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Abstract r

The paper presents a significant improvement to the implementation of the improved tan(¢(€)/2)-expansion
method (ITEM) for solving the Hamiltonian amplitude equation (HAE). We seek to improve the exact solu-
tions by applying the ITEM. Computed solutions are compared with previously published results obtained using
the simplest equation method [15] and the (G'/G,1/G)-expansion method [13]. There is clear evidence that the
new approach produces results that as good as, if not better than published results determined using the other
methods. The main advantage of the method is that it offers further solutions. By using this method, exact
solutions including the hyperbolic function solution, traveling wave solution, soliton solution, rational function
solution, and periodic wave solution of this equation have been obtained. Moreover, variational principles for the
HAE are formulated. The invariance identities of the HAE involving the Lagrangian L and the generators of the
infinitesimal Lie group of transformations have been utilized for writing down their first integrals via Noether’s
theorem Logan. We demonstrate the simplest example of the application of this technique, taking the box-shaped
initial pulse and an ansatz based on linear Jost functions. We consider a combination of two boxes of opposite
signs, the total area of the initial pulse being thus zero. Therewith, we develop a variational approximation for
finding the eigenvalues of this pulse, by a piece-wise linear ansatz and tanh functions series of the piece-wise linear
function. Moreover, by using Matlab, some graphical simulations were done to see the behavior of these solutions.
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1. INTRODUCTION

In this paper, we consider the Hamiltonian amplitude equation as follows
ity + ug + 20| ul?u — eugy = 0, (1.1)

where 0 = 41, ¢ < 1. The current equation was recently introduced by Wadati et al. [42]. This is an equation which
governs certain instabilities of modulated wave trains, with the additional term wu,; overcoming the ill-posedness of
the unstable nonlinear Schroédinger equation. It is a Hamiltonian analogue of the Kuramoto-Sivashinski equation
which arises in dissipative systems and is apparently not integrable. In [15], the simplest equation method is used to
construct the traveling wave solutions of new Hamiltonian amplitude equation, (3 + 1)-dimensional generalized KP
equation, Burgers-KP equation, coupled Higgs field equation, generalized Zakharov System. Demiray et al. [13], have
applied the (G'/G, 1/G)-expansion method to obtain new exact traveling wave solutions of the Hamiltonian amplitude
equation equations arise in the analysis of various problems in fluid mechanics, theoretical physics. Yan has obtained
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new families of solitary wave solutions are found for a Hamiltonian amplitude equation by using a simple transfor-
mation and symbolic computation [43]. Mirzazadeh [35] obtained soliton solutions to the Hamiltonian amplitude
equation by using the He’s variational principle. Also, Chen et al. [6] have considered a new generalized Hamiltonian
amplitude equation with nonlinear terms of any order by using a proper transformation and a generalized ansatz. In
[20], coupled Higgs field equation and Hamiltonian amplitude equation are studied using the Lie classical method. The
extended trial equation method and generalized Kudryashov method are applied to find several exact solutions of the
new Hamiltonian amplitude equation by Demiray and Bulut [12]. In fact, it has been discovered that many models
in mathematics and physics are described by nonlinear partial differential equations. With the rapid development
of nonlinear sciences based on computer algebraic system, many effective methods have been presented. One of the
most recent approaches is using semi-analytical methods [7-9, 38] or analytical methods [4, 5, 10, 11, 22-26, 29, 30]
and machine learning methods [44], implications for aquifer systems [41], three-dimensional printing and digital rock
physics [19], nonlinearities of SiGe bipolar phototransistor [14], study regarding the topological optimization [16],
deep neural network based sentiment analysis [2], on Reinforced Concrete Bubble Deck Slabs [3]. So instead of using
current models of partial differential equations, we can transfer PDEs to ordinary differential equations. Hence there
occurs a need to use solitary wave variable that would appropriately transforms PDEs to ODEs and solve them. In
this paper, we apply the improved tan(¢/2)-expansion to solve the Hamiltonian amplitude equation. Many research
papers dealing with analytical methods exists in open literatures and some of them are reviewed and cited here for
better understanding of the present analysis [5, 7-11, 18, 24, 37, 38].

Authors of [34] explained the generalized fifth-order KdV like equation with prime number p = 3 via a generalized bi-
linear differential operator. N-lump was invstigated to the variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada
equation [33]. Applications of tan(¢/2)-expansion method for the Biswas-Milovic equation [29], the Gerdjikov-Ivanov
model [28], the Kundu-Eckhaus equation [27] and the fifth-order integrable equations [21] were studied. Lump solu-
tions were analyzed to the fractional generalized CBS-BK equation [45] and the (3+1)-D Burger system [17]. The
approximations of one-dimensional hyperbolic equation with non-local integral conditions were constructed by reduced
differential transform method [36]. The generalized Hirota bilinear strategy by the number prime was used to the
(241)-dimensional generalized fifth-order KdV like equation [34]. The traveling wave solutions and analytical treat-
ment of the simplified MCH equation and the combined KdV-mKdV equations were studied [1].

The paper is organized as follows: In Section 2, we describe the improved tan(¢(£)/2)-expansion method. In section
3, we examine the new Hamiltonian amplitude equation with method introduced in Sections 2. Moreover, in Section
4 we give the comparisons and numerical simulations of the solutions. Also conclusion is given in Section 5.

2. DESCRIPTION OF THE ITEM

The ITEM is a well-known analytical method which was improved and developed by Manafian [29]. In this paper
we propose to develop this method, but prior to that we give a detailed description of the method throughout the
following steps:

Step 1. We suppose that the given nonlinear partial differential equation for u(x,t) to be in the form

N(uvumvutvuzzvuttw“) :0; (21)
and can be converted to an ODE as:
Qu, k', wu', K, w?u”,..) =0, (2.2)

by the transformation £ = kz 4+ wt as the wave variable. Also, i is a constant to be determined later.
Step 2. Suppose the traveling wave solution of Eq. (2.2) can be expressed as follows:

u(@) = Y Aplp+tan(e/2)]" (2:3)

k=—m

where Ap(0 < k < m) and A_; = Bi(1 < k < m) are constants to be determined, such that A,, # 0, B,, # 0 and
¢ = ¢(§) satisfies the following ordinary differential equation:

¢' (&) = asin(¢(§)) + beos(¢(§)) +c. (2.4)

(=)=
E)NE
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We will consider the following special solutions of equation (2.4):
Family 1: When A =a? +b% — > <0 and b— c # 0, then ¢(¢) = 2tan™! [bf — ¥=2tan ( o=
1 h

: 3
Family 2: When A = a2 + 5% — 2 > 0 and b — ¢ # 0, then ¢(£) = 2tan— [% + /8 tan (TAE
Family 3: When A = a?+b?—c? > 0, b # 0 and ¢ = 0, then ¢(¢) = 2tan™! [% + ¥ b2b+“2 tanh ( ¥ b22+“2 E)} .

Family 4: When A = a?+b?—c? < 0, ¢ # 0 and b = 0, then ¢(¢) = 2tan~!

Family 5: When A = a?+b?>—c? > 0, b—c # 0 and a = 0, then ¢(£) = 2tan~! [ % tanh (7”’22_022)} .

Family 6: When ¢ = 0 and ¢ = 0, then ¢(¢) = tan~! [€2b§_1 i} .

€061’ 20641

Family 7: When b = 0 and ¢ = 0, then ¢(¢) = tan™! [ 2% 620571} .

e20€ 417 20841

Family 8: When a? + 1% = ¢, then ¢(¢) = 2tan! [ 242 ]

Family 9: When a = b = ¢ = ka, then ¢(§) = 2tan™ [ kaf _ 1]

ekaE
Family 10: When a = ¢ = ka and b = —ka, then ¢(§) = —2tan™ |:—1+ek“2:| .
Family 11: When ¢ = a, then ¢(£) = —2tan™ [EZ+Z§ZZE 1
. ve
Family 12: When a = ¢, then ¢(¢) = 2tan™ [(24_3;51

Family 13: When ¢ = —a, then ¢(¢) = 2tan™? [7eb§t2—ﬂ'

Family 14: When b = —c, then ¢(£) = 2tan~! [1%7&{} .

—cea€

Family 15: When b = 0 and a = c, then ¢(¢) = —2tan™* [L%Q] !
Family 16: When a = 0 and b = ¢, then ¢(§) = 2tan™ [cj
Family 17: When a = 0 and b = —¢, then ¢(§) = ~2tan™
Family 18: When a =0 and b = 0, then ¢(§) = c§ + C.
Family 19: When b = ¢ then ¢(¢) = 2tan~! {—EQZ—_C} )
where £ = £ + C, p, Ao, A, Bp(k = 1,2, ...,m),a,b and ¢ are constants to be determined later.

Step 3. To determine m. This, usually, can be accomplished by balancing the linear term(s) of highest order with
the highest-order nonlinear term(s) in Eq. (2.2). But, the positive integer m can be determined by considering the

homogeneous balance between the highest order derivatives and nonlinear terms appearing in Eq. (2.2). If m = ¢/p
(where m = ¢/p be a fraction in the lowest terms), we let

u(§) = v/7(9), (2.5)

then substitute Eq. (2.5) into Eq. (2.2) and then determine the value of m in new Eq. (2.2). If m be a negative
integer, we let

u(§) =v™ (&), (2.6)

then substitute Eq. (2.6) into Eq. (2.2). Then we determine the new value of m in obtained equation. Moreover,
precisely, we define the degree of u(§) as D(u(§)) = m, which gives rise to degree of another expression as follows:

d? diu\*®
D (d;) =m+gq, D (u” <d«;‘j) > =mp+ s(m + q). (2.7)

Step 4. Substituting (2.3) into Eq. (2.2) with the value of m obtained in Step 2. Collecting the coefficients of
tan(¢/2)*, cot(¢/2)*(k = 0, 1,2, ...), then setting each coefficient to zero, we can get a set of over-determined equations
for Ay, Ay, B(k = 1,2,...,m) a,b, c and p with the aid of symbolic computation Maple.

4
ct |’

(&)
ENE
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Step 5. Solving the algebraic equations in Step 3, then substituting
AO; Ala Blv 8] Am7 Bmv u,p in (23)

3. THE HAMILTONIAN AMPLITUDE EQUATION

We consider the Hamiltonian amplitude equation as follows
ity + g + 20 |u)*u — eugy = 0, (3.1)
where 0 = £1, ¢ < 1. By make the transformation
u(z,t) = eM(€), n=ax+pt, €= p(r—st), (3.2)

the Eq. (3.2) is carried to an ODE

(u2s% + eps)v” +i(u — 28us — efp + caus)v’ — (a + % — eaf)v + 200v° = 0. (3.3)
If we take
1—¢p
s = m, (34)

then Eq. (3.3) transform into
(u?s* +ep?s)v” — (a+ % — caB)v + 200° = 0. (3.5)

Also, we know

v} (€) = A7, (tan(6(€)/2)™" + ... (3.9)
Balancing the v and v, using homogenous principle, we get

m+ 2= 3m, =m=1. (3.10)
The close form of solution is

v(€) = Ao + Ay [p+ tan(¢/2)] + By [p + tan(¢/2)] . (3.11)
80
200
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Substituting (3.11) and (2.4) into Eq. (3.5) and by using the well-known Maple software, we have the following sets
of coefficients for the solutions of (3.11) as coefficients of ¥ = tan(¢/2):

YO

Y3

Y5

YG

2p%do(eaf — o — %) + do(el + 3p?eldy + 3pterds + pOds + 3doped +

6dop®erdy + 3dop®ds 4 diop®) + p3dy (2peaff + 12pdio — 2pa — 2pB2 + p*s?ab +
p?seac + peab + p?stac) — e (28°%p* + p?s*abp — 2eaBp® p’seabp — 120d§p2 +

12 (s%acp + seacp — seb® — sec* — s%b* — 25%bc — 2sebe — s%c?) 4 2ap?) = 0,

12p*0d? (2pdy + 5do) + pPdy (480e1dy + 2u?sea® — Sa + 4odE — 852 +

p2(25%a* + sec® — 520 + s2c? — seb?) + 8ea ) + 3p? (us%acd; + 240dperd; +
p?sabdy + p?seacd, — 23%dy + p?seabd; + 2eaBdy + 40d8 — 2ady)

—pey(—240erdy — 4eaf + p?s*c? — p?s*b* + 2p2s%a® + 4o — pPseb® + 487 + pPsec?
+2u%sea’® — 240d?)3e; (4odoer + p?s?ab + pPseab + p?s*ac + p’seac) = 0,

600d3p® — 3d1p®(—40dgod, + p?seab — p2s?ac + p*s?ab — p?seac) +

3p2dy(240e1d; + 252 + Pesp® — da — V252 p? — 467 + 2a2s% p? F deaf —

Vesp’® + 240ds + 2a%esp?) + 3p(—2ady + p?s*dyab — pPseeiac + dod; +

2eafBdy + ,u2s2d1ac + uzseelab + 24odydrer — 28%dy + ,u2sed1ac - u2s2elac +
p2serab + u256d1ab) +e1(120e1dy — b2 s2p? — 2a + 2ea + Pesp® —

26% — b?esp® + 2a%esp® + 2a% s p? + 2s*p? + 120d3) = 0, (3.12)
p3d1(800d? + b2s2 i + ?s2p? — 2cbs? pu® + bPesp® + cPesp® — 2bcesp®) —
3d1p*(—40dgod, + 3u?seab — 3p?seac — 3u*s?ac+ 3pu*s?ab) + p(48cdie; + 48cdid, —
3u?seb’d; + 3pu’sec’d, + 6p’s?ady — 8B%d; + 6u’sea’d, — 3u’s*b?dy +

8eafdy — 8ady + 3u2s202d1 + 2u282bcel — M282b2€1 — /1,2820261 — u2seb261 — /1,2866261
+2u%sebcey) — 2ady — pPseerab + pPs*dyac + pPs*diab 4 p2s’eac +

4adg —23%dy + ,u2sed1ac + ,u2$eelac + 2eafdy + 240dpdie; + u2sed1ab — ,u25261ab =0,
3p2d1(200d% + u?seb?® + p?sec® + p?s?b? — 2chesp® + p2s*c? — QCbSQMZ) —
3d1p(—20dood; — 3u?s*ac+ 3u*s*ab — 3useac + 3u?seab) +

di(120e1dy — 2B% +120d3 — 11*s*b* — P seb® + 2eaf + 2u*sa® +

2u%sea’® + p2s* 4 pPsec? — 20) =0,

3pdy (8od? + p’seb® + p?sec? + p?s%b* — 2cbesp® + p?s?c? — 2cbs? ) —

3dy (—4dgod, — p*seac + p?seab + p?s*ab — p*s*ac) = 0,

d1(4ad% + 1%seb?® + p?sec® 4+ p?s?b? — 2chesp® + p2s*c? — 2cb82u2) =0.

Solving the algebraic equations using Maple, we get the following results:

Case I:

s =s,

Ag=0, A1 =0, Bi=DB;, p==+

2(b—c) -0 a
B
A 52 + se

—1
A it? -2 B—B a= A52+20(2bc—b2_c2)3%’ u(é) = By {_aﬁan (@(25))] ot

Alef—1)
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By using the (3.14) and Families 1, 2, 6, 8, 10-15 and 17, respectively, we get

Bi(b—c) V=A (b—c)B; VA
Nany cot [ 5 Tcoth [2(5—1— 0)

ui(§) = —

€+ Cﬂ e us(€) =

By(b— C>(€+C)ein
a(E+C)+2 ’

6“7’ u4(§) =

e2b(§+C) + 1’ e2b(§+C) +1

1 20(6+C) _q 2eb(6+C)
uz(&) = By cot 3 arctan [e ¢ ])

-1

i ka(¢+C
1 € a( ) ein

1
US(Q =B § - Wc)_l]] ein7 U6(f) =B

a (a+b)etE+e) — 1
a—b (a—0b)etl¢+C) —1

)

=[5 B g [ e
i@ =5 [ 0T
ui0(§) = B [1 - Zf; 2} T, un(§) = —eBi(§+ C)e™,

where £ = i%g?z (@ —st), n= ((a il (ﬁﬁitig;?f;:ffg)]g%) x+ Bt and s = 216__655.

Case II:

1 A
Ap=0, A =0, Blz(bc)g\/;’ \/:
. R - LAY
s=8 p=—p—0 ﬁ—g, a=a, “(E)__(b—c)s\/;[ b—c (2)] e

By using the (3.20) and Families 1, 2, 6 and 10-14, respectively, we can write

1 V=A in 1 VA in
ui2(§) = 75\/—720 cot (2(§+C’)> e, u13(§) = ﬁcoth (2(§+C’)> e

e2b(6+C) _ 1 2eb(6+C) '
u14(§) = —= cot | = arctan in
eV20 2 e2b(+C) 417 20(64+C) 4 1 '

1 1 eka(§+0) -1 in
[2 1—eka<£+0>} “n

a (a4 b)etE+O) — 17 |
u16(§) = - e,
(b—a)ev20 [a—b (a—b)ebE+C) — 1

b(e+0) .
ui7(§) = c + (b+c)e +1 e,
(b—c)ev2o Le—b  (b—c)ebE+C) —1

b a eE+C) L h—q -t
U18(§) — + 6”7,
(b+a)ev20 | a+b &+ —p—q
a(¢+c) 171
7.1,19(5) — a i — 0“67 e,
205\/% 2 cea(§+C) _ 1

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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where & = i% m(x st), n = ax + ét and s = 21/3__555'
Case III:
$2 + se s2 + se
Ao = tpu(a+ (b—c)p) P A1 =0, By=7Fuap+b—c)p®>—b—c)\/— ,
o 4o
A(s2p? + esp?) + 52
A=a?+p?_2 - — - — —
a” + c, W M, S S, P b, ﬁ 57 « 2<Eﬂ _ 1) ’
52 + se

u(§) =£p

= {[a+(bc)p][2ap+(bc)p2bc] [ertan(

)]

By using the (3.25) and Families 1, 2, 6-15 and 17, respectively, one should be write

ug0(§) = £py/ — 52+86{a+ b—c)p —[20p+(b—c)p2—b—8]><[p+biC ;/_7 (\/7(54—0 N,
uz1(§) = £ —32;58{[ +(b—c)p]—[2ap+(b—c)p* —b—c]x[p +b—+b£t (\F (E+C)) e,
ug2 (&) = b _522-055 {p —(p*-1) [p—l—tan (; arctan [gzzzi:g; ; i’ eig’f;ci 1})] 1} e,
u23(§) = £p 7524255 {1 —2p [p + tan <; arctan [ezzf:f(j)c_,)_ T Zz:iiz; ; ﬂ )] _1} e,

una(g) = sy~ {[a+<b—c>p1 e oot —b-dl[p+ m]}
e I e R

uzr(§) = £p —S2LS€ {[a + (b—a)p] — [2ap+ (b — a)p® — b —q [ - EZJFZ;ZZ:IZ; J: 1] 1} e,
ws(€) = iy~ ek (0= - et 0 5] [+ m]}
u29(§) = £ —S2L85 {[a+ (b+ a)p] — [2ap + (b+ a)p® — b+ a] [p—i— M} 1} e

uso(€) = g/~ {[a — 2cp] - [2p — 20p7] [p - (Efjf_)J }

s (€) = [~ {[c— en] — 2ep — i — ] [p— (Eéf)cﬂ}

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(&)
ENE
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IR e o) e,

{”p[ sim]}

where £ = N(x — 3t)7 n= ((a +b2_02)((€sﬁﬁl-)ﬁ-asu )+5° ) x+ ftand s = 2161655'
Case IV:

2A1 g ClAl
ﬁ ﬁ) S s, P y M b_c\) 82+€S7 0 h—¢’ 1 1 1 ’

2A0A?2 — 3%(b —c)? ol .
A=a?+b?—c% a=-— ® —1C)2(6€ﬁ( — 1;) , u(é) =A [bic + tan (;E))] e'.

By using the (3.32) and Families 1, 2, 6, 8, 10-14 and 17, respectively, we can get
vV-A vV-A VA VA
uz4(§) = —A; ; tan < 5 2 tanh <T(£ + C)) e',

—c —c

us2(§) = F2cp

u33(&) = F2epp

&+ C)) e, ugs(§) = A

62b(E+C)+17 e2b(§+C)+1

1 26(6+C) _ q 2eb(6+0) ‘
uz6(§) = Aj tan (2 arctan [e < ]) e,

[ a aE+C)+21 ,
— A, |- m
)= [+ S
1 eka(é+0) a (a +b)ebE+E) —17 .
_ - yl _ m
uss(§) = A1 | 5 [ehaer0) —1] | © uso(8) = AL [a —b  (a—b)ebE+O) - 1} o
c (b4 c)etE+O) 11 in B a PO L p— g in
waol€) = A | T T o 1| wnl&) =4 | =g e =g
[a ae?(6+0) : ae&+C) ; — Ay’
— - n — - n - -
U42(€) = Al _2(3 Cea(§+c) — 1:| e’, U43(§) - Al l:l cea(§+0) . 1:| e, ’LL44(£) - C(€+ 0)7

/ o 2402 -0 A2 —B2(b—c)? _
where f - ifé ~S24es (217 — St)7 = <_ 2"+ (b,cc))z(sé,f) ( ) ) xr + /Bt and s = 2167656'
Case V:

1 A 1 -2 1 1
A=a2+bp2 -2 = = - =—|———, Ap=1t——+= = =
“t S G 3 ) T A(s?+es)” ° oo T 7 b €
1 2A
A1 =0, Bi=f+—-4/— =
e ! (b—c)eV 90’ “Te

u(é) = {is 160 + (b—lc)s % [ertan <q)é§)>yl} el

By using the (3.37) and Families 1, 2, 6 and 10-14, respectively, give as

o[ (B e

(=)=
E)NE

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.38)
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-1
1 1 /2|1 VA ;
=< * + —\/— | —=+tanh | — C n 3.39
w46 (§) { VitV 3+an<2(€+ )) e, (3.39)
11 [2 71 1 eBEHC) ] 9ebl€+C) M
_ O S 2 in
ug7(§) = {ig\/@ + Vo, {\/3 + tan <2 arctan |:€2b(£+c) 11 eBE0) J)] e, (3.40)
1 1 /2|1 C N
e .
{4+ 4+ o= -] m 3.41
u4g(§) { 6o ¢ p l\/g [eka(E+C) — 1}] }e ) ( )
1 2 bE+C) _ 1171
s (€) = 4 + n b 2 b ~a (atb)e ¢in
ev6os  (b—a)eV 90 [ (b—a)vV3 b—a (a—Db)elEtd) —1
1 b 2 b b+c)eb+O) 1117,
U50(§) = + + - - ¢ + ( + C)e + 6”7,
V6o (b—c)eV 9o [(b—c)vV3 b—c (b—c)etetd) —1
1 b 2 b b+ c)eb+N 41171
us1 (€) =4 + + \/7 L (b+c)e N ein,
V6o (b+a)eV 90 [ (b+a)V3 bt+a (b—c)eblEte) —1
1 2 b b(E+C) 41 )
us2(§) = iiii\/* - *ﬁ+( toe ha e,
V6o~ 2ce N 90 |2¢v/3  2¢  (b—c)ebE+C) — 1
where & = é\/m(az —st),n=ar+ %t and s = 2%1555'
Case VI:
1 -2 a | 2 1
A _ 2 b2 2 — — A — _ R — — — 42
a” + c, p 07 14 c A(82+€S)7 0 :FE P ) S S, ﬂ E’ (3 )
b—c cI)(f)) } .
A=+ , B1=0, a=a, ul)=<Ag+Ajtan| —=] e 3.43
' evV20A ! (©) { 0T ( 9 (3.43)
By using the (3.43) and Families 1, 2, 6 and 10-14, respectively, we can get
1 1 1 —A .
U —r-— a2 —|a—vV-Atan | —= —|—C>}}e”7,
©) = 71— {34 o= VB (Y B v 0)
(3.44)
11 1 VA ,
Us =F- avV2— — |la+VAtanh [ — (£ + C e',
(3.45)
1 e20(6+C) _ q 2eb(E+C) )
_ - in
us5(§) = j:E o tan (2 arctan L%(HC) T e ¢ J) e, (3.46)
1 /2 eha(€+C) ; 1 \/5 (a+b)etE+E) — 1Y .
T et e - 7\ n I el —(h—a) — in
U56(€) - ig o {1 [eka(E—O—C) — 1} e, ’U/57(§) jib&: . {2CL (b a) (a _ b)eb(5+c) — 1} e,
[c [m]
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(3.47)
1 /2 (b4 )t 41
uss(§) = bg\/>{2€_<b_c>+ (b—c)eb(5+c) _1 e,
1 /2 S A 2 /2 c ae&+C) ,
. _ e i Tal in —4+2./2 c__%e” 7 .
us9(§) = bg\/>{2a (b+a)+ b(€+c)—b—a}e » ue0(§) is 0{1+a cea(5+c)—1}e ;
Wheref—*1/m( St),n:aqu%t ands:;ﬁ—_f(fe.
Case VII:
+ 5% —caf
A = 2 2 — 2 = = = — a = 7@ .4
B B eaff —a — (B2
AO = 0, A1 = (b C) T,
VAEaS —a—5?) [ <<I><5>>} [ (<I>(£))] L
By =— , a=a, ulf)=<A +tan | —= )| + B + tan | —= e'.
1 \/E(b— o) (3] 1 (P 5 1|P 9
(3.49)
By using the (3.49) and Families 1, 2, 6 and 10-14, respectively, one should be write
a+ B2 —ea Vv-A V=A 4
ug1 (&) = — ﬂ4a b {tan ( 5 &+ C)) — cot <T(§ + C’)) } e, (3.50)
2 — A A :
ug2(§) = w {tanh <\2F(£ + C’)> — coth ({(f + C)) } e, (3.51)
a+ 2 —eaf 1 e2(E+C) 1 2eb(EHC)
ug3(€) = — % {tan (2 arctan [e2b(£+C) Tl e 1 (3.52)
1 e2b(6+C) _ 1 2eb(€+C) i
cot (2 arctan [e2b(£+0) T 10 e2b(EH0) 1 1] ) } e,
-1
 Ja+p2—cap 1 ekal&+C) 1(1 ekalé+0) i
usa(§) = = i 2 <2 ke —1] ) 2\ 2 [ehe6+0) 1] “ (3.53)
€ = atp?—eaf b—a( a  (a+ )ebE+C) (a4 b)etE+e) — 1 - o
uesis) = 4o b \a—-b (a-— eb(5+c) b (@ —b)ebE+C) — 1 ’
a+p2—caf [b—c c b+ c)etE+O) 41 c b4 e)ebE+O) L1\ ! i
uge (§) = 0 i +( bErT +( )b c e,
4o b \c—b (b—ce(5+)—1 —b  (b—c)ete+C) — 1

C) b e} -1
g (€) = at+pi—caf Jbtal a Le bE+C) 1 p — _a +e(5+ )+b—a o,
4o b a+b b+ —p— b+a a+b  etE+rO) —p—gq

2 a(¢+0) a(¢+C) -1y
ugy(6) = —y| Ao —EaB 2 fa | ac _afa _ae .
4o a \2c  ceald+0) — 1 2¢ \ 2¢  cealétC) _ 1 ;
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Whereg: M%( ),’I”:a.’l;—f'ﬂt ands:Qlﬁisfg.
Case VIII:
2(eaff — a — f5?)
Ama?4b?—c 5= - - ___¢ N G i P S P
a” + ¢, s=s a=a [f=p p b_o M A(s?+es) 0 =0

(3.54)

Ay = (b c)\/w, Bi=0, u(f)=4 {—bfc + tan (‘1’2’5))] e, (3.55)

By using the (3.55) and Families 1, 2, 6 and 10-14 can be written respectively as

2 _ A 4 2 _ A
wl6) =~ i (LR o)) e, ) - ””’Ewtm<f@+m>w
o 2 4o 2
(3.56)
a4 p% —eaf 1 e2(E+C) 1 2eb(EH0) in
ur (§) = — 0 tan (2 arctan [e2b(5+0) 11 emEro 1] )¢ (3.57)

2 _ 1 eka(§+0) A
U (&) = — /a+50 eaf (2 o 1]> (3.58)
b—a /a+52—5a5 (a+D)ebET — 1Y |
ur3(§) = 5 ( ~ A D) E+C)_1>e",
b—c a+62—5a6 b+c)e(5+c)+1 ;
un(€) = "7 (5 + ) e

b+a a—|—62—5aﬂ< a eb(5+c)—|—b—a)em

urs(§) = b 4o Ca4b  ebEH0) —p—g

2¢ [a+B2—caB [ a ae®(E+C) »
urg(§) = — 20y [ AT 2B (AL e Y en,
a 4o 2¢c  ce™€+C) — 1

where ¢ = /2808 (1 ), = ax+ Bt and s = ==

(a2+b%2—c2)(s2+es) 2B—ae”
Case IX:
2 P22 - a _ |eaB—a—p? _ _ _ eafl —a— B2

A=a+b—c, p= b—o P 2A(s2 +€s) ’ s Ao=0 4 (b=c) SocA

(3.59)
— o 32 -1
Bi=F— \/(mﬂ o f )A, B=0, a=aqa, U(f){/h [ertan <(I>(£)>} + By {p+tan ((I)(g))] }e”’.
b—c 8o 2 2

(3.60)

By using the (3.60) and Families 1, 2, 6 and 10-14, respectively, get as

wr(€) = F _eaf-a-p? {tan (CQ_QI’Q_“Q@ + C)) — cot <62_2b2_a2(§ + C)) } e, (3.61)

8o
[c[v]
(0] €]
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urg(€) = £ W {tanh (W(ﬁ + C’)) — coth <a?+2b2_62(§ + C’)) } e, (3.62)

a—i—BQ—eaﬂ

T

ugs(§) = F

B a+ 0% —eaf 1 e2(EHC) 1 2eb(EHC)
urg(€) = £ — {tan (2 arctan L%(&_C) T e 1)~ (3.63)
1 €2b(£+c) —1 2eb(§+c) in
cot (2 arctan |:€2b(§+C) 117 e2b(ET0) 4 1] > } e,
-1
a4 ﬁQ —eaf eka(&+C) 1(1 ekae+C) in
ugo(§) = F { ka(§+C) — 1] A —‘[eka(EJrC) — 1} e, (3.64)
wr (6) = 1/ + 52 —caf | b— C(a+b)etE 1y a  (a+b)elErO -1 o oin
B b (@—b)eE —1) 7 b—a\a—b (a—b)etEr0) —1 ’
2 _ h— b+ c)ebE+C) b b(E+0) L1\ )
al) = [ 25 =208 e Broc e AL LA IR
b (b—c)ebe+@) — —b  (b—c)ebE+o) —1
2 BE+O) 4y BEHO) 4 g\ ')
uss (€) = & a+ﬁ eaf b +a L +b—ua a +e +b—a i
a+b ebE+C) —p —q b+a Ca+b | eEHO) —p—g

2c ae?E+0) a (a aea€+C) 7! in
; 2 cer(E+0) — 1) 2¢ (26 - cealé+0) 1) "

— 2 —
where £ = \/ azi%zicoé)(€2+€s) (x —st),n=oaz+ ftand s = 2%7655.

Remark 3.1. Remark.Eslami and Mirzazadeh [15] studied the exact solutions of the Hamiltonian amplitude equation
through the simplest equation method and found only three soliton solutions as singular exponential wave solution
((20) in [15]), soliton wave solution ((23) in [15]). Similarly, it can be shown that Demiray et al. [13] with (G'/G, 1/G)-
expansion method have obtained some solutions including travelling wave solution ((3.1.9) and (3.1.14) in [13]), solitary
wave solution ((3.1.11) and (3.1.12) in [13]), periodic wave solution ((3.1.16) and (3.1.17) in [13]) and rational wave
solution ( (3.1.19) in [13]). On the other hand, by means of the ITEM we have obtained 84 solutions for the Hamiltonian
amplitude equation. Our solutions with ITEM are including hyperbolic, periodic, singular kink and rational solutions.
Moreover, for particular values of the free parameters, some of our solutions coincide with solutions of Wazwaz [15].
It proves that the other solutions are newly derived through the improved tan(¢(£)/2)-expansion method. Moreover,
the numerical simulations of the Hamiltonian amplitude equation will be given. We depict the graph and explain the
obtained solutions to the Hamiltonian amplitude equation. In Figures 1-5, we plot three dimensional graphics of real
and imaginary values of (3.15), (3.33), (3.34) and (3.35) respectively, which denote the dynamics of solutions with
appropriate parametric selections. We plot three dimensional graphics of Figs 1-5, when —10 < z < 10, —10 < t < 10.
Solutions uy, uz4 of the Hamiltonian amplitude equation represent the exact periodic traveling wave solutions. Also,
solutions usg, us7, ugg of the Hamiltonian amplitude equation are presented cuspon.

an

BE



CMDE Vol. *, No. *, * pp. 1-23

-20 0 20 40
X
(c) (d)
1
2 :
A A
= A\ /‘\ N \:"1(4/\ Al A — 0
= OB R, =
> N AN AL R s
A VARA N\ 1
10 :
10
-2
t =10 10 -40 -20

0 20 40
FIGURE 1. Graphs of (a) and (b) real values and (c) and (d) imaginary valies of uy (3.15) are demonstrated

ata =1,b=1,c=2,B; = 1,6 = 1,8 = 2,0 = 1 and by considering the values (a) and (c) —10 < = <
10,-10 < ¢ < 10 and (b) and (d) —40 < z < 40,¢ = 1.

4. FORMULATION OF THE VARIATIONAL PRINCIPLE
In this section, we consider the Hamiltonian amplitude equation as the general forth order nonlinear fractional
partial differential equation of the form:

ity + Uy + 20| ul?u — eugy = 0,

(4.1)
where u(z,t) is a complex function, |u|? = u.u* and * denotes a complex conjugate. Substituting u(z,t) = U(z,t) +
iV (x,t), where U(z,t) and V(x,t) are real functions of x and ¢ in Equation (4.1), leads to the following coupled
nonlinear partial differential equations:

Up + Vg + 20V (U? + V?) — eV = 0,

(4.2)
Vo + Uy +20U((U? +V?) — Uy = 0.

(4.3)
By discussing the existence of a Lagrangian and the invariant variational principle for Equation (4.1) in order to reduce
it to a system of two second-order equations, we can express it in the following forms:

M(U, V) = U, + Vi + 20V (U? +V?) — eV,

(4.4)
N(U7 V) = _Vz + Utt + 2UU(U2 + V2) - EUzt.

(4.5)

13
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-20 0 20 40

t =10 10 -40 -20 0 20 40

FIGURE 2. Graphs of (a) and (b) real values and (c) and (d) imaginary valuds of us, (3.33) are demonstrated
ata=1,b=1,c=2A =1,e = 3,8 =2,0 =1 and by considering the values (a) and (c) —10 < z <
10,-10 < t < 10 and (b) and (d) —40 < z < 40,¢ = 1.

The coupled nonlinear partial differential Equations (4.4) and (4.5) satisfied the consistency conditions are expressed
in [39, 40], then a functional integral J(U, V) can be written down using the formula given by [39, 40], as

JU,V) = /T U { /0 NOW )\V)d)\] dr + /T % { /O 1M()\U,)\V)d/\} dr, (4.6)

1 1
=3 / U [~V + Uy +20U(U? + V?) — Uy | dY + 3 / V Uy + Vi + 20V(U? + V?) — V] dTY,
T T

where dY = dxdt. On choosing the boundary on u, and v, to be such that the boundary terms vanish, we get the
functional integral in the form

1
JU,V) = 3 /T [—UV, + U(Uy — eUpt) + 20(U* + V) + VU, + V (Vi — V)] dY. (4.7)

Therefore, the Lagrangian L is given by
1
LU, V) = 3 [—UV, +U(Uy — eUp) +20(U* + V2> + VU, + V(Vyy — V)] - (4.8)
As a necessary check to our calculations, we use the value of L in the Euler-Lagrange equations,
OL 0 (DL 0 (DL _, 0L 0 (OL\ 0 (OL\_, W)
Ou Ot \ Quy dx \du, )~ v Ot \ Oy dx \ v, ) '
which yields the Hamiltonian amplitude equation.

(=)=
E)NE
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t =10 —10

15

-20 0 20 40

FIGURE 3. Graphs of (a) and (b) real values and (c) and (d) imaginary valuds of usg (3.34) are demonstrated
at a =0,b=2,c=0,4; =1,e = 3,8 =2,0 =1 and by considering the values (a) and (c) —10 < z <

10,—10 < ¢ < 10 and (b) and (d) —40 < = < 40, ¢ =

4.1. The rectangular box. Based on linear Jost functions in a single nontrivial variational parameter, we take the

box-shaped initial pulse and an ansatz as follows

Uz, t) = sinh(2m + x + t),

0,

0,

Vi t) = sinh(2m — z — t),

% [exp(67 — x — 1) — exp(=27 —x —t)],

1 [exp(6m +z +t) — exp(—2m +x +t)],

if t>m, x>m,

if o] <m, Jt] <,

(4.10)
if x <-—m, t<—m,
if t>m x>,
if |zl <m, |t <, (4.11)

ifx < —m t<—m.

Substituting Eqgs. (4.10) and (4.11) into (4.7), one can find the values of the integral L, which determine the Lagrangian

according to (4.8),

J(U,V) // Udedt+// Udedt+// L(U,V)dxdt, (4.12)

J(U,V) = 1.056432344 x 10%°,
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X

(c) (d)
0.5
0
-05
-1
-15

t -10 -10 Z40 20 0 20 40

FIGURE 4. Graphs of (a) and (b) real values and (c) and (d) imaginary valued of ur (3.34) are demonstrated
at a =3,b=4,c=5A; = 1,e = 3,8 =2,0 =1 and by considering the values (a) and (c) —10 < = <
10,-10 < t < 10 and (b) and (d) —40 < z < 40,¢ = 1.

where has been considered € = 0.01 and =1 in (4.8).

4.2. The two-box potential. We consider the Jost functions being approximated by a piece-wise linear ansatz,
which has two variational parameters. The following Jost functions are to two cases:
Case I: First Set.

3 [exp(7?(3 4+ 20+ 0?) — mx — wt) — exp(n?(1 — 200 — &?) — ww — wt)|, if t>m x>,
sinh(7 + at)(7 + ax), if0<z<m 0<t<m,

Ulz,t) = sinh(m + ¢)(7 + x), if —m<x<0, —T<t<0,
0, ifr < —m t<—m,

(4.13)
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t =10 10 -40 -20 0 20 40

FIGURE 5. Graphs of (a) and (b) real values and (c) and (d) imaginary valuds of uas (3.35) are demonstrated
ata=3b=4,c=—-4,A; =1,e = %,ﬂ = 2,0 = 1 and by considering the values (a) and (¢) —10 < z <
10,-10 < t < 10 and (b) and (d) —40 < z < 40,¢ = 1.

0, if t>m, x>,
sinh(m — t)(m — z), if —m<x<0, —-Tm<t<O,
Viz,t) = sinh(m — at) (7 — ax), if0<z<m 0<t<m,
3 [exp(n?(1 = 20 — a?) + 7z + wt) — exp(7?(3 4 2a + o?) + rw + 7t)], if v < —m, t < -7

(4.14)

Substituting Eqs. (4.13) and (4.14) into (4.7), one can find the values of the integral L, which determine the Lagrangian
according to (4.8),

JU,V) = /_ o: /_ O: L(U, V)dadt+ /_ Oﬂ /_ Oﬂ L(U, V)dadi+ /0 ’ /0 " LU,V dwdt+ /,, h /ﬂ T LU,V dadt, (4.15)

where

—1T —T o0 (oo}
/ / L(U,V)dzdt = 8.031387692 x 10*°°, / / L(U,V)dzdt = 8.031387623 x 10'°°, (4.16)
— 0o — 00 T T

0 0 T T
/ / L(U,V)dzdt = 2.121070169 x 1049, / / L(U,V)dzdt = —1.597675814 x 1051,
axdx o Jo

(&)
ENE
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Thus, one can found J(U,V) as
J(U,V) = 2.981241919 x 10149,

where has been considered ¢ = 0.01, 0 =1 and a = 2 in (4.8).
Case II: Second Set.

%[exp(47r—x—t+27roz)—exp(—a:—t—?woc)], if t>m, x>,

sinh(27 + at + ax), if0<z<m 0<t<m,
Ula,t) = sinh(27 +t + ), if —T<x<0, —T<t<O0,

0, if e < —m, t<—m,

0, if t>m, x>

sinh(2r — ¢t — ), if —m<x<0, —w<t<O,
Via,t) = sinh(2m — at — ax), if0<z<m 0<t<m,

i lexp(dm + x4+t +2ma) —exp(z +t — 2n)], if ¥ < —m, t < —m.

(4.17)

(4.18)

Substituting Egs. (4.17) and (4.18) into (4.7), one can find the values of the integral L, which determine the Lagrangian

according to (4.8),

JU,V) = /_ : /_ : L(U,V)dadt + /_ Oﬂ /_ i L(U,V)dadt + /0 ! /0 " LUV dudt + /ﬂ h /ﬂ LU, V) dwdts.19)

J(U, V) = 5.429158739 x 10°°, ¢ =0.01, 0 =1, a =2,

J(U,V) =2.176960534 x 10°, €=0.01, o0 =1, a = -2,

J(U, V) = 1.750089295 x 10°, €=0.01, 0 =1, a = —1.5,

J(U, V) = 2.187852023 x 10%®, €¢=10.01, 0 =1, a = 1.5,

where has been considered in (4.8).

(4.20)

(4.21)

(4.22)

(4.23)

4.3. Tanh functions series. On the basis of a different ansatz, where we approximate the Jost functions by quadratic
polynomials instead of the tanh series of piecewise linear functions.. The following Jost functions are to three cases:

Case I: First Set.

U(z,t) =tanh(2nr —z —1t), |z| <10, |t <10,

V(z,t) =tanh(2r + 2z +¢t), |z| <10, [t < 10.

(=)=
E)NE

(4.24)

(4.25)
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Substituting Eqs. (4.24) and (4.25) into (4.7), one can find the values of the integral L, which determine the Lagrangian
according to (4.8),

J(U,V) / / L(U, V)dadt = 1371.569402, (4.26)

where has been considered e = 0.01 and o =1 in (4.8).
Case II: Second Set.

Ux,t) = sech*(2n —x —t), |z| <1, |t| <1, (4.27)

V(x,t) = sech®*2n +x +1), |z| <1, |t|<1. (4.28)

Substituting Eqgs. (4.27) and (4.28) into (4.7), one can find the values of the integral L, which determine the Lagrangian
according to (4.8),

1 1
J(U,V) = / / L(U,V)dzdt = 1.318697734 x 1077, (4.29)
—-1J-1

where has been considered € = 0.1 and o =1 in (4.8).
Case III: Third Set.

U(z,t) = sech(2mr —x —t)tanh(27r —x —¢), |z| <1, |t| <1, (4.30)

V(z,t) = sech(2mr + x + t)tanh(2r + 2 +¢t), |z| <1, [t} < 1. (4.31)

Substituting Eqs. (4.27) and (4.28) into (4.7), one can find the values of the integral L, which determine the Lagrangian
according to (4.8),

)
J(U,V) = / / L(U, V)dadt = 0.0002207618081, (4.32)
—-1J-1

where has been considered € = 0.1 and o = Lin (4.8).

Remark 4.1. Figures 1-3 show the examples of the Lagrangian L(z;t) with Eq. (4.1). In Figure 1 case (a), by
choosing the trial functions (4.10) and (4.11) in the interval —7 < z < 7, —7 < t < 7, in Figure 1 case (b), by choosing
the trial functions (4.13) and (4:14) in the interval 0 < z < 7,0 < t < 7, in Figure 2 case(a), by choosing the trial
functions (4.17) and (4.18) in the interval 0 < < 7,0 < ¢t < 7, in Figure 2 case (b), by choosing the trial functions
(4.24) and (4.25) in the interval —10 < x < 10,—10 < t < 10, in Figure 3, by choosing the trial functions (4.27),
(4.28), (4.30) and (4.31) in the interval -1 <z < 1,-1 <t < 1.

e Note that: All the obtained results have been checked with Maple 13 by putting them back into the original
equation and found correct.

5. CONCLUSIONS

In this paper, we presented the improved tan (¢(§)/2)-expansion method for solving the Hamiltonian amplitude
equation. We extended the ITEM proposed by Manafian et al. [26] to construct new types of soliton wave solutions
of nonlinear partial differential equations. The merit of the presented method is finding the further solutions of the
considering problems including soliton, periodic, kink, kink-singular wave solutions. Comparing our new results with
other results show that our results give the further solutions. To the best of our knowledge, the application of the
ITEM to the HSE has not been previously submitted to the literature. By using the invariant variational principle,
the HSE transformed to two coupled equations. The approximation solutions of HSE are obtained. By using trial

(&)
ENE
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()

(b)

1.2 x 10153
1. % 101

2. % 10173

L 6. x 1093

FIGURE 6. (a) Graphs of Lagrangian L by (4.10) and (4.11) for the HAE when —7 < & < 7, -7 <
t <, (b) Graphs of Lagrangian L by (4.13) and (4.14) for the HAE when 0 < 2 < 7,0 <t < 7.

(a)
(b)

3. % 1071

2. % 1071

L
1l
1. % 101

(a) (b)

FIGURE 7. (a) Graphs of Lagrangian L by (4.17) and (4.18) for the HAE when 0 < z < 7,0 < ¢ < T,
(b) Graphs of Lagrangian L by (4.24) and (4.25) for the HAE when —10 < z < 10,—10 < ¢ < 10.
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(a) (b)

000025
0.00020-

0.000154
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0000104
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FIGURE 8. (a) Graphs of Lagrangian L by (4.27) and (4.28) for the HAE when —1 < z < 1,-1 <
t <1, (b) Graphs of Lagrangian L by (4.30) and (4.31) for the HAE when -1 <z <1,-1 <t < 1.

functions, the functional integral and the Lagrangian of the system without loss are found. Moreover, the general case
for the two-box potential can be obtained in the basis of a different ansatz, where we approximated the Jost function
by series in the tanh function method instead of the piece-wise linear function one. It can be concluded that these
methods are very powerful and efficient techniques in finding exact solutions for wide classes of problems, as particular
in mechanics engineering.
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