25 and different α values using Es nodes. A comparison between Table
1 and Table 2 indicates that employing GLL nodes as collocation points yields more accurate results than using Es
nodes. Table 3 displays the L∞-errors and CPU time for λ = 0.25, α = 1.5 and λ = 1.25, α = 1.5. Figure 1 shows
the plot of numerical solutions for λ = 1.5, α = 1.7, 1.8, 1.9, 2, with N = 6 and t = 1. Table 4 lists the absolute
errors for λ = 1.5, α = 1.7, 1.8, 1.9, 2, with N = 6 and t = 1. The results demonstrate that the numerical method
performs better as the fractional order (1 < α < 2) approaches the integer order (α = 2). In Figure 2, the logarithmic
representation of the L∞-errors for α = 1.1, 1.9 is plotted.
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Table 1. L∞-error and L2-error at GLL nodes for Example 6.1.

α = 1.1, λ = 1.25 α = 1.5, λ = 1.25 α = 1.9, λ = 1.25

M L∞ L2 L∞ L2 L∞ L2

3 0.0160 0.0120 0.0173 0.0173 0.0154 0.0154
4 0.0061 0.0016 0.0084 0.0041 0.0083 0.0087
5 2.4912e−4 2.5611e−4 7.9850e−4 5.5410e−4 0.0018 0.0020
6 1.2958e−4 1.4066e−4 1.6839e−4 1.8581e−4 2.9299e−5 3.4604e−5
7 6.1212e−5 6.8441e−5 7.1787e−5 7.7013e−5 9.2215e−6 1.0027e−5
8 3.4166e−5 4.0607e−5 3.4889e−5 3.8682e−5 3.8071e−6 4.1441e−6
9 2.0013e−5 2.4799e−5 1.8361e−5 2.1234e−5 1.8125e−6 1.9956e−6

Table 2. L∞-error and L2-error at Es nodes for Example 6.1.

α = 1.1, λ = 1.25 α = 1.5, λ = 1.25 α = 1.9, λ = 1.25.

M L∞ L2 L∞ L2 L∞ L2

3 0.0160 0.0120 0.0173 0.0173 0.0154 0.0154
4 0.0060 0.0016 0.0071 0.0084 0.0123 0.0127
5 7.2778e−4 7.8567e−4 0.0015 0.0016 0.0010 0.0012
6 4.3162e−4 5.6797e−4 7.2949e−4 9.4861e−4 1.3698e−4 1.6383e−4
7 2.4354e−4 3.1041e−4 3.7244e−4 4.5163e−4 6.1146e−5 7.0266e−5
8 1.6438e−4 2.3981e−4 2.2450e−4 3.1049e−4 3.2304e−5 4.0422e−5
9 1.1255e−4 1.6260e−4 1.4191e−4 1.9304e−4 1.8811e−5 2.3787e−5

Example 6.2. Consider the time fractional diffusion-wave equation

c
0D

α
t ν(x, t) +c

0 D
α1
t ν(x, t) =

∂2

∂x2
ν(x, t) + g(x, t) (x, t) ∈ (0, 1)× [0, 1],

with homogeneous initial and boudary conditions and

g(x, t) =

(
6t3−α

Γ(4− α)
+

6t3−α1

Γ(4− α1)

)
sin(πx) + (π2t3) sin(πx).

Where ν(x, t) = t3 sin(πx).

Table 5 compares the L∞-errors of our proposed method for λ = −0.25 with the method used in [21], showing that
our method is more accurate. Table 6 presents the L∞-errors and CPU times of the proposed method for α = 1.5,
α1 = 1.2, with λ = − 1

4 and λ = 1.5. Figure 3 displays the logarithmic representation of L∞-errors for λ = −0.25,
α = 1.9, α1 = 1.3, and α = 1.7, α1 = 1.2. Figure 4 shows the logarithmic representation of L∞-errors for λ = −0.25,
λ = 1.5, α = 1.5, and α1 = 1.2. In Table 7, the L∞-errors are given for Es nodes and GLL nodes at α = 1.1, α1 = 1.2,
λ = −0.25 and α = 1.9, α1 = 1.2, λ = −0.25, demonstrating that GLL nodes provide more accurate results than Es
nodes.

7. Conclusion

In this paper, we presented a spectral method utilizing shifted Gegenbauer polynomials (SGP) for numerically
solving the multi-term time fractional diffusion-wave equation (M-TFDWE). In this approach, the exact solution
is expressed in terms of SGPs. By employing the fractional Riemann-Liouville integral operator, the M-TFDWE
is reformulated into its integrated form. Then, using the operational matrix of fractional integration and integer
derivative along with collocation nodes, we derive a system of algebraic equations. The use of operational matrices of
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Table 3. L∞-errors and CPU-time for Example 6.1.

α = 1.5, λ = 0.25 α = 1.5, λ = 1.25

M L∞ CPU-time L∞ CPU-time
3 0.0184 0.11s 0.0173 0.12s
4 0.0045 0.12s 0.0084 0.13s
5 4.7599e−4 0.15s 7.9850e−4 0.15s
6 1.6556e−4 0.17s 1.6839e−4 0.16s

Table 4. Absolute errors at different values of α, λ = 1.5 and t = 1 for Example 6.1.

xi α = 1.7 α = 1.8 α = 1.9 α = 2
0.2 4.3922e−4 2.9059e−4 1.3727e−4 1.7000e−14
0.4 2.3480e−4 1.4653e−4 6.4337e−5 4.5582e−14
0.6 1.8190e−4 9.4368e−5 3.6684e−5 4.9502e−14
0.8 1.8948e−4 1.1723e−4 5.2303e−5 2.8010e−13
1 1.1364e−16 1.2581e−17 1.1652e−19 9.8084e−17

Table 5. Comparison of GLSCM with λ =
−1

4
with [21] for Example 6.2.

α = 1.9, α1 = 1.3 α = 1.7, α1 = 1.2

M GLSCM [21] GLSCM [21]
4 0.0045 3.8806e−3 0.0051 4.0956e−3
5 0.0015 2.001e−3 0.0015 2.0625e−3
6 2.8581e−5 6.5229e−5 2.6437e−5 6.6232e−5
7 7.3878e−6 3.0780e−5 7.9742e−6 3.1689e−5
8 4.6386e−7 2.4718e−6 4.5421e−7 1.9346e−6
9 1.9323e−7 2.6136e−7 2.2402e−7 4.3888e−7

Figure 1. Represent of the numerical solution at λ = 1.5, N = 6 and t = 1 for Example 6.1.
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Figure 2. Logarithmic representation of the max absolute error at λ = 1.25 forExample 6.1.

Figure 3. Logarithmic representation of the max absolute error at λ = −0.25 for Example 6.2.

Table 6. L∞-error, CPU-time at α = 1.5, α1 = 1.2 and various values of λ for Example 6.2.

λ = −0.25 λ = 1.5

M L∞ CPU-time L∞ CPU-time

3 0.0607 0.053s 0.1348 0.052s
4 0.0052 0.056s 0.0261 0.053s
5 0.0014 0.079s 0.0029 0.077s
6 2.5396e−5 0.096s 7.4985e−5 0.11s
7 8.4211e−6 0.16s 1.2512e−5 0.15s
8 4.7640e−7 0.21s 3.9986e−6 0.22s
9 2.7965e−7 0.31s 2.8039e−6 0.28s
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Figure 4. Logarithmic representation of the max absolute error at α = 1.5, α1 = 1.2 for Example 6.2.

Table 7. L∞-error, for Es nodes and GLL nodes at λ = −0.25 for Example 6.2.

α = 1.1, α1 = 1.2 α = 1.9, α1 = 1.2

M GLL Es GLL Es

3 0.0977 0.0977 0.0567 0.0567
4 0.0023 0.0435 0.0046 0.0265
5 0.0013 0.0044 0.0015 0.0031
6 2.5983e−5 0.0027 2.8136e−5 0.0020
7 9.4981e−6 1.1736e−4 7.7265e−6 9.4888e−5

SGPs helps reduce computational costs. We also examined the convergence of the numerical solution. Finally, two
examples were solved to demonstrate the efficiency of our proposed method. The numerical illustrations showed that
an accurate solution could be achieved with a small number of basis functions.
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