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Abstract

In this study, we propose a novel fractional delayed predator-prey model that includes an omnivorous species and

explore bifurcation control through a state feedback control strategy. We begin by deriving the characteristic

polynomial using the Laplace transform and establish new sufficient conditions for stability analysis and Hopf
bifurcation, treating the time delay τ as a bifurcation parameter. To address the Hopf bifurcation in the un-

controlled system, we design a state feedback controller with a time delay. Our results indicate that the time
delay τ significantly affects the onset of the Hopf bifurcation. Additionally, the inclusion of a fractional order

0 < α ≤ 1 enhances solution stability while adding complexity to the dynamics of the model. We find that judi-

cious selection of the feedback gain can delay bifurcation, highlighting the critical role of control effort. To validate
our theoretical findings, we present numerical simulations conducted using a modified Adams-Bashforth-Moulton

predictor-corrector method. These simulations support our theoretical results and demonstrate the efficacy of our

proposed control strategy in managing the dynamical behaviors of the model.
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1. Introduction

In ecological systems, the predator-prey models which describe the relationships between different species play
an important role in connection with complex food chains and food networks [22, 29, 43]. Due to the universal
existence and importance, population models, especially predator–prey systems become popular from the traditional
and pioneering work of Lotka [26] and Volterra [39] and the qualitative properties of Lotka-Volterra like predator–prey
models, such as stability, chaos, bifurcations and periodic oscillations are usually depending on the parameters of
the models [9]. In the fields of population dynamics, there are many applied mathematicians and ecologists who
have extensively investigated the dynamical behaviors of predator–prey systems from different aspects [8, 9, 24, 35].
For example, the study in [15] investigated a predator-prey model that includes the Allee effect and alternative food
sources for the predator. Their findings indicate that a weak Allee effect can enhance stability and support population
survival. In contrast, a strong Allee effect tends to destabilize the system, leading to an unstable limit cycle and
heightening the risk of extinction for the populations involved. Therefore, the dynamics of the predator–prey model is
a major theme in ecology and evolutionary biology, which can be considered as the basic block in order to construct
the complicated dynamics of food web, food chain, and some other biochemical network structures [13, 24, 43].

Amongst the different ecological models, there is a food web model with an omnivore wherein a population feeds
on resources at more than one trophic level [1]. The role and prevalence of omnivore is critical to understand food
web structure and its dynamics. In fact, the presence of an omnivore can lead to stabilization or destabilization of
any given food web which indicates its important role in the investigations of the food chain models [1, 25]. The
presence of omnivores introduces additional complexity to predator-prey relationships. Research by Huang et al. [12]
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indicated that omnivores could either promote stability or lead to destabilization within ecosystems, highlighting the
need for models that consider multiple trophic levels. Tanabe and Namba [30, 37] found a simple food web model
with linear functional responses consisting of twelve parameters on which the omnivore leads to chaos in their models.
They proposed a three species evolution model that one of the species was an omnivore, which can consume both the
predator and prey.

In this research work, we consider a predator-prey model introduced by Previte and Hoffman [33] which represents
a food web model with an omnivore (or a scavenger) given by

dx

dt
= x(1− bx)− xy − xz,

dy

dt
= y(−c+ x),

dz

dt
= (−e− βz)z + fxz + gyz,

(1.1)

where x, y, z indicate the densities of prey, predator, and omnivore population as functions of time, respectively. All
parameters of the system (1.1) are positive and their biological meanings can be found in [20, 33]. System (1.1) is
further studied by Y. Li. and V. G. Romanovski in [20] by employing a new approach which was based on using
the commutative computational algebra algorithms. They have shown that under variation of some parameters, the
system undergoes Hopf and degenerate Hopf bifurcations.

The study of predator-prey dynamics has evolved significantly with the incorporation of fractional calculus and time
delays, providing deeper insights into ecological interactions. Traditional models often fail to capture the complexities
inherent in biological systems, necessitating more sophisticated approaches. For example, time-delayed nonlinear
dynamical systems, which incorporate time delays to account for past system states, are commonly used to model
various natural systems in fields such as epidemiology, physiology, control theory, and biological processes [3, 21, 28,
36]. Time delays, also known as time lags, are essential for accurately reflecting the dynamics of biological systems
that depend on their past history [9, 23]. These delays can represent various biological processes such as gestation
periods, maturation periods, reaction times, resource regeneration times, and feeding times [8, 9, 14, 41]. Furthermore,
fractional-order derivatives have emerged as a powerful tool for modeling ecological processes characterized by memory
effects. These derivatives offer a more accurate representation of real-world systems, accounting for the influence of past
events on present dynamics. Zhang et al. [44] illustrated that incorporating delays can lead to oscillatory behavior
and potential instability within populations. The combination of fractional derivatives and time delays introduces
layers of complexity, where adjustments in delay parameters can significantly alter system dynamics.

Fractional-order differential equations have proven instrumental in modeling ecological processes characterized by
memory effects, offering a more comprehensive representation of real-world systems than traditional integer-order
models [18]. While numerous predator-prey models have been analyzed using delay differential equations (DDEs)
with classical integer-order derivatives [13, 17, 24, 27, 29, 42], a growing body of research has explored the fractional
dynamics of predator-prey systems, both with and without time delays [7, 11, 19, 22, 34, 43]. The presence of time
delays and fractional-order derivatives in population models share a common characteristic: they both account for
memory effects. The inclusion of these two types of memory significantly increases model complexity and enriches
the dynamics of the system [34]. The memory inherent in these models significantly impacts the current and future
development of the modeled processes. The history of the process is more accurately described when the model
incorporates memory effects, making fractional-order differential equations more suitable for capturing real-world
phenomena compared to classical integer-order differential equations [43].
From a different perspective, fractional-order derivatives are inherently non-local and capable of modeling memory
effects, while time delays in the model represent the history of an earlier state [16]. Investigating the dynamical
behaviors of these models in a fractional-order setting holds significant promise for achieving improved results compared
to traditional integer-order approaches. The development of both theory and applications of fractional-order systems
has attracted considerable attention from mathematicians, physicists, and engineers [2, 7, 16, 19, 38]. This research
is motivated by the need for a deeper understanding of fractional-order delayed population models, particularly
predator-prey systems incorporating both fractional order and time delay. While the theory of delay differential
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equations (DDEs) is well established, the study of fractional differential systems with delay is still in its early stages
[31]. Limited research has focused on analyzing and numerically solving delayed fractional-order models [38].
In recent years, control strategies have become increasingly important in mathematical biology and control theory,
particularly for effective ecosystem management. Hopf bifurcation analysis has proven valuable for gaining insights into
the behavior of complex dynamical systems near equilibrium points. Bifurcation control, as a necessary and efficient
method, has been extensively developed and applied [11, 41, 43]. For instance, C-Huang et al. [11] successfully
controlled the Hopf bifurcation of a fractional delayed predator-prey system using an active extended delayed feedback
control strategy. Additionally, Li et al. [22] employed delay feedback control to control the Hopf bifurcation in a
fractional-order delayed Lotka-Volterra predator-prey system, utilizing time delay as a free parameter. Zhao et al. [45]
proposed feedback control methods for stabilizing populations within a delayed fractional-order framework, highlighting
their potential for practical applications in ecological conservation. Among various bifurcation control approaches,
time-delayed feedback control has been widely used to mitigate bifurcation phenomena in nonlinear systems [11].
However, limited research has focused on bifurcation control in delayed fractional-order predator-prey systems using
this technique [7, 19]. This gap in knowledge motivates our investigation into the dynamics, stability, Hopf bifurcation,
and bifurcation control of a fractional-order delayed predator-prey system utilizing time-delayed feedback control.

This paper extends the work of E. Bonyah et al. [5], by incorporating delay into the model, enabling a more realistic
representation of system dynamics. While their study explored different fractional derivatives without delay, our
research focuses on the Caputo derivative and investigates the impact of delay on the model’s behavior. Specifically,
we examine the emergence of Hopf bifurcations, a critical phenomenon that arises due to the presence of delay.
To effectively manage these bifurcations, we introduce a novel state feedback control mechanism with time delay.
Our findings demonstrate the ability of this control strategy to postpone the onset of bifurcation and highlight the
importance of delay in accurately capturing complex system dynamics.

Stimulated by the previous discussions, we extend model (1.1) by combining the two types of memory, i.e, fractional
order α and the delay τ in the model in order to investigate their impacts and describe the predator–prey interactions
with memory effects. We also discuss the qualitative behaviors of the model by means of stability and Hopf bifurcation
analysis. Then we use a theoretical analysis to realize the bifurcation control in the considered delayed fractional-order
predator–prey system based on time delayed feedback approach. Therefore, the fractional delayed mathematical model
in the sense of Caputo fractional derivative can be presented as follows:

Dα
t x(t) = x(1− bx)− xy − xz,

Dα
t y(t) = −cy + xy,

Dα
t z(t) = fx(t− τ)z(t− τ) + gy(t− τ)z(t− τ)− (e+ βz)z,

(1.2)

where α ∈ (0, 1] is fractional order, and τ ≥ 0 is a constant time delay due to gestation. The initial conditions are
x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0 and for s ∈ [−τ, 0], the smooth functions can be selected as x(s) = ψ1(s) ≥ 0, y(s) =
ψ2(s) ≥ 0, z(s) = ψ3(s) ≥ 0, where ψi(s) ∈ C([−τ, 0],R) for i = 1, 2, 3, in which C([−τ, 0],R) denotes the space of
continuous mappings from [−τ, 0] to R.

To control the dynamics of model (1.2), a time delayed feedback controller is designed which can be added in the
second equation of the fractional delayed system and has the following form:

u(t) = K(y(t)− y(t− τ)), (1.3)

where τ stands for feedback time and the constant K denotes a negative feedback gain, which can be smartly manip-
ulated for controlling the Hopf bifurcation in order to achieve the desirable dynamical behaviors.

The main highlights of this paper are to investigate the influence and relation of the two important types of
memories, one is the fractional order α and the other is time delay τ on the dynamic behavior of the fractional
delayed predator–prey system. An efficient time-delayed feedback controller is also elaborately introduced to stabilize
the unstable orbit and control the creation of Hopf bifurcation for the proposed fractional-order delayed differential
system, and the desirable dynamical behaviors are obtained. Ultimately, the effect of feedback gain on the bifurcation
point is further studied.

The rest of the framework of the current paper is arranged as follows: Some basic materials regarding fractional
calculus are presented in section 2. In section 3, the main results are discussed including a detailed analysis on the
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local stability of the interior equilibrium point and Hopf bifurcation conditions for the uncontrolled model as well as
bifurcation control results for the controlled model, respectively. In section 4, by employing Adams–Bashforth–Moulton
predictor-corrector scheme(ABM) for solving fractional-order delay differential equation where the main steps of its
algorithm is given in [4, 34], we carry out some numerical simulations to verify the obtained theoretical results. In
section 5, the paper is concluded with a brief conclusion.

2. Basic tools and definitions

It is recognized that among the several definitions of fractional derivatives, the three definitions, such as, Grünwald–
Letnikov (G-L), Riemann–Liouville (R-L), and Caputo’s definitions are the extensively used ones in the field of
fractional-order nonlinear dynamical systems. The Caputo derivative has more advantages than other fractional-
order derivatives, since it only requires the initial conditions in the form of integer-order derivatives, which is more
appropriate for mathematical modeling of many real world problems. Moreover, the operator of fractional-order model
can be provided more flexibility to the various physical and biological models in order to investigate their considerable
dynamical behaviors. Therefore, we use the definition of Caputo derivative and utilize some helpful lemmas and
theorems for fractional systems introduced in this section.

Definition 2.1. ([10]) The fractional-order integral of non-integer order α for a function f(t) can be defined as follows:

Iαf(t) = D−α
t f(t) =

1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, α > 0, (2.1)

where Γ(·) is the Gamma function.

Definition 2.2. ([40, 41]) The Caputo fractional-order derivative of order α for a function f(t) ∈ ([0,∞),R) is given
by

Dα
t f(t) =


1

Γ(n−α)

∫ t

0
f(n)(s)

(t−s)α−n+1 ds, n− 1 < α < n, n ∈ N,

dn

dtn f(t), α = n.
(2.2)

Particularly, when 0 < α < 1, the Caputo fractional-order derivative takes the form

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds. (2.3)

Definition 2.3. ([22, 43]) The Laplace transform of the fractional-order derivatives in the sense of Caputo can be
defined as

L{Dα
t f(t); s} = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0), (2.4)

where n− 1 < α < n is a positive integer and F (s) = L{f(t)}.

Definition 2.4. ([10, 19]) Consider a high-dimension fractional-order system as in the following form

Dα
t x(t) = f

(
x(t)

)
, (2.5)

where x(t) =
(
x1(t), x2(t), · · · , xn(t)

)T ∈ Rn, f(t) =
(
f1(t), f2(t), · · · , fn(t)

)T
: Rn −→ Rn. The equilibrium solutions

of (2.5) can be defined by f(x∗) = 0. Hence, the corresponding equilibrium points can be obtained as (x∗1, x
∗
2, · · · , x∗n).

Lemma 2.5. (see [6, 32]). Consider the fractional-order system

dαx

dtα
= f(x), (2.6)
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where α ∈ (0, 1), dα

dtα = Dα
t and x ∈ Rn. The equilibrium points of system (2.6) can be computed via solutions of the

equation f(x) = 0. It also can be concluded that an equilibrium point x∗ of system (2.6) is locally asymptotically stable

if all the eigenvalues of the Jacobian matrix J = ∂f
∂x

∣∣∣
x∗

satisfy
∣∣arg(λ)∣∣ > απ

2 .

Lemma 2.6. (see [11, 14]). Consider the following n-dimensional autonomous linear fractional-order system

Dαξ1(t) = κ11ξ1(t) + κ12ξ2(t) + · · ·+ κ1nξn(t),

Dαξ2(t) = κ21ξ1(t) + κ22ξ2(t) + · · ·+ κ2nξn(t),

...

Dαξn(t) = κn1ξ1(t) + κn2ξ2(t) + · · ·+ κnnξn(t),

(2.7)

where 0 < α < 1. By taking the Laplace transform on both sides of Eq. (2.7) and after doing some simplification,
we eventually can obtain the following determinant:

det
(
△(λ)

)
= det


λα − κ11 −κ12 · · · −κ1n
−κ21 λα − κ22 · · · −κ2n
...

...
. . .

...
−κn1 −κn2 · · · λα − κnn

 . (2.8)

Thus the zero solution (ξ = 0) of system (2.7) is globally asymptotically stable in the Lyapunov sense if all roots of
the equation det

(
△(λ)

)
= 0 in (2.8) satisfy |arg(λ)| > απ

2 .

Lemma 2.7. (see [11, 14]). Consider the following n-dimensional linear fractional-order delayed system

Dαξ1(t) = b11ξ1(t− τ11) + b12ξ2(t− τ12) + · · ·+ b1nξn(t− τ1n),

Dαξ2(t) = b21ξ1(t− τ21) + b22ξ2(t− τ22) + · · ·+ b2nξn(t− τ2n),

...

Dαξn(t) = bn1ξ1(t− τn1) + bn2ξ2(t− τn2) + · · ·+ bnnξn(t− τnn),

(2.9)

where α ∈ Q, i.e, 0 < α < 1. For system (2.9), τij ≥ 0, i, j = 1, 2, · · · , n and B = (bi,j)n×n is indicating the
coefficient matrix.

Next, to study the stability of system (2.9) we take the Laplace transform on both sides of (2.9) which gives the
characteristic equation det

(
△(s)

)
as follows

det
(
△(s)

)
= det


sα − b11e

−sτ11 −b12e−sτ12 · · · −b1ne−sτ1n

−b21e−sτ21 sα − b22e
−sτ22 · · · −b2ne−sτ2n

...
...

. . .
...

−bn1e−sτn1 −bn2e−sτn2 · · · sα − bnne
−sτnn

 = 0. (2.10)

Since the stability of the zero solution of system (2.9) exactly depends on the roots distribution of the associated
characteristic equation of (2.10), therefore, if all the roots of the characteristic Equation (2.10) have negative real
parts, then the zero solution of system (2.9) is asymptotically stable.

3. Main results

In this section, we first investigate the effects of time delay and fractional-order on the dynamics of the uncontrolled
system (1.2) by taking time delay as a bifurcation parameter. The conditions of bifurcations will be further discussed.
Then for controlling the Hopf bifurcation, a proper controller based on the time delayed feedback method is designed
and the impact of the corresponding feedback gain on the bifurcation is studied. Moreover, comparative analysis is
performed by means of numerical simulations.
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3.1. Stability and Hopf bifurcation analysis for uncontrolled system (1.2). In this subsection, we analyze the
local stability of the positive steady state based on the linearization technique. To obtain the linearized system around
the positive steady state E∗(x∗, y∗, z∗), let us employ the transformation X(t) = x(t) − x∗, Y (t) = y(t) − y∗, Z(t) =
z(t)− z∗. Then the linearized form of (1.2) can be described as

Dα
t X(t) = −bx∗X(t)− x∗Y (t)− x∗Z(t),

Dα
t Y (t) = y∗X(t),

Dα
t Z(t) = (−e− 2βz∗)Z(t) + fz∗X(t− τ) + gz∗Y (t− τ) + (fx∗ + gy∗)Z(t− τ).

(3.1)

By applying the Laplace transform on both sides of (3.1), we have



sαL{X(t)} − sα−1x(0) = −bx∗L{X(t)} − x∗L{Y (t)} − x∗L{Z(t)},
sαL{Y (t)} − sα−1y(0) = y∗L{X(t)},

sαL{Z(t)} − sα−1z(0) = (−e− 2βz∗)L{Z(t)}+ fz∗e−sτ
(
L{X(t)}+

∫ 0

−τ

e−stψ1(t)dt
)

+gz∗e−sτ
(
L{Y (t)}+

∫ 0

−τ

e−stψ2(t)dt
)
+ (fx∗ + gy∗)e−sτ

(
L{Z(t)}+

∫ 0

−τ

e−stψ3(t)dt
)
.

(3.2)

Let L{f(t)} = F (s). Then, the above system (3.2) can be written as in the following matrix form

∆(s) ·

 X(s)
Y (s)
Z(s)

 =

 δ1(s)
δ2(s)
δ3(s)

 , (3.3)

in which

∆(s) =

 sα + bx∗ x∗ x∗

−y∗ sα 0
−fz∗e−sτ −gz∗e−sτ sα + e+ 2βz∗ − (fx∗ + gy∗)e−sτ

 ,
and 

δ1(s) = sα−1x(0),

δ2(s) = sα−1y(0),

δ3(s) = sα−1z(0) + fz∗e−sτ

∫ 0

−τ

e−stψ1(t)dt+ gz∗e−sτ

∫ 0

−τ

e−stψ2(t)dt+ (fx∗ + gy∗)e−sτ

∫ 0

−τ

e−stψ3(t)dt.

In Eq. (3.3), ∆(s) represents the characteristic matrix of system (3.1). The stability of system (3.1) can be entirely
determined via the properties of eigenvalues of the associated characteristic equation det(∆(s)) = 0, given by

s3α +R2s
2α +R1s

α +R0 +
[
P2s

2α + P1s
α + P0

]
e−sτ = 0, (3.4)

where

R2 = bx∗ + 2βz∗ + e, R1 = (2bβz∗ + be+ y∗)x∗, R0 = (2βz∗ + e)x∗y∗,

P2 = −fx∗ − gy∗, P1 = −(bfx∗ + bgy∗ − fz∗)x∗, P0 = (fx∗ + g(y∗ − z∗))x∗y∗.

Now, we consider the following two cases:

Case I:: When τ = 0, we consider the following conditions

(H1) h2 > 0, h0 > 0, h2h1 > h0,

in which

h2 = P2 +R2, h1 = P1 +R1, h0 = P0 +R0.

In order to discuss the stability of system (1.2) in the absence of delay, we establish the following lemma.



1266 A. H. SUROSH, R. KHOSHSIAR GHAZIANI, AND J. ALIDOUSTI

Lemma 3.1. If the condition (H1) holds, then E
∗ is locally asymptotically stable when τ = 0.

Proof. In the absence of delay, the characteristic polynomial (3.4) becomes

λ3 + h2λ
2 + h1λ+ h0 = 0, (λ = sα). (3.5)

When the assumption (H1) holds, then it is apparent that all the roots λi (i = 1, 2, 3) of (3.5) have negative real parts
based on the Routh–Hurwitz criterion which satisfy |arg(λi)| > απ

2 , i = 1, 2, 3. Therefore, we can conclude that E∗ is
locally asymptotically stable and the proof is completed. □

Case II:: When τ ̸= 0, the Eq. (3.4) can be reduced to

N⋆
1 (s) +N⋆

2 (s)e
−sτ = 0, (3.6)

in which

N⋆
1 = s3α +R2s

2α +R1s
α +R0, N⋆

2 = P2s
2α + P1s

α + P0.

In this case, following [10, 11], we assume that s = iω = ω
(
cos(π2 ) + i sin(π2 )

)
, ω > 0 be a purely imaginary root of

Eq. (3.6). Then by substituting it into the characteristic Eq. (3.6), we obtain

C1 + iD1 + (C2 + iD2)
(
cos(ωτ)− i sin(ωτ)

)
= 0, (3.7)

where

C1 = ω3α cos
(3απ

2

)
+R2ω

2α cos(απ) +R1ω
α cos

(απ
2

)
+R0,

D1 = ω3α sin
(3απ

2

)
+R2ω

2α sin(απ) +R1ω
α sin

(απ
2

)
,

C2 = P2ω
2α cos(απ) + P1ω

α cos
(απ
2

)
+ P0,

D2 = P2ω
2α sin(απ) + P1ω

α sin(
απ

2
).

Using Eq. (3.7), we get the corresponding real and imaginary parts as follows

C2 cos(ωτ) +D2 sin(ωτ) = −C1,

D2 cos(ωτ)− C2 sin(ωτ) = −D1.
(3.8)

From (3.8) and by labelling of

Θ1(ω) = −C1C2 −D1D2, Θ2(ω) = D1C2 −D2C1, Θ(ω) = C 2
2 +D2

2, (3.9)

we get 
cos(ωτ) =

Θ1(ω)

Θ(ω)
,

sin(ωτ) =
Θ2(ω)

Θ(ω)
,

(3.10)

which leads to

Θ2(ω) = Θ2
1(ω) + Θ2

2(ω). (3.11)

According to Eq. (3.11), we can define

F (ω) = Θ2(ω)−Θ2
1(ω)−Θ2

2(ω) = 0. (3.12)

Then by (3.12), we obtain

F (ω) = m10ω
10α +m9ω

9α +m8ω
8α +m7ω

7α +m6ω
6α

+m5ω
5α +m4ω

4α +m3ω
3α +m2ω

2α +m1ω
α +m0 = 0,

(3.13)

where
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m10 = −P 2
2 , m9 = −2P2(P1 + P2R2) cos

(απ
2

)
,

m8 = P 4
2 − P 2

1 − P 2
2R

2
2 − 2P1P2R2 − 2P2(P1R2 + P2R1 + P0) cos(απ),

m7 = −2P2(P0R2 + P1R1 + P2R0) cos
(3απ

2

)
−
[
2P 2

1R2 − (4P 3
2 − (−2R1 − 2R2

2)P2 − 2P0

)
P1

+ 2P2R2(P2R1 + P0)
]
cos

(απ
2

)
,

m6 = −2P2

(
P0R1 + P1R0

)
cos(2απ) +

[
4P0P

3
2 +

[
(2P 2

1 − 2R0R2)P
2
2 +

(
(−2R1R2 − 2R0)P1 − 2P0R

2
2)
)
P2

]
− 2P0P1R2 − 2P 2

1R1

]
cos(απ) + 4P 2

1P
2
2 − P 2

1R
2
2 − 2P1P2R1R2 − P 2

2R
2
1 − 2P0P1R2 − 2P0P2R1 − P 2

0 ,

m5 = −2P0P2R0 cos
(5απ

2

)
− 2P 2

1R0 +
(
4P0P

2
2 − 2R0R2P2 − 2P0R1

)
P1 − 2P0P2R1R2

]
cos

(3απ
2

)
+
[
4P2P

3
1 − 2P 2

1R1R2 +
(
8P0P

2
2 − (2R2

1 + 2R0R2)P2 − 2P0(R1 +R2
2)
)
P1

− 2(P0 + P2R1)(P0R2 +R0P2)
]
cos

(απ
2

)
,

m4 = 2
[
(−P1 − P2R2)R0 + P0P

2
2

]
P0 cos(2απ) +

[
(8P0P2 − 2R0R2)P

2
1 +

[
(−2R0 − 2R1R2)P0

− 2R0R1P2

)
P1 − 2P0P2R

2
1 − 2R1P

2
0

]
cos(απ) + 4P 2

0P
2
2 − P 2

0R
2
2 + 4P0P

2
1P2 − 2R1R2P0P1

− 2P0P2R0R2 + P 4
1 − P 2

1R
2
1 − 2P1P2R0R1 − P 2

2R
2
0,

m3 = −2P0

[
(P1R2 + P2R1 + P0)R0 − 2P0P1P2

]
cos

(3απ
2

)
+

[
4P0P

3
1 − 2P 2

1R0R1 +
(
8P 2

0P2

− 2(R2
1 +R0R2)P0 − 2P2R

2
0

)
P1 − 2P0R1(P0R2 + P2R0)

]
cos

(απ
2

)
,

m2 =
[
4P 3

0P2 + 2(P 2
1 −R0R2)P

2
0 − 2(P1R0R1 +R2

0P2)P0

]
cos(απ) + (4P 2

1 −R2
1)P

2
0 − 2P0P1R0R1 − P 2

1R
2
0,

m1 = 2
[
2P 3

0P1 − P 2
0R0R1 − P0P1R

2
0

]
cos

(απ
2

)
,

m0 = −P 2
0R

2
0 + P 4

0 .

Eq. (3.13) can also be rewritten as

F (ω) = ω10α +M9ω
9α +M8ω

8α +M7ω
7α +M6ω

6α

+M5ω
5α +M4ω

4α +M3ω
3α +M2ω

2α +M1ω
α +M0 = 0,

(3.14)

in which

Mi =
mi

m10
, (i = 0, 1, 2, · · · , 9).

Now, we present the following lemma that guarantees the occurrence of Hopf bifurcation.

Lemma 3.2. Considering the bifurcation point as τ0 = min{τ (k)}, (k = 0, 1, 2, · · · ), we can conclude the following
results:

(i): If Mi > 0 (i = 0, 1, 2, · · · , 9), then Eq. (3.6) has no positive roots for all τ ≥ 0 .
(ii): If Mi < 0 (i = 1, 2, · · · , 9) and M0 > 0, then Eq. (3.6) has a pair of complex conjugate roots ±iω0 when

τ (k) =
1

ω0

{
arccos

[Θ1(ω)

Θ(ω)

]
+ 2kπ

}
, (k = 0, 1, 2, · · · ), (3.15)

where ω0 is the unique positive root of (3.13).
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Proof. (i) Since Mi > 0 (i = 0, 1, 2, · · · , 9), we have F (0) =M0 > 0. By combining α > 0 and Mi > 0, we deduce that
Eq. (3.14) has no positive real root, hence Eq. (3.6) has no purely imaginary root.
(ii) Since M0 > 0 and F (0) =M0 > 0, we have F ′(ω) > 0, limω→+∞ F (ω) = +∞. Then there exists a unique positive
number ω0 , i.e, F (ω0) = 0. So, ω0 is a root of Eq. (3.14) and for Eq. (3.15), (ω0, τ0) is a root of (3.8). Therefore,
Eq. (3.6) has a pair of complex conjugate roots ±iω0, when τ = τ (k), k = 0, 1, 2, · · · . This completes the proof. □

To investigate the transversality condition for the occurrence of Hopf bifurcation, we further provide the following
necessary assumption:

(H2) l̂Rµ̂R + l̂I µ̂I > 0,

where

l̂R = −P2ω
2α+1
0 sin(απ − ω0τ0)− P1ω

α+1
0 sin

(απ
2

− ω0τ0

)
+ P0ω0 sin(ω0τ0),

l̂I = P2ω
2α+1
0 cos(απ − ω0τ0) + P1ω

α+1
0 cos

(απ
2

− ω0τ0

)
+ P0ω0 cos(ω0τ0),

µ̂R = 3αω3α−1
0 sin

(3απ
2

)
+ 2α

[
R2 sin(απ) + P2 sin(απ − ω0τ0)

]
ω2α−1
0

+ α
[
R1 sin

(απ
2

)
+ P1 sin

(απ
2

− ω0τ0

)]
ωα−1
0 ,

µ̂I = −3αω3α−1
0 cos

(3απ
2

)
− 2α

[
R2 cos(απ) + P2 cos(απ − ω0τ0)

]
ω2α−1
0

− α
[
R1 cos

(απ
2

)
+ P1 cos

(απ
2

− ω0τ0

)]
ωα−1
0 .

According to the above hypothesis, the following lemma can be achieved.

Lemma 3.3. Suppose that s(τ) = ζ(τ)+iω(τ) is a root of Eq. (3.6) near τ = τ (k) satisfying ζ(τ (k)) = 0, ω(τ (k)) = ω0,
then the transversality condition

ℜ
( ds
dτ

)∣∣∣
(ω=ω0, τ=τ0)

> 0,

holds.

Proof. By implicit differentiating of (3.6) with respect to τ , we obtain

N⋆′
1 (s)

ds

dτ
+N⋆′

2 (s)e−sτ ds

dτ
+N⋆

2 (s)e
−sτ

(
− τ

ds

dτ
− s

)
= 0,

where N⋆′
i (s) indicates the derivatives of N⋆

i (s) (i = 1, 2). It follows that

ds

dτ
=

sN⋆
2 (s)e

−sτ

N⋆′
1 (s) +N⋆′

2 (s)e−sτ − τN⋆
2 (s)e

−sτ
=

l(s)

µ(s)
, (3.16)

where l(s) = sN⋆
2 (s)e

−sτ and µ(s) = N⋆′
1 (s) +N⋆′

2 (s)e−sτ − τN⋆
2 (s)e

−sτ .

To check ℜ
(
ds
dτ

)
> 0, we can use

(
ds
dτ

)−1
instead of

(
ds
dτ

)
. In such a way, we have[ ds

dτ

]−1

=
µ̂(s)

l̂(s)
− τ

s
, (3.17)

where

µ̂(s) = − α
[
P2s

5α + 2P1s
4α + (3P0 + P1R2 − P2R1)s

3α + 2(P0R2 − P1R0)s
2α + (P0R1 − P1R0)s

α
]
,

and

l̂(s) = s2
[
P2s

5α + (P1 + P2R2)s
4α + (P1R2 + P2R1 + P0)s

3α + (P0R2

+ P1R1 + P2R0)s
2α + (P0R1 + P1R0)s

α + P0R0

]
.
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By Eq. (3.17), we have

ℜ

[(
ds

dτ

)−1
]
(ω=ω0, τ=τ0)

= ℜ

[
µ̂(s)

l̂(s)

]
(ω=ω0, τ=τ0)

=
l̂Rµ̂R + l̂I µ̂I

l̂2R + l̂2I
.

Applying (H2), we deduce

ℜ

[(
ds

dτ

)−1
]
(ω=ω0, τ=τ0)

> 0,

which completes the proof. □

By the previous analysis and combining the Lemmas 3.1, 3.2, and 3.3, we can establish the following theorem.

Theorem 3.4. For the uncontrolled system (1.2) if the assumptions (H1) and (H2) hold, then we deduce the following
results.

(i): E∗ is asymptotically stable for τ ∈ [0, τ0) and unstable for τ > τ0.
(ii): When τ = τ0, the uncontrolled system (1.2) undergoes a Hopf bifurcation at E∗ i.e., a periodic solution

bifurcates from E∗ near τ = τ0.

3.2. Influence of the controller (1.3) on bifurcation for uncontrolled system (1.2). In this subsection, by
employing the time-delayed force (1.3), we focus on the problem of bifurcation control for stabilizing the creation of
bifurcation in the uncontrolled system (1.2). The considered controlled system takes the form

Dα
t x(t) = x(1− bx)− xy − xz,

Dα
t y(t) = −cy + xy + u(t),

Dα
t z(t) = fx(t− τ)z(t− τ) + gy(t− τ)z(t− τ)− (e+ βz)z,

(3.18)

where u(t) is stated in (1.3).
Analogously, by performing a transformation W1(t) = x(t) − x∗, W2(t) = y(t) − y∗, W3(t) = z(t) − z∗ and using

the linearized scheme, the linear equation of the controlled system (3.18) around E∗ can be derived as follows:
Dα

t W1(t) = −bx∗W1(t)− x∗W2(t)− x∗W3(t),

Dα
t W2(t) = y∗W1(t) +K

(
W2(t)−W2(t− τ)

)
,

Dα
t W3(t) = fz∗W1(t− τ) + gz∗W2(t− τ) + (fx∗ + gy∗)W3(t− τ)− (e+ 2βz∗)W3(t).

(3.19)

The corresponding characteristic equation can be formulated as

det

 sα + bx∗ x∗ x∗

−y∗ sα −K +Ke−sτ 0
−fz∗e−sτ −gz∗e−sτ sα + e+ 2βz∗ − (fx∗ + gy∗)e−sτ

 = 0,

which is equivalent to

s3α +R22s
2α +R21s

α +R20 + (P22s
2α + P21s

α + P20)e
−sτ + (Q11s

α +Q10)e
−2sτ = 0, (3.20)
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where

R22 = bx∗ + 2βz∗ −K + e,

R21 = (−bK + (e+ 2βz)b+ y∗)x∗ + (−e− 2βz∗)K,

R20 =
(
(−e− 2βz∗)bK + (e+ 2βz∗)y∗

)
x∗,

P22 = K − fx∗ − gy∗,

P21 = −bfx∗ +
(
(b+ f)K − bgy∗ + fz∗

)
x∗ + (2βz∗ + gy∗ + e)K,

P20 =
(
f(bK − y∗)x∗ +

(
(2βz∗ + gy∗ + e)b− fz∗

)
K − g(y∗ − z∗)y∗

)
x∗,

Q11 = −K(fx∗ + gy∗),

Q10 = K(bfx∗ + bgy∗ − fz∗)x∗.

We further simplify the Eq. (3.20) as

ξ01(s) + ξ11(s)e
−sτ + ξ21(s)e

−2sτ = 0, (3.21)

where

ξ01 = s3α +R22s
2α +R21s

α +R20,

ξ11 = P22s
2α + P21s

α + P20,

ξ21 = Q11s
α +Q10.

By multiplying esτ on both sides of (3.21), we get

ξ01(s)e
sτ + ξ11(s) + ξ21(s)e

−sτ = 0. (3.22)

Let s = iω = ω
(
cos(π2 ) + i sin(π2 )

)
(ω > 0) be a root of Eq. (3.22). Then by substituting s into Eq. (3.22) and

separating the real and imaginary parts, we obtain{
(β1 + β3) cos(ωτ)− γ1 sin(ωτ) = −β2,
γ1 cos(ωτ) + (β1 − β3) sin(ωτ) = −γ2,

(3.23)

in which

β1 = ω3α cos(
3απ

2
) +R22ω

2α cos(απ) +R20,

β2 = P22ω
2α cos(απ) + P21ω

α cos(
απ

2
) + P20,

β3 = (R21 +Q11)ω
α cos(

απ

2
) +Q10,

γ1 = ω3α sin(
3απ

2
) +R22ω

2α sin(απ) + (R21 +Q11)ω
α sin(

απ

2
),

γ2 = P22ω
2α sin(απ) + P21ω

α sin(
απ

2
).

Then we can derive
cos(ωτ) = − (β1 − β3)β2 + γ1γ2

β2
1 + γ21 + (β2 − β3)β1 − β2β3

=
Θ1(ω)

Θ(ω)
,

sin(ωτ) =
(γ1 − γ2)β2 − β1γ2

β2
1 + γ21 + (β2 − β3)β1 − β2β3

=
Θ2(ω)

Θ(ω)
.

(3.24)

Since sin2(ωτ) + cos2(ωτ) = 1, we have

Θ
2
(ω) = Θ

2

1(ω) + Θ
2

2(ω). (3.25)
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According to cos(ωτ) = Θ1(ω)

Θ(ω)
, we deduce

τ (l) =
1

ω

[
arccos

(Θ1(ω)

Θ(ω)

)
+ 2lπ

]
, l = 0, 1, 2, · · · . (3.26)

The bifurcation point can be presented by

τ̄10 = min{τ (l)}, l = 0, 1, 2, · · · ,

where τ (l) is already defined by Eq. (3.26).
Now based on (3.25), we further suppose

F̄ (ω) = Θ
2
(ω)−Θ

2

1(ω)−Θ
2

2(ω) = 0, (3.27)

which can be deduced that Eq. (3.27) has at least one nonnegative real root.
In the following, we further look for the conditions for the emergence of Hopf bifurcation. Hence, the additional

hypothesis can be introduced as follows:

(H3)
l̄1µ̄1 + l̄2µ̄2

µ̄2
1 + µ̄2

2

̸= 0,

where

l̄1 = P22 sin(απ − ω10τ̄10)ω
2α+1
10 +

(
2Q11 sin

(απ
2

− 2ω10τ̄10

)
+ P21 sin

(απ
2

− ω10τ̄10

))
ωα+1
10 − ω10

(
P20 sin(ω10τ̄10) + 2Q10 sin(2ω10τ̄10)

)
,

l̄2 = −P22 cos(απ − ω10τ̄10)ω
2α+1
10 −

[
2Q11 cos

(απ
2

− 2ω10τ̄10

)
+ P21 cos

(απ
2

− ω10τ̄10

)]
ωα+1
10 − ω10

(
P20 cos(ω10τ̄10) + 2Q10 cos(2ω10τ̄10)

)
,

µ̄1 = −3α sin
(3απ

2

)
ω3α−1
10 − 2α

(
R22 sin(απ) + P22 sin(απ − ω10τ̄10)

)
ω2α−1
10

− α
(
P21 sin

(απ
2

− ω10τ̄10

)
+Q11 sin

(απ
2

− 2ω10τ̄10

)
+R21 sin

(απ
2

))
ωα−1
10

+ τ̄10

[
P22 cos(απ − ω10τ̄10)ω

2α
10 +

(
2Q11 cos

(απ
2

− 2ω10τ̄10

)
+ P21 cos

(απ
2

− ω10τ̄10

))
ωα
10

+ P20 cos(ω10τ̄10) + 2Q10 cos(2ω10τ̄10)
]
,

µ̄2 = 3α cos
(3απ

2

)
ω3α−1
10 + 2α

(
P22 cos(απ − ω10τ̄10) +R22 cos(απ)

)
ω2α−1
10

+ α
[
Q11 cos

(απ
2

− 2ω10τ̄10

)
+ P21 cos

(απ
2

− ω10τ̄10

)
+R21 cos

(απ
2

)]
ωα−1
10

+ τ̄10

[
P22 sin(απ − ω10τ̄10)ω

2α
10 +

(
P21 sin

(απ
2

− ω10τ̄10

)
+ 2Q11 sin

(απ
2

− 2ω10τ̄10

))
ωα
10

− P20 sin(ω10τ̄10)− 2Q10 sin(2ω10τ̄10)
]
.

Lemma 3.5. Suppose that s(τ) = ζ̄(τ) + iω(τ) be the root of Eq. (3.21) near τ = τ (l) satisfying ζ̄(τ (l)) = 0, ω(τ (l)) =
ω10, then the following transversality condition holds

ℜ
( ds
dτ

)∣∣∣
(ω=ω10, τ=τ̄10)

̸= 0.

Proof. Differentiating Eq. (3.21) with regard to τ in the light of implicit function theorem, we acquire that

ξ′01(s)
ds

dτ
+ ξ′11(s)e

−sτ ds

dτ
+ ξ11(s)e

−sτ
(
− τ

ds

dτ
− s

)
+ ξ′21(s)e

−2sτ ds

dτ
+ ξ21(s)e

−2sτ
(
− 2τ

ds

dτ
− 2s

)
= 0, (3.28)



1272 A. H. SUROSH, R. KHOSHSIAR GHAZIANI, AND J. ALIDOUSTI

where ξ′i1(s) is the derivatives of ξi1(s) (i = 0, 1, 2).
Thus we have

ds

dτ
=

l̄(s)

µ̄(s)
, (3.29)

where

l̄(s) = s
[
ξ11(s)e

−sτ + 2ξ21(s)e
−2sτ

]
,

µ̄(s) = ξ′01(s) +
[
ξ′11(s)− τξ11(s)

]
e−sτ +

[
ξ′21(s)− 2τξ21(s)

]
e−2sτ .

Let l̄i (i = 1, 2) be the real and imaginary parts of l̄(s) and µ̄j (j = 1, 2) be the real and imaginary parts of µ̄(s),
respectively. Then it follows from Eq. (3.29) that

ℜ
[ ds
dτ

]∣∣∣
(ω=ω10, τ=τ̄10)

=
l̄1µ̄1 + l̄2µ̄2

µ̄2
1 + µ̄2

2

. (3.30)

The assumption (H3) intimates that transversality condition is met. Hence, the proof is accomplished. □

Based on the previous analysis, we have the following theorem.

Theorem 3.6. Under the assumptions (H1) and (H3), the following results are deduced.

(i): If τ ∈ [0, τ̄10), then the positive equilibrium E∗ of the controlled system (3.18) is asymptotically stable.
(ii): If the condition (H3) of Lemma 3.5 holds, then the controlled system (3.18) exhibits a Hopf bifurcation at
E∗ when τ = τ̄10.

4. Numerical examples and simulations

In this section, we present two numerical examples to verify the feasibility of the theoretical analysis regarding the
stability and bifurcation of the fractional-order delayed model (1.2), as well as the controlled system with a time-
delayed feedback controller. Additionally, we aim to reveal more dynamical behavior of the system through numerical
simulations. To carry out these simulations, we employ the Adams–Bashforth–Moulton (ABM) predictor-corrector
scheme, as discussed in previous works [4, 34]. The simulations are conducted using MATLAB 2013a and Maple
2017 as computational tools. The ABM predictor-corrector scheme combines two approaches, namely, the explicit
Adams-Bashforth method and the implicit Adams-Moulton method. The explicit component utilizes past values to
estimate future values, providing a quick estimate, while the implicit component refines this estimate by incorporating
future values, thus enhancing stability and accuracy. This combination allows for higher precision compared to using
either method independently. The implicit part of the scheme is particularly advantageous for stiff ordinary differential
equations, where traditional explicit methods may encounter difficulties. By utilizing past values, the ABM method
reduces the number of function evaluations needed, making it computationally efficient for long-term integration
problems. Furthermore, the ABM method can be easily adapted to various types of ODEs and boundary conditions,
making it a versatile tool in numerical analysis and computational applications.
In the simulation, the step-length is designated as h = 0.05, and the initial values are taken as (1.78, 0.17, 0.39)
for all the examples. Moreover, we consider the same parameter values as in [20] which are listed in Table 1. For
these biologically feasible parameter set, the fractional-order time delay system (1.2) has only one positive equilibrium
computed as E∗(x∗, y∗, z∗) = (2, 3211

16800 ,
1027
2400 ).

Table 1. The set of parameter and their values.

Parameter b β c e f g

Value 4
21 2 2 3 907

700
86
13
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Figure 1. Phase portraits and time series solutions of system (4.1) when α = 0.97. (A) and (B)
indicate that for τ = 0.45 < τ0 = 0.6122, E∗ is locally asymptotically stable. (C) and (D) show that
for τ = 0.6322 > τ0, a periodic oscillation emerges.

Example 4.1. Consider the following fractional-order predator–prey system with time delay:
Dα

t x(t) = x(1− 4

21
x)− xy − xz,

Dα
t y(t) = −2y + xy,

Dα
t z(t) =

907

700
x(t− τ)z(t− τ) +

86

13
y(t− τ)z(t− τ)− (3 + 2z)z,

(4.1)

where α ∈ (0, 1].
Choosing α = 0.97, we compute ω0 ≈ 0.8267, τ0 ≈ 0.6122. If we consider the time delay τ as a bifurcation

parameter, then by the aid of Theorem 3.4 we can observe that E∗ is asymptotically stable and its state trajectories
converge to E∗ when τ = 0.45 < τ0. The corresponding dynamic behavior is depicted by the subfigures (a) and (b) of
Figure 1. The subfigures (c) and (d) in Figure 1 indicate that E∗ of the uncontrolled system (4.1) is unstable, i.e, a
Hopf bifurcation occurs when τ = 0.6322 > τ0. When α = 1, the uncontrolled system (4.1) coincides with the integer
order system and for this case, the critical frequency and bifurcation value are acquired as ω∗

0 ≈ 0.9918, τ∗0 ≈ 0.2508,
respectively. For τ = 0.221 and τ = 0.265, the associated stable and unstable behaviours are depicted in Figure 2.
We can see that fractional-order is capable to postpone the onset and appearance of Hopf bifurcation which leads to
amplifying the stability domain of the corresponding fractional-order system.
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Figure 2. Phase portraits and time series solutions of system (4.1) when α = 1. (A) and (B) indicate
that E∗ is locally asymptotically stable when τ = 0.221 < τ∗0 = 0.2508, while (C) and (D) show that
E∗ becomes unstable and a periodic oscillation emerges when τ = 0.265 > τ∗0 .

Example 4.2. Herein, for controlling the onset of Hopf bifurcation of the uncontrolled system (1.2), the controller
(1.3) is imposed on the uncontrolled system (1.2) to better display the effects of bifurcation control in the system.
The same set of parameters and the fractional-orders as in Example 4.1 are taken, then the fractional-order controlled
system can be described as

Dα
t x(t) = x(1− 4

21
x)− xy − xz,

Dα
t y(t) = −2y + xy +K

(
y(t)− y(t− τ)

)
,

Dα
t z(t) =

907

700
x(t− τ)z(t− τ) +

86

13
y(t− τ)z(t− τ)− (3 + 2z)z.

(4.2)

We numerically investigate the impacts of feedback gain K for postponing the Hopf bifurcation onset of system (4.2).
Thus by choosingK = −0.48 and applying Eq. (3.26) and Eq. (3.27), we obtain ω0 ≈ 0.16858, and τ̄0 ≈ 0.9032. Figure
3 depicts the numerical simulations of the controlled model (4.2) for τ = 0.896 < τ̄0 ≈ 0.9032, which clearly reveals
that the stability performance of the system is ameliorated and the considered uncontrolled system is successfully
controlled.

Also, for varying the feedback gain K, some comparative numerical results versus the associated critical frequency
ω0 and the bifurcation point τ̄0 are carefully computed and are listed in Table 2.
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Figure 3. (A) Phase portrait of the system (4.2) when α = 0.97 and τ = 0.896. (B) Time series
evolution of species for α = 0.97 and τ = 0.896.

Table 2. The impact of K on the values of ω0 for controlled system (4.2) with α = 0.97.

Feedback gain K Critical frequency ω0 Bifurcation point τ̄0

−1.98 0.60045 0.47716
−1.85 0.57980 0.47796
−1.48 0.51383 0.54986
−1.15 0.44199 0.63538
−0.95 0.38854 0.70080
−0.65 0.27837 0.82250
−0.48 0.16858 0.90318
−0.35 0.87732 0.56016
−0.25 0.80251 0.84443
−0.15 0.72102 1.05859
−0.095 0.67589 1.43534

Moreover, it has been shown that the impact of the feedback gain plays an important role on the stabilizing
bifurcation and it can be observed that the performance of bifurcation control are effectively improved when the
feedback gain gradually decreases.

5. Conclusion

In this study, we present a novel fractional-order delayed predator-prey model that incorporates three species, with
one species functioning as an omnivore. We derive the characteristic equation associated with the model utilizing
the Laplace transform and subsequently compute the critical frequencies alongside the critical time delay values that
facilitate the emergence of Hopf bifurcation. Our analysis yields significant results, including a comprehensive set of
sufficient conditions that guarantee the local asymptotic stability of the proposed model. The findings indicate that
the incorporation of time delays exerts a profound influence on both stability and the occurrence of Hopf bifurcation;
specifically, the fractional-order model with delay demonstrates the emergence of Hopf bifurcation at the positive
equilibrium point when the time delay exceeds its critical threshold. A comparative analysis between integer-order
and fractional-order models reveals that the fractional-order system possesses a more extensive stability domain than
its integer-order counterpart. Furthermore, both fractional-order dynamics and time delays are pivotal in shaping
the dynamical behaviors of the fractional delay model, thereby enriching its complexity and enhancing stability. To
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address the potential instability arising from Hopf bifurcation in an uncontrolled system, we implement state feedback
control with time delay. Our results illustrate that through judicious adjustment of the feedback gain and time delay
parameters, it is possible to effectively postpone the onset of Hopf bifurcation within the fractional-order system.
Numerical analyses indicate that this control strategy, which incorporates time delays, demonstrates superior efficacy
in stabilizing bifurcations. For the numerical approximation of the model’s solutions, we employ a modified Adams-
Bashforth-Moulton predictor-corrector scheme. The simulations conducted validate the accuracy and effectiveness of
our theoretical findings.

Key insights from our research include:

• The control strategy can stabilize populations and minimize oscillations.
• Understanding time delays and fractional-order dynamics enhances conservation efforts for vulnerable species.
• The model aids in ecosystem monitoring, allowing for early detection of instability.

Future research should focus on addressing the following key areas:

• Expanding the model: The model’s predictive capabilities can be significantly improved by incorporating
spatial heterogeneity, environmental variability, and additional ecological interactions.

• Optimizing the control effectiveness: Determining the optimal feedback gain and time delay for different
ecological scenarios is essential for maximizing the effectiveness of control strategies.
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