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Abstract

This paper deals with the numerical solution of a class of nonlinear multi-term weakly singular fractional Volterra

integro-differential equations by the Jacobi collocation method based on Jacobi orthogonal polynomials. Since
the solution of the proposed equation is not smooth enough at the origin, the idea of a smoothing transformation

is used to increase the smoothness of the solution. We represent an operator-based discussion of the smoothing

transformation and Gauss-Jacobi quadrature for Riemann-Liouville integral operators and weakly singular integral
operators using their similar constructions and extend it to the error analysis of the proposed method and obtain

an error bound for the discrete collocation solution. In addition, we propose an improved stochastic method,
based on the efficient sum-of-exponentials (SOE) approximation, to address the low computational efficiency of

the proposed method. To test the efficiency and accuracy, various numerical examples are solved by the proposed

method and the obtained error results are in accordance with the convergence analysis of the method. Finally,
we present an example regarding the stochastic Volterra integro-differential equations with one singular kernel

function.
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1. Introduction

In recent decades, much attention has been paid to fractional calculus (integrals and derivatives of non-integer order)
and fractional differential equations due to their application in more accurate mathematical modeling of physical and
engineering phenomena. Therefore, many researchers have studied the theoretical and numerical analysis of various
definitions of fractional derivatives and their related fractional differential equations with initial or boundary conditions
[3, 4, 8–10, 14, 21, 23].

There is an increasing interest in fractional integro-differential equations in the literature [1, 2, 24, 27], and some
authors have investigated the numerical solution of their linear form with a weakly singular kernel [15, 18–20, 26].
However, there are very few studies for nonlinear equations with a weakly singular kernel in the literature. Our
motivation in this paper is to consider the possibility of constructing a high order numerical method for solving the
following initial value problem for nonlinear multi-term weakly singular fractional Volterra integro-differential equation:

(Dα
∗ u)(t) = f(t, u(t)) +

Q∑
q=1

1

Γ(1− µq)

∫ t

0

(t− s)−µqRq

(
t, s, u(s), (D

βq
∗ u)(s)

)
ds, (1.1)

u(0) = u0, (1.2)

for t ∈ [0, 1]. In this equation, we suppose 0 < βq < α < 1, q = 1, ..., Q, 1 ≤ Q ∈ N and 0 < µ1 < µ2 < ... < µQ < 1.
Furthermore, we suppose that u(t) ∈ A1[0, 1] (the space of all absolutely continuous functions) is the unknown solution,
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and the function f(t, u) and the kernels Rq(t, s, u, v), q = 1, ..., Q are all known and m times (m ≥ 0) continuously
differentiable with respect to all of their components.Thus, the summation in Eq. (1.1) can not be simplified for
m ≥ 1. The operator: Dγ

∗ : L1[0, 1]→ L1[0, 1] for 0 < γ < 1 denotes the fractional derivative of order γ in the Caputo
sense, define by the following formula (see e.g. [9]):

(Dγ
∗u)(t) :=

d

dt
(J1−γ [u− u(0)])(t), (1.3)

in which we use the Riemann-Liouville fractional integral operator

(Jγu)(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1u(s)ds, t > 0, J0 := I, (1.4)

with I the identity operator and Γ the Euler Gamma function. It is easy to check that

(JγDγ
∗u)(t) = u(t)− u(0), (Dγ

∗J
γu)(t) = u(t). (1.5)

It is obvious from Eq. (1.1) that (Dα
∗ u)(t) ∈ C[0, 1] which implies (D

βq
∗ u)(t) ∈ C[0, 1], q = 1, ..., Q (see [9], p. 56).

Using these results, simple calculations show that the solution of Eqs. (1.1) and (1.2) is not smooth. Indeed, by
applying the operator Jα to both sides of Eq. (1.1) and using the mean-value theorem for integrals, we find that

u(t) = u0 + (Jαf(., u(.)))(t) +

Q∑
q=1

1

Γ(1− µq)Γ(α)

∫ t

0

(t− τ)α−1

∫ τ

0

(τ − s)−µqRq

(
τ, s, u(s), (D

βq
∗ u)(s)

)
dsdτ

= u0 + (Jαf(., u(.)))(t) +

Q∑
q=1

1

Γ(1− µq)Γ(α)
Rq

(
ξ, η, u(η), (D

βq
∗ u)(η)

)∫ t

0

∫ τ

0

(t− τ)α−1(τ − s)−µqdsdτ

= u0 + (Jαf(., u(.)))(t) +

Q∑
q=1

1

Γ(α)
Rq

(
ξ, η, u(η), (D

βq
∗ u)(η)

) t1+α−µq

Γ(2 + α− µq)
,

where 0 ≤ ξ, η ≤ t are some constants. From this result, we conclude that (Dα
∗ u)(t) /∈ C1[0, 1] and u(t) /∈ C1[0, 1] if

α < µM . Also, when t→ 0+, we have

(Dα
∗ u)(t) ∼ t1−µQ , u(t) ∼ t1+α−µQ .

Then employing classical numerical methods to solve Eqs. (1.1) and (1.2) without applying any smoothing transfor-
mation will yield low-order accuracy, as observed in works like [6]. This transformation is well-known and is employed
to increase the smoothness of non-smooth functions [16, 17, 22]. The smoothing transformation that we apply on
Eq. (1.1) is in the form of t = xr, s = yr, r ∈ N and this transformation will increase the smoothness of the solution
u(t) near t = 0. Finally, we generalize the Volterra integral equations to the stochastic case with one singular kernel
function and provide the error analysis, which is tabulated in Tables 5 and 6.

The remainder of this paper is organized as follows. In section 2, we reformulate the operator (Jαv)(t) using a
variable transformation and apply Gauss-Jacobi quadrature. Section 3 extends these results to the main Equation
(1.1), employing a smoothing transformation and the same quadrature approach. In section 4, we present the error
analysis and discuss the convergence order of the proposed numerical method. Section 5 is dedicated to the efficient
implementation of the method using the sum-of-exponentials (SOE) approximation, aiming to reduce both compu-
tational cost and memory usage. Finally, Section 6 provides numerical experiments to demonstrate the applicability
and efficiency of the proposed method.

2. Gauss-Jacobi quadrature for Riemann-Liouville integral operator

Let v(t) ∈ C[0, 1] and r ∈ N. By applying the change of variables

t = xr, s = yr, 0 ≤ y ≤ x ≤ 1, (2.1)
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and defining w(x) := v(xr), the Riemann-Liouville integral operator takes the form:

(Jαv)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds

=
1

Γ(α)

∫ x

0

(xr − yr)α−1w(y)ryr−1dy = (Jαx,[xr,1]w)(x) := (Jαr w)(x). (2.2)

Here, Jαx,[xr,1] is the modified Erdelyi-Kober integral operator [10] with base function xr and weight function 1, which

we denote simply by Jαr . To approximate (Jαr w)(x) using Gauss-Jacobi quadrature, we define the kernel

ω1−α,r(x, y) =
ryr−1

Γ(α)

(
xr − yr

x− y
)α−1, x 6= y,

(rxr−1)α−1, x = y,
0 ≤ y ≤ x ≤ 1, (2.3)

and aim to map the integration interval in (2.2) to [−1, 1] using the transformations:

x =
ξ + 1

2
, y =

η + 1

2
, −1 ≤ ξ, η ≤ 1, (2.4)

η =
ξ + 1

2
θ +

ξ − 1

2
:= ηξ(θ), −1 ≤ θ ≤ 1. (2.5)

Applying the first change of variables (2.4) to Eq. (2.2) yields:

(Jαr w)(
ξ + 1

2
) =

1

2α

∫ ξ

−1

(ξ − η)α−1ω1−α,r(
ξ + 1

2
,
η + 1

2
)w(

η + 1

2
)dη. (2.6)

Define z(ξ) := w(
ξ + 1

2
). Substituting this into (2.6) and applying the second transformation (2.5) gives the final

integral:

(J αr z)(ξ) : = (Jαr w)(
ξ + 1

2
)

= (
ξ + 1

2
)α

1

2α

∫ 1

−1

(1− θ)α−1ω1−α,r(
ξ + 1

2
,
ηξ(θ) + 1

2
)z(ηξ(θ))dθ

=

∫ 1

−1

(1− θ)α−1ω̄1−α,r(ξ, ηξ(θ))z(ηξ(θ))dθ, (2.7)

where

ω̄1−α,r(ξ, ηξ(θ)) = (
ξ + 1

4
)αω1−α,r(

ξ + 1

2
,
ηξ(θ) + 1

2
). (2.8)

Note that for any fixed ξ > −1, the function ω̄1−α,r(ξ, ηξ(θ)) is smooth with respect to θ ∈ [−1, 1]. Now consider
the weight function wa,b(θ) = (1 − θ)a(1 + θ)b, with a, b > −1, associated with the orthogonal Jacobi polynomials

{pa,bN (θ)}∞N=0 on the interval [−1, 1]. We approximate the integral in (2.7) using Gauss-Jacobi quadrature as:

(J αr z)(ξ) '
N∑
k=0

ω̄1−α,r(ξ, ηξ(θ̄k))z(ηξ(θ̄k))w̄k := (J̄ α,Nr z)(ξ), −1 ≤ ξ ≤ 1, (2.9)

where θ̄k and w̄k, for k = 0, ..., N, are the quadrature nodes and weights associated with the weight function wα−1,0(θ).

3. Jacobi collocation method with smoothing transformation

Consider integro-differential Equation (1.1) and define v(t) := (Dα
∗ u)(t). Then the solution u(t) can be expressed

as u(t) = u0 + (Jαv)(t). Substituting this into Eq. (1.1) yields the integral equation

v(t) = f
(
t, u0 + (Jαv)(t)

)
+

Q∑
q=1

1

Γ(1− µq)

∫ t

0

(t− s)−µqRq

(
t, s, u0 + (Jαv)(s), (Jα−βqv)(s)

)
ds. (3.1)
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After approximating the Riemann-Liouville integral operator via Gauss-Jacobi quadrature in section 2, here we apply
the same numerical scheme to the integral terms of (3.1) and couple it with a collocation method. Throughout the
computations, the operations performed on the terms (Jαv)(s) and (Jα−βqv)(s) will follow the same pattern and
notation introduced in section 2; hence, we omit the detailed repetition.

Since the solution v(t) of Eq. (3.1) behaves like t1−µQ near t→ 0+, a direct numerical treatment may lack accuracy.
To improve convergence and accuracy, we apply the smoothing change of variables (2.1) t = xr, which transforms
(3.1) into

w(x) = g
(
x, u0 + (Jαr w)(x)

)
+

Q∑
q=1

∫ x

0

(x− y)−µqωµq,r(x, y)Rq,r

(
x, y, u0 + (Jαr w)(y), (Jα−βq

r w)(y)
)
dy, (3.2)

where the functions are defined using the notation from Eqs. (2.2) and (2.3) as

g
(
x, u0 + (Jαr w)(x)

)
= f

(
xr, u0 + (Jαv)(xr)

)
,

Rq,r

(
x, y, u0 + (Jαr w)(y), (Jα−βq

r w)(y)
)

= Rq

(
xr, yr, u0 + (Jαv)(yr), (Jα−βqv)(yr)

)
. (3.3)

By applying the linear transformation (2.4), we can rewrite (3.2) as

z(ξ) = g
(ξ + 1

2
, u0 + (J αr z)(ξ)

)
+

Q∑
q=1

1

21−µq

∫ ξ

−1

(ξ − η)−µqωµq,r(
ξ + 1

2
,
η + 1

2
)

×Rq,r
(ξ + 1

2
,
η + 1

2
, u0 + (J αr z)(η), (J α−βq

r z)(η)
)
dη. (3.4)

Next, applying the second change of variables (2.5), we transform Eq. (3.4)to the fixed interval [−1, 1], resulting in

z(ξ) = g
(ξ + 1

2
, u0 + (J αr z)(ξ)

)
+

Q∑
q=1

∫ 1

−1

(1− θ)−µq ω̄µq,r(ξ, ηξ(θ))

×Kq,r

(
ξ, ηξ(θ), u0 + (J αr z)(ηξ(θ)), (J α−βq

r z)(ηξ(θ))
)
dθ

:= g
(ξ + 1

2
, u0 + (J αr z)(ξ)

)
+

Q∑
q=1

(
J 1−µq
r Kq,r(J αr z,J α−βq

r z)
)
(ξ), (3.5)

where

Kq,r

(
ξ, ηξ(θ), u0 + (J α

r z)(ηξ(θ)), (J
α−βq
r z)(ηξ(θ))

)
= Rq,r

(ξ + 1

2
,
ηξ(θ) + 1

2
, u0 + (J α

r z)(ηξ(θ)), (J
α−βq
r z)(ηξ(θ))

)
. (3.6)

Let PN be the space of all polynomials of degree at most N . Suppose {ξi}Ni=0 are the roots of the Jacobi polynomial

pa,bN+1(ξ) of degree N+1, where a, b > 1. We construct the Lagrange fundamental polynomials {Li(ξ)}Ni=0 corresponding

to nodes {ξi}Ni=0 as a basis of PN . A collocation solution zN (ξ) ∈ PN of Eq. (4.2) is sought in the form zN (ξ) =∑N
j=0 zjLj(ξ), such that it satisfies the collocation conditions

zN (ξi) = g
(ξi + 1

2
, u0 + (J αr zN )(ξi)

)
+

Q∑
q=1

∫ 1

−1

(1− θ)−µq ω̄µq,r(ξi, ηξi(θ))

×Kq,r

(
ξi, ηξi(θ), u0 + (J αr zN )(ηξi(θ)), (J α−βq

r zN )(ηξi(θ))
)
dθ, (3.7)
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for i = 0, ..., N . We seek a discrete collocation solution z̄N (ξ) ∈ PN , where z̄N (ξ) =
∑N
j=0 z̄jLj(ξ). The integral terms

in Eq. (3.7) are then approximated using the Gauss-Jacobi quadrature in two steps as follows:∫ 1

−1

(1− θ)−µq ω̄µq,r(ξ, ηξ(θ))Kq,r

(
ξ, η, u0 + (J αr z)(ηξ(θ)), (J α−βq

r z)(ηξ(θ))
)
dθ

'
N∑
k=0

ω̄µq,r(ξ, ηξ(θ̃
q
k))Kq,r

(
ξ, ηξ(θ̃

q
k), u0 + (J αr z)(ηξ(θ̃

q
k)), (J α−βq

r z)(ηξ(θ̃
q
k))
)

w̃q
k

'
N∑
k=0

ω̄µq,r(ξ, ηξ(θ̃
q
k))Kq,r

(
ξ, ηξ(θ̃

q
k), u0 + (J̄ α,Nr z)(ηξ(θ̃

q
k)), (J̄ α−βq,N

r z)(ηξ(θ̃
q
k))
)

w̃q
k

:=
(
J̄ 1−µq,N
r Kq,r(J̄ α,Nr z, J̄ α−βq,N

r z)
)
(ξ), q = 1, ..., Q, (3.8)

where θ̃qk and w̃q
k denotes the nodes and weights associated with the weight function w−µq,0(θ). Now, the discrete

collocation solution z̄N (ξ) is determined by satisfying the following discrete collocation equation:

z̄N (ξi) = g
(ξi + 1

2
, u0 + (J̄ α,Nr z̄N )(ξi)

)
+

Q∑
q=1

N∑
k=0

Kq,r

(
ξi, ηξi(θ̃

q
k)), u0 + (J̄ α,Nr z̄N )(ηξi(θ̃

q
k)), (J̄ α−βq,N

r z̄N )(ηξi(θ̃
q
k))
)

w̃q
k

= g
(ξi + 1

2
, u0 + (J̄ α,Nr z̄N )(ξi)

)
+

Q∑
q=1

(
J̄ 1−µq,N
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N )
)
(ξi), (3.9)

for i = 0, ..., N . Substituting the representation z̄N (ξ) =
∑N
j=0 z̄jLj(ξ), yields

z̄i = g
(ξi + 1

2
, u0 + (

N∑
j=0

z̄jJ̄ α,Nr Lj)(ξi)
)

+

Q∑
q=1

N∑
k=0

Kq,r

(
ξi, ηξi(θ̃

q
k)), u0 + (

N∑
j=0

z̄jJ̄ α,Nr Lj)(ηξi(θ̃
q
k)), (

N∑
j=0

z̄jJ̄ α−βm,N
r Lj)(ηξi(θ̃

q
k))
)

w̃q
k

= g
(ξi + 1

2
, u0 + (

N∑
j=0

z̄jJ̄ α,Nr Lj)(ξi)
)

+

Q∑
q=1

(
J̄ 1−µq,N
r Kq,r(

N∑
j=0

z̄jJ̄ α,Nr Lj ,

N∑
j=0

z̄jJ̄ α−βm,N
r Lj)

)
(ξi). (3.10)

for i = 0, ..., N . Equation (3.10) represents a nonlinear system with unknowns z̄i, i = 0, ..., N . Solving this system

yields the discrete collocation solution z̄N (ξ) =
∑N
j=0 z̄jLj(ξ). Based on the variable transformation, the relationship

between the solution v(t) of Eq. (3.1), the solution w(x) of Eq. (3.2), and the solution z(ξ) of Eq. (4.2) is given by

v(t) = w(
r
√
t) = z(2

r
√
t− 1), 0 ≤ t ≤ 1.

Accordingly, the numerical solution corresponding to each of these formulations is

v̄N (t) = w̄N (
r
√
t) = z̄N (2

r
√
t− 1).

Furthermore, the numerical solution ūN (t) of Eqs. (1.1) and (1.2) is obtained as:

ūN (t) = u0 + (Jαv̄N )(t)

= u0 + (Jαr w̄N )(x)

= u0 + (J αr z̄N )(ξ)
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' u0 + (J̄ α,Nr z̄N )(ξ)

= u0 + (J̄ α,Nr z̄N )(2
r
√
t− 1), 0 ≤ t ≤ 1. (3.11)

4. Convergence analysis

Assume that Pa,bN is the interpolation operator that is defined on the nodes {ξi}Ni=0, which are the roots of the

Jacobi polynomial pa,bN+1(ξ), and maps C[−1, 1] to PN . To analyze the convergence of the proposed method, we first
present the following auxiliary lemmas.

Lemma 4.1. [5] Suppose that {ξi}Ni=0 are the roots of the orthogonal Jacobi polynomial of degree N + 1, and let
Li(ξ), i = 0, 1, . . . , N , denote the Lagrange fundamental polynomials with respect to these nodes. Then

‖Pa,bN ‖∞ = max
−1≤ξ≤1

N∑
i=0

|Li(ξ)| =

{
O(logN), −1 < a, b ≤ − 1

2 ,

O
(
Nγ+ 1

2

)
, − 1

2 < a, b < 1,

where γ = max {a, b}.

Lemma 4.2. [25] Let f(ξ) ∈ Ad[−1, 1], the space of functions whose (d−1)-th derivative is absolutely continuous and
satisfies

f (d−1)(ξ) = f (d−1)(−1) +

∫ ξ

−1

g(η)dη,

where g(η) ∈ L1(−1, 1) and is of bounded variation, i.e., var(g(η)) <∞ on [−1, 1]. Assume that {ξi}Ni=0 are the roots
of the Jacobi polynomial of degree N + 1. Then for N ≥ d+ 1

‖f − Pa,bN f‖∞ ≤ CN−d+max{0,γ− 1
2}, γ = max {a, b} , (4.1)

where C is a constant independent of N .

Theorem 4.3. Suppose that u(t) is the exact solution of Eqs. (1.1) and (1.2), and ūN (t) defined in Eq. (3.11) is
the numerical solution obtained by the method introduced in sections 2 and 3. Assume that g(x, u) and Kq,r(u, v) are
Fréchet differentiable with respect u and (u, v), respectively, and the homogeneous linear fractional integral equation

φ(ξ) =
∂

∂u
g(
ξ + 1

2
, z0)(J αr φ)(ξ) +

Q∑
q=1

J 1−µq
r

( ∂
∂u
Kq,r(zq, ζq)J αr +

∂

∂v
Kq,r(zq, ζq)J α−βq

r

)
φ(ξ), (4.2)

has only the trivial solution φ(ξ) = 0 for all z0, zq, ζq ∈ C[−1, 1]. Then

‖u− ūN‖∞ ≤ C
′

{
N−d +N−m logN, −1 < a, b ≤ − 1

2 ,

N−d+max{0,γ− 1
2} +N−m+γ+ 1

2 , − 1
2 < a, b ≤ 1.

(4.3)

where d = [r(1− µQ)] + 1.

Proof. Since v(t) ∼ t1−µQ as t→ 0+, it follows that z(ξ) ∼ (ξ+1)r(1−µQ) as ξ → −1+ and z(ξ) satisfies the assumptions
of Lemma 4.2 with d = [r(1− µQ)] + 1 and g(ξ) = zd(ξ) ∈ L1(−1, 1). Therefore, Lemma 4.2 yields

‖z − Pa,bN z‖∞ ≤ C0N
−d+max{0,γ− 1

2}, γ = max {a, b} , (4.4)

where C0 is a constant independent of N . Multiplying both sides of Eq. (3.10) by Li(ξ) and summing over i, we
obtain

z̄N =Pa,bN g
(
x, u0 + J̄ α,Nr z̄N

)
+

Q∑
q=1

Pa,bN J̄
1−µq,N
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N ). (4.5)
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Similarly, Eq. (4.2) can be rewritten as

z = g
(
x, u0 + J αr z

)
+

Q∑
q=1

J 1−µq
r Kq,r(J αr z,J α−βq

r z). (4.6)

Applying the operator Pa,bN to both sides and adding z, we get

z = z − Pa,bN z + Pa,bN g
(
x, u0 + J αr z

)
+

Q∑
q=1

Pa,bN J
1−µq
r Kq,r(J αr z,J α−βq

r z). (4.7)

Subtracting both sides of Eq. (4.5) from the above, we arrive at

z − z̄N = z − Pa,bN z + Pa,bN
(
g
(
x, u0 + J αr z

)
− g
(
x, u0 + J̄ α,Nr z̄N

))
+

Q∑
q=1

Pa,bN
(
J 1−µq
r Kq,r(J αr z,J α−βq

r z)− J̄ 1−µq,N
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N )
)
. (4.8)

Since g(x, u) is Fréchet differentiable with respect to u, the third term in the right hand side of Eq. (4.8) can be
written as

Pa,bN
(
g
(
x, u0 + (J αr z)

)
− g
(
x, u0 + (J̄ α,Nr z̄N )

))
= Pa,bN

(
∂g

∂u
(x, z0)

)(
J αr z − J̄ α,Nr z̄N

)
= Pa,bN

(
∂g

∂u
(x, z0)

)
(J αr (z − z̄N )) + Pa,bN

(
∂g

∂u
(x, z0)

)(
J αr z̄N − J̄ α,Nr z̄N

)
, (4.9)

where z0 ∈ C[−1, 1].
For the fourth term on the right-hand side of Eq. (4.8), we write

J 1−µq
r Kq,r(J αr z,J α−βq

r z)− J̄ 1−µq,N
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N )

= J 1−µq
r

(
Kq,r(J αr z,J α−βq

r z)−Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N
r z̄N )

)
+ J 1−µq

r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N
r z̄N )− J̄ 1−µq,N

r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N
r z̄N ), (4.10)

and since the operator Kq,r(u, v) is Fréchet differentiable with respect to u and v, then there exist zq, ζq ∈ C[−1, 1]
such that

Kq,r(J αr z,J α−βq
r z)−Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N ) =
( ∂
∂u
Kq,r (zq, ζq)J αr +

∂

∂v
Kq,r (zq, ζq)J α−βq

r

)
(z − z̄N )

:= K′q,r(zq, ζq)(z − z̄N ). (4.11)

Substituting Eqs. (4.9), (4.10), and (4.11) into Eq. (4.8) yields(
I − Pa,bN

(∂g
∂u

(x, z0)J αr +

Q∑
q=1

J 1−µq
r K′q,r(zq, ζq)

))
(z − z̄N ) = (z − Pa,bN z) + Pa,bN

(
∂g

∂u
(x, z0)

(
J αr z̄N − J̄ α,Nr z̄N

))

+

Q∑
q=1

Pa,bN
(
J 1−µq
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N )

− J̄ 1−µq,N
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N )
)
. (4.12)

Since Eq. (4.2) has only the zero solution, the integral operator

I −
(∂g
∂u

(x, z0)J αr +

Q∑
q=1

J 1−µq
r K′q,r(zq, ζq)

)
, (4.13)
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has a bounded inverse for all z0, zq, ζq ∈ C[−1, 1]. Moreover, by Lemma 4.2 we have

‖(I − Pa,bN )
(∂g
∂u

(x, z0)J αr +

Q∑
q=1

J 1−µq
r K′q,r(zq, ζq)

)
‖∞ → 0 as N →∞, (4.14)

which implies that for sufficiently large N , the operator

I − Pa,bN
(∂g
∂u

(x, z0)J αr +

Q∑
q=1

J 1−µq
r K′q,r(zq, ζq)

)
, (4.15)

is also invertible with bounded inverse on C[−1, 1] as

‖
(
I − Pa,bN

(∂g
∂u

(x, z0)J αr +

Q∑
q=1

J 1−µq
r K′q,r(zq, ζq)

))−1

‖∞ ≤ C1. (4.16)

Therefore, from Eq. (4.12), we obtain

‖z − z̄N‖∞ ≤ C1

(
‖z − Pa,bN z‖∞ + ‖Pa,bN ‖∞‖

∂g

∂u
(x, z0)‖∞‖J αr z̄N − J̄ α,Nr z̄N‖∞

+

Q∑
q=1

‖Pa,bN ‖∞‖J
1−µq
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N )

− J̄ 1−µq,N
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N )‖∞
)
. (4.17)

Since z̄N ∈ PN , we know∥∥J αr z̄N − J̄ α,Nr z̄N
∥∥
∞ ≤ C2N

−m,

‖J 1−µq
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N )− J̄ 1−µq,N
r Kq,r(J̄ α,Nr z̄N , J̄ α−βq,N

r z̄N )‖∞ ≤ C3N
−m, q = 1, 2, . . . , Q. (4.18)

Finally, applying Lemma 4.1, Eq. (4.4), and bound (4.18) in Eq. (4.17), we obtain the following error estimate:

‖z − z̄N‖∞ ≤ C

{
N−d +N−m logN, −1 < a, b ≤ − 1

2 ,

N−d+max{0,γ− 1
2} +N−m+γ+ 1

2 , − 1
2 < a, b ≤ 1,

(4.19)

where C is a constant depending on C0, C1, C2, and C3 but independent of N,m and d. Using Eqs. (4.1), (4.18), and
the error bound in (4.19), we obtain the following estimate for the numerical approximation of the solutions to Eqs.
(1.1) and (1.2):

‖u− ūN‖∞ =
∥∥J αr z − J̄ α,Nr z̄N

∥∥
∞ ,

≤ ‖J αr ‖∞ ‖z − z̄N‖∞ +
∥∥J αr z̄N − J̄ α,Nr z̄N

∥∥
∞

≤ C ′
{
N−d +N−m logN, −1 < a, b ≤ −1

2 ,

N−d+max{0,γ− 1
2} +N−m+γ+ 1

2 , −1
2 < a, b ≤ 1.

�

5. The SOE approximation for the stochastic case

In this section, we address the challenges arising from the low-order accuracy of the proposed method. To improve
computational efficiency, we employ an alternative approach known as the SOE approximation (see [[13], Theorem
2.1] or [11]).
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Lemma 5.1. For every γ ∈ (0, 1), there exist positive quadrature nodes τl and weights ωl, l = 1, 2, · · · ,Mexp, together
with an absolute error tolerance ε� 1 and a cut-off time point δ, such that

|t−γ −
Mexp∑
l=1

ωle
−τlt| ≤ ε, ∀t ∈ [δ, T ], (5.1)

where Mexp satisfies

Mexp = O
(

log
1

ε

(
log log

1

ε
+ log

T

δ

)
+ log

1

δ

(
log log

1

ε
+ log

1

δ

))
. (5.2)

In other words, by setting the cut-off time as δ = h for a fixed precision ε, we obtain

Mexp =

{
O(logN), if T � 1,

O(log2N), if T ≈ 1,

where h =
T

N
.

By using the SOE approximation (5.1), the proposed method can be reformulated as

ūN = u0 + h

n−1∑
k=0

Mexp,1∑
l=1

wl,1e
−τl,1(tn−tk)f(ūk) +

n−1∑
k=0

Mexp,2∑
l=1

wl,2e
−τl,2(tn−tk)g(ūk)∆Wk, (5.3)

where n = 1, 2, . . . , N , and ∆Wk := Wtk+1
−Wtk denotes the Wiener process increment. The singular kernels (tn − tk)−γ1

and (tn − tk)−γ2 are replaced by the exponential sums
∑Mexp,j

l=1 wl,je
−τl,j(tn−tk), j = 1, 2, respectively. Furthermore,

Eq. (5.3) can be compactly expressed as

ūN = u0 +

Mexp,1∑
l=1

wl,1P1,l(tn) +

Mexp,2∑
l=1

wl,2P2,l(tn), (5.4)

where

P1,l(tn) = h

n−1∑
k=0

e−τl,1(tn−tk)f(ūk),

P2,l(tn) =

n−1∑
k=0

e−τl,2(tn−tk)g(ūk)∆Wk. (5.5)

This representation shows that the computational complexity is reduced from O(N2) to O
(
NMexp

)
.

Remark 5.2. For the proposed method based on the SOE approximation, the exponential structure leads to functions
key recurrence relations

P1,l(tn) = e−τl,1hP1,l(tn−1) + e−τl,1hf(ūn−1)h, (5.6)

P2,l(tn) = e−τl,2hP2,l(tn−1) + e−τl,2hg(ūn−1)∆Wn−1. (5.7)

Combination Lemma 5.1 with the proposed scheme demonstrates that the computational cost and memory usage per
sample are reduced from O(N2) and O(N) to O(N logN) and O(logN), respectively, when T � 1. When T ≈ 1,
these complexities become O(N log2N) and O(log2N), respectively.
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Table 1. The global root mean square errors, ERMS , for varying values of N and r in Example 6.1.

N r = 1 r = 5 r = 9 r = 13
8 1.55e− 04 8.38e− 07 2.42e− 05 4.20e− 04
16 2.88e− 05 1.34e− 08 2.13e− 10 3.19e− 11
24 6.60e− 06 1.28e− 09 6.35e− 12 5.81e− 14
32 3.07e− 06 2.44e− 10 4.66e− 13 2.02e− 15

Figure 1. Graph of the root mean
square of the absolute errors for Exam-
ple 6.1.

Figure 2. Graph of the root mean
square of the absolute errors for Exam-
ple 6.2.

6. Numerical experiments and results

To demonstrate the accuracy and the efficiency of the proposed Jacobi collocation method combined with the SOE
approximation, we apply the scheme to several numerical examples involving Eqs. (1.1) and (1.2). In each example,
the root mean square error (RMSE) of the absolute errors, denoted by ERMS , is computed at equidistant points
ti = i

10 , i = 1, 2, . . . , 10.

Example 6.1. Consider the following nonlinear fractional Volterra integro-differential equation:

(Dα
∗ u)(t) = f(t, u(t)) +

∫ t

0

(t− s)−µt2−µs1+2α+βu(s)(Dβ
∗u)(s)ds, t ∈ [0, 1], u(0) = 0, (6.1)

where the nonlinear source term is given by

f(t, u) =
Γ(2 + α− µ)

Γ(2− µ)
t1−µ − Γ(4 + 4α− 2µ)Γ(1− µ)Γ(2 + α− µ)

Γ(5 + 4α− 3µ)Γ(1− µ)Γ(2 + α− β − µ)
t2u4.

The exact solution of this problem is u(t) = t1+α−µ. For the specific choices α = π
6 , β = π

8 , and µ = 2
π , we have

u(t) ∈ A1[0, 1].
Table 1 presents the root mean square error ERMS for various values of N and r = 1, 5, 9, 13. As expected from

the error bound in Eq. (4.2), increasing r (and thus d =
[
r(1− 2

π )
]

+ 1) leads to a reduction in the numerical error,
particularly for sufficiently large N . Figure 1 illustrates the error behavior reported in Table 1 for different values
of N and r. The convergence trend observed in the figure confirms the high accuracy of the proposed method and
validates the theoretical findings.



752 Q. H. HADDAM, E. NAJAFI, AND S. SOHRABI

Table 2. The global root mean square errors ERMS for increasing values of N and r in Example 6.2.

N r = 1 r = 5 r = 9 r = 13
8 4.82e− 04 2.11e− 04 3.06e− 03 1.03e− 02
16 7.57e− 05 1.72e− 07 2.76e− 06 3.88e− 05
32 1.71e− 05 8.10e− 09 4.50e− 11 1.67e− 10
40 1.10e− 05 2.40e− 09 9.00e− 12 1.19e− 13

Table 3. The global root mean square errors ERMS for increasing values of N and r in Example 6.3.

N r = 1 r = 5 r = 9 r = 13 r = 17 r = 21
8 3.60e− 02 1.57e− 01 6.69e− 01 8.50e− 01 3.84e− 02 6.70e− 01
16 1.01e− 02 6.64e− 06 1.93e− 06 2.78e− 07 2.63e− 06 2.39e− 07
24 4.46e− 03 1.27e− 06 5.39e− 08 3.22e− 08 6.42e− 09 2.18e− 09
32 2.46e− 03 4.96e− 07 1.41e− 08 4.20e− 09 5.81e− 10 4.24e− 11

Example 6.2. We consider the following fractional integro-differential equation:

(D

√
2

3
∗ u)(t) = f(t) +

∫ t

0

(t− s)−
√

2
2

(D

√
2

5
∗ u)(s)

1 + u2(s)
ds, t ∈ [0, 1], u(0) = 1. (6.2)

In this equation, the function f(t) is chosen such that the exact solution is the Mittag-Leffler function

u(t) = E√
2

2

(t
√

2
2 ) ∈ A1[0, 1],

defined by

Eb(z) =

∞∑
k=0

zk

Γ(bk + 1)
.

We compute the errors ERMS by applying the proposed Jacobi collocation method to Eq. (6.2) for various values of
N and r. The results are presented in Table 2 and Figure 2.

Example 6.3. As the third example, consider the following nonlinear weakly singular fractional Volterra integro-
differential equation:

(D
3
5
∗ u)(t) = f(t) +

∫ t

0

(t− s)− 1
3

(
u(s) + (D

2
5
∗ u)(s)

)2
ds, t ∈ [0, 1], u(0) = 0. (6.3)

For this problem, the data function f(t) is selected such that the exact solution is u(t) = t
7
10 ∈ A1[0, 1]. We apply

the proposed method to this equation and report the errors ERMS for different values of N and r in Table 3 and
Figure 3.

Example 6.4. As a multi-term equation, consider the following nonlinear two-term weakly singular fractional integro-
differential equation:

(Dα
∗ u)(t) = f(t, u(t)) +

2∑
q=1

1

Γ(1− µq)

∫ t

0

(t− s)−µqRq

(
t, s, u(s), (D

βq
∗ u)(s)

)
ds, u(0) = 0, (6.4)

where µ1 =
1

4
, µ2 =

3

4
, α =

1

2
, β1 =

1

3
, β2 =

1

6
, the kernel functions R1 and R2, and the forcing function f are given

by

R1

(
t, s, u, v

)
= u2v,

R2

(
t, s, u, v

)
= uv2,
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Figure 3. Graph of the root mean
square of the absolute errors for Exam-
ple 6.3.

Figure 4. Graph of the root mean
square of the absolute errors for Exam-
ple 6.4.

Table 4. The global root mean square errors ERMS for increasing values of N, r in Example 6.4.

N r = 1 r = 5 r = 9 r = 13 r = 17 r = 21
8 2.30e− 04 1.19e− 05 3.76e− 06 9.22e− 06 1.77e− 04 9.59e− 04
16 4.81e− 05 6.95e− 07 9.61e− 08 4.83e− 09 6.16e− 10 1.98e− 10
24 1.43e− 05 1.41e− 07 1.19e− 08 3.11e− 10 2.43e− 11 4.36e− 12
32 1.03e− 05 4.65e− 08 2.32e− 09 4.59e− 11 2.26e− 12 3.06e− 13

f(t, u) =
Γ( 5

3 )

Γ( 7
6 )
t
1
6 −

4(Γ( 5
3 ))2Γ( 8

3 )

πΓ( 35
12 )

t
7
12u2 −

Γ( 5
3 )Γ( 8

3 )

Γ( 4
3 )Γ( 41

12 )
t

5
12u3.

The exact solution of this problem is u(t) = t
2
3 . Similar to the previous examples, we approximate the solution of

Eq. (6.4) and report the errors for different values of N and r in Table 4 and Figure 4.

Example 6.5. Consider the following linear multi-term weakly singular integro-differential equation:

(Dα
∗ u)(t) = f(t, u(t)) +

2∑
q=1

∫ t

0

(t− s)−µqRq

(
t, s, u(s), (D

βq
∗ u)(s)

)
ds, u(0) = 0, (6.5)

with parameters µ1 =
1

4
, µ2 =

1

3
, α =

1

2
, β2 =

3

8
. The kernel functions R1, R2 and the forcing function f are given

by

R1(t, s, u, v) = −u,
R2(t, s, u, v) = −v,

f(t, u) = 2t
5
4 +

2(Γ( 3
4 ))2

√
π

t
3
2 +

2Γ( 7
4 )

Γ( 5
4 )
t
1
4 +

2Γ( 2
3 )Γ( 7

4 )

Γ( 49
24 )

t
25
24 − t 1

2u.

The exact solution of this problem is u(t) = 2t
3
4 . This problem was previously solved by the spline collocation

method in [18]. The authors computed maximum absolute errors, εN , defined by

εN = max
j=1,...,N

max
k=0,...,10

|u(τjk)− uN (τjk)| ,
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Table 5. The global root mean square errors ERMS for a range of increasing values of N, r in Example 6.5.

N r = 1 r = 5 r = 9 r = 13 r = 17 r = 21
8 4.25e− 04 1.19e− 05 1.21e− 06 2.54e− 07 1.32e− 06 1.69e− 05
16 8.78e− 05 3.73e− 07 1.10e− 08 6.07e− 10 5.22e− 11 6.73e− 12
24 2.62e− 05 5.17e− 08 6.80e− 10 1.50e− 11 6.14e− 13 3.44e− 14
32 7.24e− 06 1.31e− 08 8.76e− 11 1.22e− 12 2.39e− 14 7.97e− 16

Figure 5. Graph of the root mean square of the absolute errors for Example 6.5.

where

τjk = tj−1 + k (tj − tj−1) /10, k = 0, . . . , 10, j = 1, . . . , N,

and the grid points tj are defined by tj = b
( j
N

)r
, r ∈ R, r ≥ 1, for various values of N, r, and spline orders m = 2, 3

(see Table 6). To compare with the spline collocation method, we compute the root mean square of absolute errors
ERMS for a range of N, r using the proposed method and present the results in Table 5 and Figure 5. The comparison
shows that the proposed method achieves significantly smaller errors than the spline collocation method.

Example 6.6. As a stochastic case, consider the nonlinear weakly singular stochastic Volterra integral equation [11]:

du(t) = (1− θ)
∫ t

0

(t− s)−γ sin
(
u(s)

)
ds+ θ

∫ t

0

(t− s)−σ cos2
(
u(s)

)
dW (s), t ∈ [0, 1], (6.6)

with initial condition u(0) = 0. Two cases are considered for positive parameters γ and σ:

• Case I: γ = 0.4, σ = 0.4,
• Case II: γ = 0.7, σ = 0.1.

The numerical results for this example, with step sizes h = 2−7, 2−8, 2−9, and 2−10 are presented in Tables 7 and 8.
Tables 7 and 8 demonstrate that the proposed method (5.4) achieves a convergence order of approximately 0.2 in

both cases.

7. Conclusions

In this article, we applied the Jacobi collocation method to numerically solve nonlinear multi-term weakly singu-
lar fractional Volterra integro-differential equations. We introduced an operator-based framework to incorporate a
smoothing transformation in conjunction with Gauss-Jacobi quadrature for the Riemann–Liouville fractional integral
operator, which we employed to approximate the integral terms in the main equation. Increasing the smoothing
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Table 6. Numerical results from [18] for Example 6.5.

εN with m = 2
N r = 1 r = 2 r = 10

3 r = 5
8 2.64e− 02 6.70e− 03 2.65e− 03 5.75e− 03
16 1.69e− 02 2.27e− 03 4.05e− 04 1.03e− 03
32 1.04e− 02 8.19e− 04 7.01e− 05 1.81e− 04
64 6.32e− 03 2.85e− 04 1.18e− 05 3.20e− 05
128 3.80e− 03 1.01e− 04 1.90e− 06 4.94e− 06
256 2.27e− 03 3.57e− 05 2.77e− 07 8.02e− 07
512 1.36e− 03 1.26e− 05 6.37e− 08 1.54e− 07
1024 8.07e− 04 4.46e− 06 1.54e− 08 2.57e− 08
εN with m = 3
N r = 1 r = 2 r = 4 r = 5
8 1.04e− 02 2.49e− 03 2.49e− 04 4.51e− 04
16 6.65e− 03 9.01e− 04 4.80e− 05 4.10e− 05
32 4.11e− 03 3.20e− 04 4.64e− 06 3.65e− 06
64 2.50e− 03 1.13e− 04 5.59e− 07 2.92e− 07
128 1.50e− 03 4.00e− 05 7.76e− 08 2.50e− 08
256 8.99e− 04 1.42e− 05 1.02e− 08 2.21e− 09
512 5.37e− 04 5.01e− 06 1.26e− 09 1.82e− 10
1024 3.20e− 04 1.77e− 06 1.51e− 10 1.73e− 11

Table 7. Convergence orders and CPU times of the proposed method with ε = 10−12 for u(t) in case I.

h θ = 0.2 θ = 0.5 θ = 0.8 CPU time
2−7 0.4967 0.5247 0.5683 0.64
2−8 0.3893 0.4102 0.4326 2.79
2−9 0.2941 0.3098 0.3259 10.42
2−10 0.2336 0.2468 0.2649 24.81
order 0.2148 0.2206 0.2433 53.26

Table 8. Convergence orders and CPU times of the proposed method with ε = 10−12 for u(t) in case II.

h θ = 0.2 θ = 0.5 θ = 0.8 CPU time
2−7 0.4737 0.4952 0.5180 0.58
2−8 0.3692 0.3973 0.4214 2.33
2−9 0.2741 0.2941 0.3143 9.14
2−10 0.2318 0.2422 0.2516 22.56
order 0.2103 0.2158 0.2190 48.83

parameter r enhances the regularity of the solution as well as the regularity of the integrands within the integrals
approximated by the Gauss-Jacobi quadrature.

Our error analysis shows that the error bound depends on N, the number of collocation nodes, and on r, the
smoothing parameter. Numerical results indicate that for large values of N, increasing r reduces the error, in agreement
with the theoretical analysis. However, for small values of N, using large values of r actually increases the error, which
is contrary to the expected behavior. This phenomenon occurs because, when the number of nodes is small, applying
a smoothing transformation with a large r clusters nodes near the origin and leads to larger step sizes elsewhere on the
interval, thus reducing overall accuracy. This observation suggests the existence of an optimal relationship between r
and N to minimize the error.

Additionally, our numerical experiments demonstrate the computational efficiency of the proposed scheme, partic-
ularly when combined with the sum-of-exponentials (SOE) approximation in the stochastic case.
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Statement

A preprint of this paper has previously been published [12].
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