Research Paper Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. *, No. *, *, pp. 1-23 DOI:10.22034/cmde.2024.62097.2714

Computational applications by ITEM and variational method for solving the Hamiltonian amplitude equation

Elvir Akhmetshin^{1,*}, Ilyos Abdullayev², Nalbiy Tuguz³, Dmitry Fugarov⁴, and Diana Stepanova⁵

¹Department of Economics and Management of Elabuga Institute, Kazan Federal University, Kazan, Russia Moscow Aviation Institute (National Research University), Moscow, Russia.

²Department of Management and Marketing, Urgench State University, Urgench, Uzbekistan.

³Department of Higher Mathematics, Kuban State Agrarian University named after I.T. Trubilin, Krasnodar, Russia.

⁴Department of Automation and Mathematical Modeling in the Oil and Gas Industry, Don State Technical University, Rostov-on-Don, Russia.

⁵Higher School of Finance, Plekhanov Russian University of Economics, Moscow, Russia.

Abstract

The paper presents a significant improvement to the implementation of the improved $\tan(\phi(\xi)/2)$ -expansion method (ITEM) for solving the Hamiltonian amplitude equation (HAE). We seek to improve the exact solutions by applying the ITEM. Computed solutions are compared with previously published results obtained using the simplest equation method [15] and the (G'/G, 1/G)-expansion method [13]. There is clear evidence that the new approach produces results that as good as, if not better than published results determined using the other methods. The main advantage of the method is that it offers further solutions. By using this method, exact solutions including the hyperbolic function solution, traveling wave solution, soliton solution, rational function solution, and periodic wave solution of this equation have been obtained. Moreover, variational principles for the HAE are formulated. The invariance identities of the HAE involving the Lagrangian L and the generators of the infinitesimal Lie group of transformations have been utilized for writing down their first integrals via Noether's theorem Logan. We demonstrate the simplest example of the application of this technique, taking the box-shaped initial pulse and an ansatz based on linear Jost functions. We consider a combination of two boxes of opposite signs, the total area of the initial pulse being thus zero. Therewith, we develop a variational approximation for finding the eigenvalues of this pulse, by a piece-wise linear ansatz and tanh functions series of the piece-wise linear function. Moreover, by using Matlab, some graphical simulations were done to see the behavior of these solutions.

Keywords. Improved $tan(\phi(\xi)/2)$ -expansion method, Hamiltonian amplitude equation, Soliton wave solutions, Variational principles. 2010 Mathematics Subject Classification. 02.60.Lj, 02.70.Wz, 02.90.+p.

1. INTRODUCTION

In this paper, we consider the Hamiltonian amplitude equation as follows

$$iu_x + u_{tt} + 2\sigma |u|^2 u - \varepsilon u_{xt} = 0,$$

(1.1)

where $\sigma = \pm 1$, $\varepsilon \ll 1$. The current equation was recently introduced by Wadati et al. [42]. This is an equation which governs certain instabilities of modulated wave trains, with the additional term u_{xt} overcoming the ill-posedness of the unstable nonlinear Schrödinger equation. It is a Hamiltonian analogue of the Kuramoto-Sivashinski equation which arises in dissipative systems and is apparently not integrable. In [15], the simplest equation method is used to construct the traveling wave solutions of new Hamiltonian amplitude equation, (3 + 1)-dimensional generalized KP equation, Burgers-KP equation, coupled Higgs field equation, generalized Zakharov System. Demiray et al. [13], have applied the (G'/G, 1/G)-expansion method to obtain new exact traveling wave solutions of the Hamiltonian amplitude equation equations arise in the analysis of various problems in fluid mechanics, theoretical physics. Yan has obtained

Received: 13 June 2024 ; Accepted: 12 July 2024.

^{*} Corresponding author. Email: akhmetshin.e.m@mail.ru.

new families of solitary wave solutions are found for a Hamiltonian amplitude equation by using a simple transformation and symbolic computation [43]. Mirzazadeh [35] obtained soliton solutions to the Hamiltonian amplitude equation by using the He's variational principle. Also, Chen et al. [6] have considered a new generalized Hamiltonian amplitude equation with nonlinear terms of any order by using a proper transformation and a generalized ansatz. In [20], coupled Higgs field equation and Hamiltonian amplitude equation are studied using the Lie classical method. The extended trial equation method and generalized Kudryashov method are applied to find several exact solutions of the new Hamiltonian amplitude equation by Demiray and Bulut [12]. In fact, it has been discovered that many models in mathematics and physics are described by nonlinear partial differential equations. With the rapid development of nonlinear sciences based on computer algebraic system, many effective methods have been presented. One of the most recent approaches is using semi-analytical methods [7–9, 38] or analytical methods [4, 5, 10, 11, 22–26, 29, 30] and machine learning methods [44], implications for aquifer systems [41], three-dimensional printing and digital rock physics [19], nonlinearities of SiGe bipolar phototransistor [14], study regarding the topological optimization [16], deep neural network based sentiment analysis [2], on Reinforced Concrete Bubble Deck Slabs [3]. So instead of using current models of partial differential equations, we can transfer PDEs to ordinary differential equations. Hence there occurs a need to use solitary wave variable that would appropriately transforms PDEs to ODEs and solve them. In this paper, we apply the improved $\tan(\phi/2)$ -expansion to solve the Hamiltonian amplitude equation. Many research papers dealing with analytical methods exists in open literatures and some of them are reviewed and cited here for better understanding of the present analysis [5, 7–11, 18, 24, 37, 38].

Authors of [34] explained the generalized fifth-order KdV like equation with prime number p = 3 via a generalized bilinear differential operator. N-lump was invstigated to the variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation [33]. Applications of $tan(\phi/2)$ -expansion method for the Biswas-Milovic equation [29], the Gerdjikov-Ivanov model [28], the Kundu-Eckhaus equation [27] and the fifth-order integrable equations [21] were studied. Lump solutions were analyzed to the fractional generalized CBS-BK equation [45] and the (3+1)-D Burger system [17]. The approximations of one-dimensional hyperbolic equation with non-local integral conditions were constructed by reduced differential transform method [36]. The generalized Hirota bilinear strategy by the number prime was used to the (2+1)-dimensional generalized fifth-order KdV like equation [34]. The traveling wave solutions and analytical treatment of the simplified MCH equation and the combined KdV-mKdV equations were studied [1].

The paper is organized as follows: In Section 2, we describe the improved $\tan(\phi(\xi)/2)$ -expansion method. In section 3, we examine the new Hamiltonian amplitude equation with method introduced in Sections 2. Moreover, in Section 4 we give the comparisons and numerical simulations of the solutions. Also conclusion is given in Section 5.

2. Description of the ITEM

The ITEM is a well-known analytical method which was improved and developed by Manafian [29]. In this paper we propose to develop this method, but prior to that we give a detailed description of the method throughout the following steps:

Step 1. We suppose that the given nonlinear partial differential equation for u(x, t) to be in the form

$$\mathcal{N}(u, u_x, u_t, u_{xx}, u_{tt}, \ldots) = 0, \tag{2.1}$$

and can be converted to an ODE as:

$$Q(u, ku', wu', k^2 u'', w^2 u'', ...) = 0, (2.2)$$

by the transformation $\xi = kx + wt$ as the wave variable. Also, μ is a constant to be determined later. Step 2. Suppose the traveling wave solution of Eq. (2.2) can be expressed as follows:

$$u(\xi) = \sum_{k=-m}^{m} A_k \left[p + \tan(\phi/2) \right]^k,$$
(2.3)

where $A_k(0 \le k \le m)$ and $A_{-k} = B_k(1 \le k \le m)$ are constants to be determined, such that $A_m \ne 0, B_m \ne 0$ and $\phi = \phi(\xi)$ satisfies the following ordinary differential equation:

$$\phi'(\xi) = a\sin(\phi(\xi)) + b\cos(\phi(\xi)) + c.$$
(2.4)

С	м	
D	E	

We will consider the following special solutions of equation (2.4): Family 1: When $\Delta = a^2 + b^2 - c^2 < 0$ and $b - c \neq 0$, then $\phi(\xi) = 2 \tan^{-1} \left[\frac{a}{b-c} - \frac{\sqrt{-\Delta}}{b-c} \tan\left(\frac{\sqrt{-\Delta}}{2}\overline{\xi}\right) \right]$. Family 2: When $\Delta = a^2 + b^2 - c^2 > 0$ and $b - c \neq 0$, then $\phi(\xi) = 2 \tan^{-1} \left[\frac{a}{b-c} + \frac{\sqrt{\Delta}}{b-c} \tanh\left(\frac{\sqrt{\Delta}}{2}\overline{\xi}\right)^2 \right]$. Family 3: When $\Delta = a^2 + b^2 - c^2 > 0$, $b \neq 0$ and c = 0, then $\phi(\xi) = 2 \tan^{-1} \left[\frac{a}{b} + \frac{\sqrt{b^2 + a^2}}{b} \tanh \left(\frac{\sqrt{b^2 + a^2}}{2} \overline{\xi} \right) \right]$. Family 4: When $\Delta = a^2 + b^2 - c^2 < 0, c \neq 0$ and b = 0, then $\phi(\xi) = 2 \tan^{-1} \left[-\frac{a}{c} + \frac{\sqrt{c^2 - a^2}}{c} \tan\left(\frac{\sqrt{c^2 - a^2}}{2}\xi\right) \right]$. Family 5: When $\Delta = a^2 + b^2 - c^2 > 0$, $b - c \neq 0$ and a = 0, then $\phi(\xi) = 2 \tan^{-1} \left[\sqrt{\frac{b+c}{b-c}} \tanh\left(\frac{\sqrt{b^2-c^2}}{2}\overline{\xi}\right) \right]$. Family 6: When a = 0 and c = 0, then $\phi(\xi) = \tan^{-1} \left[\frac{e^{2b\overline{\xi}}}{e^{2b\overline{\xi}}+1}, \frac{2e^{b\overline{\xi}}}{e^{2b\overline{\xi}}+1} \right]$. Family 7: When b = 0 and c = 0, then $\phi(\xi) = \tan^{-1} \left[\frac{2e^{a\overline{\xi}}}{e^{2a\overline{\xi}}+1}, \frac{e^{2a\overline{\xi}}-1}{e^{2a\overline{\xi}}+1} \right]$. Family 8: When $a^2 + b^2 = c^2$, then $\phi(\xi) = 2 \tan^{-1} \left[\frac{a\xi + 2}{(b-c)\xi} \right]$. Family 9: When a = b = c = ka, then $\phi(\xi) = 2 \tan^{-1} \left[e^{ka\overline{\xi}} - 1 \right]$. Family 10: When a = c = ka and b = -ka, then $\phi(\xi) = -2 \tan^{-1} \left[\frac{e^{ka\overline{\xi}}}{-1 + e^{ka\overline{\xi}}} \right]$. Family 11: When c = a, then $\phi(\xi) = -2 \tan^{-1} \left[\frac{(a+b)e^{b\overline{\xi}}-1}{(a-b)e^{b\overline{\xi}}-1} \right]$. Family 12: When a = c, then $\phi(\xi) = 2 \tan^{-1} \left[\frac{(b+c)e^{b\overline{\xi}}+1}{(b-c)e^{b\overline{\xi}}-1} \right]$. Family 13: When c = -a, then $\phi(\xi) = 2 \tan^{-1} \left[\frac{e^{b\overline{\xi}} + b - a}{e^{b\overline{\xi}} - b - a} \right]$ Family 14: When b = -c, then $\phi(\xi) = 2 \tan^{-1} \left[\frac{a e^{a\overline{\xi}}}{1 - c e^{a\overline{\xi}}} \right]$. Family 15: When b = 0 and a = c, then $\phi(\xi) = -2 \tan^{-1} \left[\frac{e\xi+2}{e\xi} \right]$ Family 16: When a = 0 and b = c, then $\phi(\xi) = 2 \tan^{-1} c \overline{\xi}$ Family 17: When a = 0 and b = -c, then $\phi(\xi) = -2 \tan^{-1} \left[\frac{1}{c\xi} \right]$. Family 18: When a = 0 and b = 0, then $\phi(\xi) = c\xi + C$. Family 19: When b = c then $\phi(\xi) = 2 \tan^{-1} \left[\frac{e^{a\xi} - c}{a} \right]$, where $\overline{\xi} = \xi + C, p, A_0, A_k, B_k (k = 1, 2, ..., m), a, b$ and c are constants to be determined later.

Step 3. To determine *m*. This, usually, can be accomplished by balancing the linear term(s) of highest order with the highest-order nonlinear term(s) in Eq. (2.2). But, the positive integer *m* can be determined by considering the homogeneous balance between the highest order derivatives and nonlinear terms appearing in Eq. (2.2). If m = q/p (where m = q/p be a fraction in the lowest terms), we let

$$u(\xi) = v^{q/p}(\xi), \tag{2.5}$$

then substitute Eq. (2.5) into Eq. (2.2) and then determine the value of m in new Eq. (2.2). If m be a negative integer, we let

$$u(\xi) = v^m(\xi),\tag{2.6}$$

then substitute Eq. (2.6) into Eq. (2.2). Then we determine the new value of m in obtained equation. Moreover, precisely, we define the degree of $u(\xi)$ as $D(u(\xi)) = m$, which gives rise to degree of another expression as follows:

$$D\left(\frac{d^{q}u}{d\xi^{q}}\right) = m + q, \qquad D\left(u^{p}\left(\frac{d^{q}u}{d\xi^{q}}\right)^{s}\right) = mp + s(m + q).$$

$$(2.7)$$

Step 4. Substituting (2.3) into Eq. (2.2) with the value of m obtained in Step 2. Collecting the coefficients of $\tan(\phi/2)^k$, $\cot(\phi/2)^k (k = 0, 1, 2, ...)$, then setting each coefficient to zero, we can get a set of over-determined equations for $A_0, A_k, B_k (k = 1, 2, ..., m)$ a, b, c and p with the aid of symbolic computation Maple.

Step 5. Solving the algebraic equations in Step 3, then substituting $A_0, A_1, B_1, ..., A_m, B_m, \mu, p$ in (2.3).

3. The Hamiltonian amplitude equation

We consider the Hamiltonian amplitude equation as follows

$$iu_x + u_{tt} + 2\sigma |u|^2 u - \varepsilon u_{xt} = 0, (3.1)$$

where $\sigma = \pm 1, \varepsilon \ll 1$. By make the transformation

$$u(x,t) = e^{i\eta}v(\xi), \quad \eta = \alpha x + \beta t, \quad \xi = \mu(x-st), \tag{3.2}$$

the Eq. (3.2) is carried to an ODE

$$(\mu^2 s^2 + \varepsilon \mu^2 s)v'' + i(\mu - 2\beta\mu s - \varepsilon\beta\mu + \varepsilon\alpha\mu s)v' - (\alpha + \beta^2 - \varepsilon\alpha\beta)v + 2\sigma v^3 = 0.$$
(3.3)

If we take

$$s = \frac{1 - \varepsilon \beta}{2\beta - \alpha \varepsilon},\tag{3.4}$$

then Eq. (3.3) transform into

$$(\mu^2 s^2 + \varepsilon \mu^2 s)v'' - (\alpha + \beta^2 - \varepsilon \alpha \beta)v + 2\sigma v^3 = 0.$$
(3.5)

Also, we know

$$v(\xi) = A_m \left(\tan(\phi(\xi)/2) \right)^m + \dots,$$
(3.6)

$$\frac{dv(\xi)}{d\xi} = \frac{m(c-b)}{2} A_m \left(\tan(\phi(\xi)/2) \right)^{m+1} + \dots,$$
(3.7)

$$\frac{d^2 v(\xi)}{d\xi^2} = \frac{m(m+1)(c-b)^2}{2} A_m \left(\tan(\phi(\xi)/2) \right)^{m+2} + \dots,$$
(3.8)

$$v^{3}(\xi) = A_{m}^{3} \left(\tan(\phi(\xi)/2) \right)^{3m} + \dots$$
(3.9)

Balancing the v'' and v^3 , using homogenous principle, we get

 $m+2 = 3m, \qquad \Rightarrow m = 1. \tag{3.10}$

The close form of solution is

$$v(\xi) = A_0 + A_1 \left[p + \tan(\phi/2) \right] + B_1 \left[p + \tan(\phi/2) \right]^{-1}.$$
(3.11)

Substituting (3.11) and (2.4) into Eq. (3.5) and by using the well-known Maple software, we have the following sets of coefficients for the solutions of (3.11) as coefficients of $Y = \tan(\phi/2)$:

$$\begin{array}{rcl} Y^0 & : & 2p^3 d_0 (c\alpha\beta - \alpha - \beta^2) + 4o(e_1^3 + 3p^2 e_1^2 d_1 + 3p^4 e_1 d_1^2 + p^6 d_1^3 + 3d_0 pe_1^2 + \\ & 6d_0 p^3 e_1 d_1 + 3d_0 p^2 d_1^2 + d_0^2 p^3 + p^2 d_1 (2pc\alpha\beta + 12pd_0^2 \sigma - 2p\alpha - 2p\beta^2 + \mu^2 s^2 ab + \\ & \mu^2 seac + \mu^s eab + \mu^2 s^2 ac) - e_1 (2\beta^2 p^2 + \mu^2 s^2 abp - 2e\alpha\beta p^2 \mu^2 seebp - 12\sigma d_0^2 p^2 + \\ & \mu^2 (s^2 acp + seacp - seb^2 - sec^2 - s^2 b^2 - 2s^2 bc - 2sbc - s^2 c^2) + 2\alpha p^2) = 0, \\ Y^1 & : & 12p^4 \sigma d_1^2 (2pd_1 + 5d_0) + p^3 d_1 (48\sigma e_1 d_1 + 2\mu^2 sea^2 - 8\alpha + 4\sigma d_0^2 - 8\beta^2 + \\ & \mu^2 (2s^2 a^2 + sec^2 - s^2 b^2 + s^2 c^2 - sc^2) + 8c\alpha\beta) + 3p^2 (\mu^2 s^2 acd_1 + 24\sigma d_{0e_1} d_1 + \\ & \mu^2 s^2 abd_1 + \mu^2 sead_1 - 2\beta^2 d_0 + \mu^2 seabd_1 + 2c\alpha\beta d_0 + 4\sigma d_0^2 - 2ad_0) \\ & - pe_1 (-24\sigma e_1 d_1 - 4e\alpha\beta + \mu^2 s^2 c^2 - \mu^2 s^2 b^2 + 2\mu^2 s^2 a^2 + 4\alpha - \mu^2 seb^2 + 4\beta^2 + \mu^2 sec^2 \\ & + 2\mu^2 sea^2 - 24\sigma d_0^2) 3a_1 (4\sigma d_{0e_1} + \mu^2 s^2 ab + \mu^2 seab + \mu^2 s^2 ac + \mu^2 seac) = 0, \\ Y^2 & : & 60\sigma d_1^3 p^4 - 3d_1 p^3 (-40d_0 \sigma d_1 + \mu^2 seab - \mu^2 s^2 \mu^2 - 4\beta^2 + 2\alpha^2 s^2 \mu^2 + 4c\alpha\beta - \\ & b^2 e_5 \mu^2 + 24\sigma d_0^2 + 2a^2 s\mu^2) + 3p (-2\alpha d_0 + \mu^2 s^2 d_1 ab - \mu^2 see_1 ac + 4\sigma d_0^3 + \\ & 2c\alpha\beta d_0 + \mu^2 s^2 d_1 ac + \mu^2 see_1 ab + 24\sigma d_0 d_{1e_1} - 2\beta^2 d_0 + \mu^2 sed_1 ac - \mu^2 s^2 e_1 ac + \\ & \mu^2 s^2 e_1 ab + \mu^2 sed_1 ab) + e_1 (12\sigma_1 d_1 - b^2 s^2 \mu^2 - 2\alpha + 2c\alpha\beta + c^2 e_5 \mu^2 - \\ & 2\beta^2 - b^2 e_5 \mu^2 + 2a^2 s^2 \mu^2 + 2c^2 s^2 \mu^2 + 12\sigma d_0^2) = 0, \\ Y^3 & : & p^3 d_1 (8\sigma d_1^2 + b^2 s^2 \mu^2 + c^2 s^2 \mu^2 + 12\sigma d_0^2) = 0, \\ Y^4 & : & 3p^2 d_1 (20\sigma d_1 + 3\mu^2 sec^2 d_1 + 6\mu^2 s^2 d_1 a - \mu^2 s^2 d_2 e_1 a + \mu^2 s^2 e_1 ac + \\ & 4\sigma d_0^3 - 2\beta^2 d_0 + \mu^2 sed_1 ac + \mu^2 sed_1 a + p^2 s^2 d_1 a + \mu^2 s^2 e_1 ac + \\ & 4\sigma d_0^3 - 2\beta^2 d_0 + \mu^2 sed_1 ac + \mu^2 sed_2 + 2c\alpha\beta + 2c\alpha\beta + 2\mu^2 s^2 c^2 - 2cbs^2 \mu^2) - \\ & 3d_1 (p^2 - 0d\sigma d_1 + 3\mu^2 se^2 - 4\mu^2 s^2 b^2 - 2cbes^2 \mu^2 + \mu^2 s^2 c^2 - 2cbs^2 \mu^2) - \\ & 3d_1 (-2d_0 \sigma d_1 + 3\mu^2 se^2 - 4\mu^2 s^2 b^2 - 2cbes \mu^2 + \mu^2 s^2 c^2 - 2cbs^2 \mu^2) - \\ & 3d_1 (-2d_0 \sigma d_1 + 3\mu^2 sec^2 + \mu^2 s^2 b^2 - 2cbes \mu^2 + \mu^2 s^2 c^2 - 2cbs$$

Solving the algebraic equations using Maple, we get the following results: Case I:

$$s = s, \quad A_0 = 0, \quad A_1 = 0, \quad B_1 = B_1, \quad \mu = \pm \frac{2(b-c)}{\Delta} \sqrt{\frac{-\sigma}{s^2 + s\varepsilon}} B_1, \quad p = -\frac{a}{b-c},$$
(3.13)

$$\Delta = a^2 + b^2 - c^2, \quad \beta = \beta, \quad \alpha = \frac{\Delta\beta^2 + 2\sigma(2bc - b^2 - c^2)B_1^2}{\Delta(\varepsilon\beta - 1)}, \quad u(\xi) = B_1 \left[-\frac{a}{b-c} + \tan\left(\frac{\Phi(\xi)}{2}\right) \right]^{-1} e^{i\eta}. \tag{3.14}$$

By using the (3.14) and Families 1, 2, 6, 8, 10-15 and 17, respectively, we get

$$u_1(\xi) = -\frac{B_1(b-c)}{\sqrt{-\Delta}} \cot\left[\frac{\sqrt{-\Delta}}{2}(\xi+C)\right] e^{i\eta}, \quad u_2(\xi) = \frac{(b-c)B_1}{\sqrt{\Delta}} \coth\left[\frac{\sqrt{\Delta}}{2}(\xi+C)\right] e^{i\eta}, \quad (3.15)$$

$$u_{3}(\xi) = B_{1} \cot\left(\frac{1}{2} \arctan\left[\frac{e^{2b(\xi+C)} - 1}{e^{2b(\xi+C)} + 1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)} + 1}\right]\right) e^{i\eta}, \quad u_{4}(\xi) = \frac{B_{1}(b-c)(\xi+C)}{a(\xi+C) + 2}e^{i\eta}, \quad (3.16)$$

$$u_{5}(\xi) = B_{1} \left[\frac{1}{2} - \frac{e^{ka(\xi+C)}}{\left[e^{ka(\xi+C)} - 1\right]} \right]^{-1} e^{i\eta}, \quad u_{6}(\xi) = B_{1} \left[\frac{a}{a-b} - \frac{(a+b)e^{b(\xi+C)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right]^{-1} e^{i\eta}, \quad (3.17)$$

$$u_{7}(\xi) = B_{1} \left[\frac{c}{c-b} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right]^{-1} e^{i\eta}, \quad u_{8}(\xi) = B_{1} \left[-\frac{a}{a+b} + \frac{e^{b(\xi+C)} + b-a}{e^{b(\xi+C)} - b-a} \right]^{-1} e^{i\eta},$$

$$u_{9}(\xi) = B_{1} \left[\frac{a}{2c} - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right]^{-1} e^{i\eta},$$

$$u_{10}(\xi) = B_{1} \left[1 - \frac{c(\xi+C) + 2}{c(\xi+C)} \right]^{-1} e^{i\eta}, \quad u_{11}(\xi) = -cB_{1}(\xi+C)e^{i\eta},$$
(3.18)

where $\xi = \pm \frac{2B_1(b-c)}{a^2+b^2-c^2} \sqrt{\frac{-\sigma}{s^2+s\varepsilon}} (x-st), \ \eta = \left(\frac{(a^2+b^2-c^2)\beta^2+2\sigma(2bc-b^2-c^2)B_1^2}{(a^2+b^2-c^2)(\varepsilon\beta-1)}\right) x + \beta t \text{ and } s = \frac{1-\varepsilon\beta}{2\beta-\alpha\varepsilon}.$ Case II:

$$A_0 = 0, \qquad A_1 = 0, \qquad B_1 = \frac{1}{(b-c)\varepsilon}\sqrt{\frac{\Delta}{2\sigma}}, \qquad \mu = \pm \frac{1}{\varepsilon}\sqrt{\frac{-2}{\Delta(s^2+s\varepsilon)}}, \tag{3.19}$$

$$s = s, \quad p = -\frac{a}{b-c}, \quad \beta = \frac{1}{\varepsilon}, \quad \alpha = \alpha, \quad u(\xi) = \left[\frac{1}{b-c}\sqrt{\frac{\Delta}{2\sigma}}\left[-\frac{a}{b-c} + \tan\left(\frac{\Phi(\xi)}{2}\right)\right]^{-1}e^{i\eta}.$$
(3.20)

By using the (3.20) and Families 1, 2, 6 and 10-14, respectively, we can write

$$u_{12}(\xi) = -\frac{1}{\varepsilon\sqrt{-2\sigma}}\cot\left(\frac{\sqrt{-\Delta}}{2}(\xi+C)\right)e^{i\eta}, \qquad u_{13}(\xi) = \frac{1}{\varepsilon\sqrt{2\sigma}}\coth\left(\frac{\sqrt{\Delta}}{2}(\xi+C)\right)e^{i\eta}, \qquad (3.21)$$

$$u_{14}(\xi) = \frac{1}{\varepsilon\sqrt{2\sigma}} \cot\left(\frac{1}{2}\arctan\left[\frac{e^{2b(\xi+C)}-1}{e^{2b(\xi+C)}+1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)}+1}\right]\right)e^{i\eta},$$
(3.22)

$$u_{15}(\xi) = -\frac{1}{2\varepsilon\sqrt{2\sigma}} \left[\frac{1}{2} + \frac{e^{-\zeta(1-\gamma)}}{1 - e^{ka(\xi+C)}} \right] \quad e^{i\eta},$$

$$u_{16}(\xi) = \frac{b}{(b-a)\varepsilon\sqrt{2\sigma}} \left[\frac{a}{a-b} - \frac{(a+b)e^{b(\xi+C)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right]^{-1} e^{i\eta},$$
(3.23)

$$u_{17}(\xi) = \frac{b}{(b-c)\varepsilon\sqrt{2\sigma}} \left[\frac{c}{c-b} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right]^{-1} e^{i\eta},$$

$$u_{18}(\xi) = \frac{b}{(b+a)\varepsilon\sqrt{2\sigma}} \left[-\frac{a}{a+b} + \frac{e^{b(\xi+C)} + b - a}{e^{b(\xi+C)} - b - a} \right]^{-1} e^{i\eta},$$

$$u_{19}(\xi) = -\frac{a}{2c\varepsilon\sqrt{2\sigma}} \left[\frac{a}{2c} - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right]^{-1} e^{i\eta}.$$

where $\xi = \pm \frac{1}{\varepsilon} \sqrt{\frac{-2}{(a^2+b^2-c^2)(s^2+s\varepsilon)}} (x-st), \eta = \alpha x + \frac{1}{\varepsilon}t$ and $s = \frac{1-\varepsilon\beta}{2\beta-\alpha\varepsilon}$. **Case III:** $A_0 = \pm \mu (a+(b-c)p) \sqrt{-\frac{s^2+s\varepsilon}{4\sigma}}, \quad A_1 = 0, \quad B_1 = \mp \mu (2ap+(b-c)p^2-b-c) \sqrt{-\frac{s^2+s\varepsilon}{4\sigma}},$ (3.24)

$$\Delta = a^{2} + b^{2} - c^{2}, \quad \mu = \mu, \quad s = s, \quad p = p, \quad \beta = \beta, \quad \alpha = \frac{\Delta(s^{2}\mu^{2} + \varepsilon s\mu^{2}) + \beta^{2}}{2(\varepsilon\beta - 1)}, \quad (3.25)$$

$$u(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ [a + (b - c)p] - [2ap + (b - c)p^2 - b - c] \left[p + \tan\left(\frac{\Phi(\xi)}{2}\right) \right]^{-1} \right\} e^{i\eta}.$$

By using the (3.25) and Families 1, 2, 6-15 and 17, respectively, one should be write

$$u_{20}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ a + (b-c)p - [2ap + (b-c)p^2 - b-c] \times [p + \frac{a}{b-c} - \frac{\sqrt{-\Delta}}{b-c} \tan(\frac{\sqrt{-\Delta}}{2}(\xi + C))]^{-1} \right\} e^{i\eta}, \quad (3.26)$$

$$u_{21}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \{ [a + (b - c)p] - [2ap + (b - c)p^2 - b - c] \times [p + \frac{a}{b - c} + \frac{\sqrt{\Delta}}{b - c} \tanh(\frac{\sqrt{\Delta}}{2}(\xi + C))]^{-1} \} e^{i\eta}, \quad (3.27)$$

$$u_{22}(\xi) = \pm \mu b \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ p - (p^2 - 1) \left[p + \tan\left(\frac{1}{2}\arctan\left[\frac{e^{2b(\xi+C)} - 1}{e^{2b(\xi+C)} + 1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)} + 1}\right] \right) \right]^{-1} \right\} e^{i\eta}, \quad (3.28)$$

$$u_{23}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ 1 - 2p \left[p + \tan\left(\frac{1}{2}\arctan\left[\frac{2e^{a(\xi+C)}}{e^{2a(\xi+C)} + 1}, \frac{e^{2a(\xi+C)} - 1}{e^{2a(\xi+C)} + 1}\right] \right) \right]^{-1} \right\} e^{i\eta},$$

$$u_{24}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ [a + (b - c)p] - [2ap + (b + c)p^2 - b - c] \left[p + \frac{a(\xi+C) + 2}{(b - c)(\xi+C)} \right]^{-1} \right\} e^{i\eta},$$

$$u_{25}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} ka \left\{ 1 - 2(p-1) \left[p + \frac{e^{ka(\xi+C)}}{\left[e^{ka(\xi+C)} - 1\right]} \right]^{-1} \right\} e^{i\eta},$$
(3.29)

$$u_{26}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} ka \left\{ 1 - 2p - 2p(1-p) \left[p - \frac{(a+b)e^{(s+c)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right] \right\} e^{i\eta},$$

$$u_{27}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ [a + (b-a)p] - [2ap + (b-a)p^2 - b-a] \left[p - \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right]^{-1} \right\} e^{i\eta},$$

$$u_{28}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ [c + (b-c)p] - [2cp + (b-c)p^2 - b-c] \left[p + \frac{e^{b(\xi+C)} + b-a}{e^{b(\xi+C)} - b-a} \right]^{-1} \right\} e^{i\eta},$$

$$u_{29}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ [a + (b+a)p] - [2ap + (b+a)p^2 - b+a] \left[p + \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right]^{-1} \right\} e^{i\eta},$$

$$u_{30}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ [a - 2cp] - [2ap - 2cp^2] \left[p - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right]^{-1} \right\} e^{i\eta},$$

$$u_{31}(\xi) = \pm \mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ [c - cp] - [2cp - cp^2 - c] \left[p - \frac{c(\xi + C) + 2}{c(\xi + C)} \right]^{-1} \right\} e^{i\eta},$$
(3.30)

$$u_{32}(\xi) = \mp 2c\mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left[p + c(\xi + C) \right]^{-1} e^{i\eta},$$

$$u_{33}(\xi) = \mp 2cp\mu \sqrt{-\frac{s^2 + s\varepsilon}{4\sigma}} \left\{ 1 + p \left[p - \frac{1}{c(\xi + C)} \right]^{-1} \right\} e^{i\eta},$$

$$\xi = \mu(x - st), \ \eta = \left(\frac{(a^2 + b^2 - c^2)(s^2\mu^2 + \varepsilon s\mu^2) + \beta^2}{2(\varepsilon\beta - 1)} \right) x + \beta t \text{ and } s = \frac{1 - \varepsilon\beta}{2\beta - \alpha\varepsilon}.$$
IV:

$$\beta = \beta, \quad s = s, \quad p = 0, \quad \mu = \frac{2A_1}{b - c} \sqrt{-\frac{\sigma}{s^2 + \varepsilon s}}, \quad A_0 = -\frac{aA_1}{b - c}, \quad A_1 = A_1, \quad B_1 = 0, \tag{3.31}$$

$$\Delta = a^{2} + b^{2} - c^{2}, \quad \alpha = -\frac{2\Delta\sigma A_{1}^{2} - \beta^{2}(b - c)^{2}}{(b - c)^{2}(\varepsilon\beta - 1)}, \quad u(\xi) = A_{1} \left[-\frac{a}{b - c} + \tan\left(\frac{\Phi(\xi)}{2}\right) \right] e^{i\eta}.$$
(3.32)

By using the (3.32) and Families 1, 2, 6, 8, 10-14 and 17, respectively, we can get

$$u_{34}(\xi) = -A_1 \frac{\sqrt{-\Delta}}{b-c} \tan\left(\frac{\sqrt{-\Delta}}{2}(\xi+C)\right) e^{i\eta}, \quad u_{35}(\xi) = A_1 \frac{\sqrt{\Delta}}{b-c} \tanh\left(\frac{\sqrt{\Delta}}{2}(\xi+C)\right) e^{i\eta}, \quad (3.33)$$

$$u_{36}(\xi) = A_1 \tan\left(\frac{1}{2} \arctan\left[\frac{e^{2b(\xi+C)} - 1}{e^{2b(\xi+C)} + 1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)} + 1}\right]\right) e^{i\eta},$$

$$u_{37}(\xi) = A_1 \left[-\frac{a}{b-c} + \frac{a(\xi+C) + 2}{(b-c)(\xi+C)}\right] e^{i\eta}.$$
(3.34)

$$u_{38}(\xi) = A_1 \left[\frac{1}{2} - \frac{e^{ka(\xi+C)}}{\left[e^{ka(\xi+C)} - 1\right]} \right] e^{i\eta}, \quad u_{39}(\xi) = A_1 \left[\frac{a}{a-b} - \frac{(a+b)e^{b(\xi+C)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right] e^{i\eta}, \tag{3.35}$$

$$\begin{aligned} u_{40}(\xi) &= A_1 \left[\frac{c}{c-b} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right] e^{i\eta}, \quad u_{41}(\xi) = A_1 \left[-\frac{a}{a+b} + \frac{e^{b(\xi+C)} + b - a}{e^{b(\xi+C)} - b - a} \right] e^{i\eta}, \\ u_{42}(\xi) &= A_1 \left[\frac{a}{2c} - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right] e^{i\eta}, \quad u_{43}(\xi) = A_1 \left[1 - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right] e^{i\eta}, \quad u_{44}(\xi) = \frac{-A_1 e^{i\eta}}{c(\xi+C)}, \\ \text{where } \xi = \frac{2A_1}{b-c} \sqrt{-\frac{\sigma}{s^2 + \varepsilon s}} (x - st), \\ \eta = \left(-\frac{2(a^2 + b^2 - c^2)\sigma A_1^2 - \beta^2(b-c)^2}{(b-c)^2(\varepsilon\beta - 1)} \right) x + \beta t \text{ and } s = \frac{1 - \varepsilon \beta}{2\beta - \alpha \varepsilon}. \end{aligned}$$
Case V:

$$\Delta = a^2 + b^2 - c^2, \quad p = \frac{1}{b-c} \left(\sqrt{\frac{\Delta}{3}} - a \right), \quad \mu = \frac{1}{\varepsilon} \sqrt{\frac{-2}{\Delta(s^2 + \varepsilon s)}}, \quad A_0 = \pm \frac{1}{\varepsilon \sqrt{6\sigma}}, \quad s = s, \quad \beta = \frac{1}{\varepsilon}, \quad (3.36)$$

$$A_{1} = 0, \qquad B_{1} = \pm \frac{1}{(b-c)\varepsilon} \sqrt{\frac{2\Delta}{9\sigma}}, \qquad \alpha = \alpha,$$

$$u(\xi) = \left\{ \pm \frac{1}{\varepsilon\sqrt{6\sigma}} \pm \frac{1}{(b-c)\varepsilon} \sqrt{\frac{2\Delta}{9\sigma}} \left[p + \tan\left(\frac{\Phi(\xi)}{2}\right) \right]^{-1} \right\} e^{i\eta}.$$

$$(3.37)$$

By using the (3.37) and Families 1, 2, 6 and 10-14, respectively, give as

$$u_{45}(\xi) = \left\{ \pm \frac{1}{\varepsilon\sqrt{6\sigma}} \pm \frac{1}{\varepsilon}\sqrt{\frac{2}{9\sigma}} \left[\sqrt{\frac{1}{3}} - \sqrt{-1} \tan\left(\frac{\sqrt{-\Delta}}{2}(\xi+C)\right) \right]^{-1} \right\} e^{i\eta},\tag{3.38}$$

where Case

$$u_{46}(\xi) = \left\{ \pm \frac{1}{\varepsilon\sqrt{6\sigma}} \pm \frac{1}{\varepsilon}\sqrt{\frac{2}{9\sigma}} \left[\frac{1}{\sqrt{3}} + \tanh\left(\frac{\sqrt{\Delta}}{2}(\xi+C)\right) \right]^{-1} \right\} e^{i\eta},\tag{3.39}$$

$$u_{47}(\xi) = \left\{ \pm \frac{1}{\varepsilon\sqrt{6\sigma}} \pm \frac{1}{\varepsilon}\sqrt{\frac{2}{9\sigma}} \left[\frac{1}{\sqrt{3}} + \tan\left(\frac{1}{2}\arctan\left[\frac{e^{2b(\xi+C)} - 1}{e^{2b(\xi+C)} + 1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)} + 1}\right] \right) \right]^{-1} \right\} e^{i\eta},$$
(3.40)

$$u_{48}(\xi) = \left\{ \pm \frac{1}{\varepsilon\sqrt{6\sigma}} \pm \frac{1}{\varepsilon}\sqrt{\frac{2}{9\sigma}} \left[\frac{1}{\sqrt{3}} - 1 - \frac{e^{ka(\xi+C)}}{\left[e^{ka(\xi+C)} - 1\right]} \right]^{-1} \right\} e^{i\eta},\tag{3.41}$$

$$\begin{split} u_{49}(\xi) &= \left\{ \pm \frac{1}{\varepsilon\sqrt{6\sigma}} \pm \frac{b}{(b-a)\varepsilon}\sqrt{\frac{2}{9\sigma}} \left[\frac{b}{(b-a)\sqrt{3}} - \frac{a}{b-a} - \frac{(a+b)e^{b(\xi+C)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right]^{-1} \right\} e^{i\eta}, \\ u_{50}(\xi) &= \left\{ \pm \frac{1}{\varepsilon\sqrt{6\sigma}} \pm \frac{b}{(b-c)\varepsilon}\sqrt{\frac{2}{9\sigma}} \left[\frac{b}{(b-c)\sqrt{3}} - \frac{c}{b-c} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right]^{-1} \right\} e^{i\eta}, \\ u_{51}(\xi) &= \left\{ \pm \frac{1}{\varepsilon\sqrt{6\sigma}} \pm \frac{b}{(b+a)\varepsilon}\sqrt{\frac{2}{9\sigma}} \left[\frac{b}{(b+a)\sqrt{3}} - \frac{a}{b+a} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right]^{-1} \right\} e^{i\eta}, \\ u_{52}(\xi) &= \left\{ \pm \frac{1}{\varepsilon\sqrt{6\sigma}} \pm \frac{a}{2c\varepsilon}\sqrt{\frac{2}{9\sigma}} \left[\frac{a}{2c\sqrt{3}} - \frac{a}{2c} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right]^{-1} \right\} e^{i\eta}, \\ \xi &= \frac{1}{\varepsilon}\sqrt{\frac{-2}{(a^2+b^2-c^2)(s^2+\varepsilon s)}} (x-st), \ \eta = \alpha x + \frac{1}{\varepsilon}t \ \text{and} \ s = \frac{1-\varepsilon\beta}{2\beta-\alpha\varepsilon}. \end{split}$$

where ξ Case VI:

$$\Delta = a^2 + b^2 - c^2, \quad p = 0, \quad \mu = \frac{1}{\varepsilon} \sqrt{\frac{-2}{\Delta(s^2 + \varepsilon s)}}, \quad A_0 = \mp \frac{a}{\varepsilon} \sqrt{\frac{2}{\sigma \Delta}}, \quad s = s, \quad \beta = \frac{1}{\varepsilon}, \tag{3.42}$$

$$A_{1} = \pm \frac{b-c}{\varepsilon\sqrt{2\sigma\Delta}}, \quad B_{1} = 0, \quad \alpha = \alpha, \quad u(\xi) = \left\{A_{0} + A_{1}\tan\left(\frac{\Phi(\xi)}{2}\right)\right\}e^{i\eta}.$$
(3.43)

By using the (3.43) and Families 1, 2, 6 and 10-14, respectively, we can get

$$u_{53}(\xi) = \mp \frac{1}{\varepsilon} \frac{1}{\sqrt{\sigma\Delta}} \left\{ a\sqrt{2} - \frac{1}{\sqrt{2}} \left[a - \sqrt{-\Delta} \tan\left(\frac{\sqrt{-\Delta}}{2}(\xi + C)\right) \right] \right\} e^{i\eta},\tag{3.44}$$

$$u_{54}(\xi) = \mp \frac{1}{\varepsilon} \frac{1}{\sqrt{\sigma\Delta}} \left\{ a\sqrt{2} - \frac{1}{\sqrt{2}} \left[a + \sqrt{\Delta} \tanh\left(\frac{\sqrt{\Delta}}{2}(\xi + C)\right) \right] \right\} e^{i\eta},$$
(3.45)

$$u_{55}(\xi) = \pm \frac{1}{\varepsilon\sqrt{2\sigma}} \tan\left(\frac{1}{2}\arctan\left[\frac{e^{2b(\xi+C)}-1}{e^{2b(\xi+C)}+1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)}+1}\right]\right)e^{i\eta}.$$
(3.46)

$$u_{56}(\xi) = \pm \frac{1}{\varepsilon} \sqrt{\frac{2}{\sigma}} \left\{ 1 - \frac{e^{ka(\xi+C)}}{\left[e^{ka(\xi+C)} - 1\right]} \right\} e^{i\eta}, \ u_{57}(\xi) = \pm \frac{1}{b\varepsilon} \sqrt{\frac{2}{\sigma}} \left\{ 2a - (b-a) - \frac{(a+b)e^{b(\xi+C)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right\} e^{i\eta},$$

$$\begin{split} u_{58}(\xi) &= \pm \frac{1}{b\varepsilon} \sqrt{\frac{2}{\sigma}} \left\{ 2c - (b - c) + \frac{(b + c)e^{b(\xi + C)} + 1}{(b - c)e^{b(\xi + C)} - 1} \right\} e^{i\eta}, \\ u_{59}(\xi) &= \pm \frac{1}{b\varepsilon} \sqrt{\frac{2}{\sigma}} \left\{ 2a - (b + a) + \frac{e^{b(\xi + C)} + b - a}{e^{b(\xi + C)} - b - a} \right\} e^{i\eta}, \ u_{60}(\xi) &= \pm \frac{2}{\varepsilon} \sqrt{\frac{2}{\sigma}} \left\{ 1 + \frac{c}{a} - \frac{ae^{a(\xi + C)}}{ce^{a(\xi + C)} - 1} \right\} e^{i\eta}, \\ \text{where } \xi &= \frac{1}{\varepsilon} \sqrt{\frac{-2}{(a^2 + b^2 - c^2)(s^2 + \varepsilon s)}} (x - st), \ \eta &= \alpha x + \frac{1}{\varepsilon} t \text{ and } s = \frac{1 - \varepsilon \beta}{2\beta - \alpha \varepsilon}. \end{split}$$
Case VII:

$$\Delta = a^2 + b^2 - c^2, \quad s = s, \quad \beta = \beta, \quad p = -\frac{a}{b-c}, \quad \mu = \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{\Delta(s^2 + \varepsilon s)}},$$
(3.48)

$$A_{0} = 0, \quad A_{1} = (b-c)\sqrt{\frac{\varepsilon\alpha\beta - \alpha - \beta^{2}}{4\sigma\Delta}},$$

$$B_{1} = -\frac{\sqrt{\Delta(\varepsilon\alpha\beta - \alpha - \beta^{2})}}{\sqrt{4\sigma(b-c)}}, \quad \alpha = \alpha, \quad u(\xi) = \left\{A_{1}\left[p + \tan\left(\frac{\Phi(\xi)}{2}\right)\right] + B_{1}\left[p + \tan\left(\frac{\Phi(\xi)}{2}\right)\right]^{-1}\right\}e^{i\eta}.$$
(3.49)

By using the (3.49) and Families 1, 2, 6 and 10-14, respectively, one should be write

$$u_{61}(\xi) = -\sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \left\{ \tan\left(\frac{\sqrt{-\Delta}}{2}(\xi + C)\right) - \cot\left(\frac{\sqrt{-\Delta}}{2}(\xi + C)\right) \right\} e^{i\eta}, \tag{3.50}$$

$$u_{62}(\xi) = \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \left\{ \tanh\left(\frac{\sqrt{\Delta}}{2}(\xi + C)\right) - \coth\left(\frac{\sqrt{\Delta}}{2}(\xi + C)\right) \right\} e^{i\eta}, \tag{3.51}$$

$$u_{63}(\xi) = \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \left\{ \tan\left(\frac{1}{2} \arctan\left[\frac{e^{2b(\xi+C)} - 1}{e^{2b(\xi+C)} + 1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)} + 1}\right] \right) - (3.52)$$

$$\cot\left(\frac{1}{2}\arctan\left[\frac{e^{2\delta(\xi+C)}-1}{e^{2b(\xi+C)}+1}, \frac{2e^{\delta(\xi+C)}}{e^{2b(\xi+C)}+1}\right]\right)\right\}e^{i\eta},$$

$$u_{64}(\xi) = -\sqrt{\frac{\alpha+\beta^2-\varepsilon\alpha\beta}{4\sigma}}\left\{2\left(\frac{1}{2}-\frac{e^{ka(\xi+C)}}{[e^{ka(\xi+C)}-1]}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{e^{ka(\xi+C)}}{[e^{ka(\xi+C)}-1]}\right)^{-1}\right\}e^{i\eta},$$
(3.53)

$$u_{65}(\xi) = \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \left\{ \frac{b-a}{b} \left(\frac{a}{a-b} - \frac{(a+b)e^{b(\xi+C)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right) - \frac{b}{b-a} \left(\frac{a}{a-b} - \frac{(a+b)e^{b(\xi+C)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right)^{-1} \right\} e^{i\eta}$$

$$u_{66}(\xi) = \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \left\{ \frac{b-c}{b} \left(\frac{c}{c-b} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right) - \frac{b}{b-c} \left(\frac{c}{c-b} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right)^{-1} \right\} e^{i\eta},$$

$$u_{67}(\xi) = \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \left\{ \frac{b+a}{b} \left(-\frac{a}{a+b} + \frac{e^{b(\xi+C)} + b-a}{e^{b(\xi+C)} - b-a} \right) - \frac{b}{b+a} \left(-\frac{a}{a+b} + \frac{e^{b(\xi+C)} + b-a}{e^{b(\xi+C)} - b-a} \right)^{-1} \right\} e^{i\eta},$$

$$u_{68}(\xi) = -\sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \left\{ \frac{2c}{a} \left(\frac{a}{2c} - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right) - \frac{a}{2c} \left(\frac{a}{2c} - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right)^{-1} \right\} e^{i\eta},$$

Case

where $\xi = \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{(a^2 + b^2 - c^2)(s^2 + \varepsilon s)}} (x - st)$, $\eta = \alpha x + \beta t$ and $s = \frac{1 - \varepsilon \beta}{2\beta - \alpha \varepsilon}$. Case VIII:

$$\Delta = a^2 + b^2 - c^2, \quad s = s, \quad \alpha = \alpha, \qquad \beta = \beta, \quad p = -\frac{a}{b-c}, \quad \mu = \sqrt{\frac{2(\varepsilon\alpha\beta - \alpha - \beta^2)}{\Delta(s^2 + \varepsilon s)}}, \qquad A_0 = 0,$$
(3.54)

$$A_1 = (b-c)\sqrt{\frac{\alpha+\beta^2-\varepsilon\alpha\beta}{4\sigma\Delta}}, \quad B_1 = 0, \quad u(\xi) = A_1 \left[-\frac{a}{b-c} + \tan\left(\frac{\Phi(\xi)}{2}\right)\right]e^{i\eta}, \quad (3.55)$$

By using the (3.55) and Families 1, 2, 6 and 10-14 can be written respectively as

$$u_{69}(\xi) = -\sqrt{-\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \tan\left(\frac{\sqrt{-\Delta}}{2}(\xi + C)\right) e^{i\eta}, \quad u_{70}(\xi) = \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \tanh\left(\frac{\sqrt{\Delta}}{2}(\xi + C)\right) e^{i\eta}, \quad (3.56)$$

$$u_{71}(\xi) = \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{4\sigma}} \tan\left(\frac{1}{2} \arctan\left[\frac{e^{2b(\xi+C)} - 1}{e^{2b(\xi+C)} + 1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)} + 1}\right]\right) e^{i\eta},$$
(3.57)

$$u_{72}(\xi) = -\sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{\sigma}} \left(\frac{1}{2} - \frac{e^{ka(\xi+C)}}{\left[e^{ka(\xi+C)} - 1\right]} \right) e^{i\eta},$$

$$(3.58)$$

$$b - a \sqrt{\alpha + \beta^2 - \varepsilon \alpha \beta} \left(a (a+b)e^{b(\xi+C)} - 1 \right) in$$

$$u_{73}(\xi) = \frac{1}{b} \sqrt{\frac{\alpha + \beta}{4\sigma}} \left(\frac{\alpha}{a-b} - \frac{(\alpha + \beta)^{\beta}}{(a-b)e^{b(\xi+C)} - 1} \right) e^{i\eta},$$

$$u_{74}(\xi) = \frac{b-c}{b} \sqrt{\frac{\alpha + \beta^2 - \varepsilon\alpha\beta}{4\sigma}} \left(\frac{c}{c-b} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right) e^{i\eta},$$

$$u_{75}(\xi) = \frac{b+a}{b} \sqrt{\frac{\alpha + \beta^2 - \varepsilon\alpha\beta}{4\sigma}} \left(-\frac{a}{a+b} + \frac{e^{b(\xi+C)} + b-a}{e^{b(\xi+C)} - b-a} \right) e^{i\eta},$$

$$u_{76}(\xi) = -\frac{2c}{a} \sqrt{\frac{\alpha + \beta^2 - \varepsilon\alpha\beta}{4\sigma}} \left(\frac{a}{2c} - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right) e^{i\eta},$$
where $\xi = \sqrt{\frac{2(\varepsilon\alpha\beta - \alpha - \beta^2)}{(a^2 + b^2 - c^2)(s^2 + \varepsilon s)}} (x - st), \eta = \alpha x + \beta t$ and $s = \frac{1 - \varepsilon\beta}{2\beta - \alpha\varepsilon}.$
Case IX:

$$\Delta = a^2 + b^2 - c^2, \quad p = -\frac{a}{b-c}, \quad \mu = \sqrt{\frac{\varepsilon\alpha\beta - \alpha - \beta^2}{2\Delta(s^2 + \varepsilon s)}}, \quad s = s, \quad A_0 = 0, \quad A_1 = \pm (b-c)\sqrt{\frac{\varepsilon\alpha\beta - \alpha - \beta^2}{8\sigma\Delta}}, \tag{3.59}$$

$$B_1 = \mp \frac{1}{b-c} \sqrt{\frac{(\varepsilon \alpha \beta - \alpha - \beta^2) \Delta}{8\sigma}}, \quad \beta = \beta, \quad \alpha = \alpha, \quad u(\xi) = \left\{ A_1 \left[p + \tan\left(\frac{\Phi(\xi)}{2}\right) \right] + B_1 \left[p + \tan\left(\frac{\Phi(\xi)}{2}\right) \right]^{-1} \right\} e^{i\eta}$$

$$(3.60)$$

By using the (3.60) and Families 1, 2, 6 and 10-14, respectively, get as

$$u_{77}(\xi) = \mp \sqrt{-\frac{\varepsilon\alpha\beta - \alpha - \beta^2}{8\sigma}} \left\{ \tan\left(\frac{\sqrt{c^2 - b^2 - a^2}}{2}(\xi + C)\right) - \cot\left(\frac{\sqrt{c^2 - b^2 - a^2}}{2}(\xi + C)\right) \right\} e^{i\eta}, \quad (3.61)$$

$$u_{78}(\xi) = \pm \sqrt{\frac{\varepsilon\alpha\beta - \alpha - \beta^2}{8\sigma}} \left\{ \tanh\left(\frac{\sqrt{a^2 + b^2 - c^2}}{2}(\xi + C)\right) - \coth\left(\frac{\sqrt{a^2 + b^2 - c^2}}{2}(\xi + C)\right) \right\} e^{i\eta}, \quad (3.62)$$

$$u_{79}(\xi) = \pm \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{8\sigma}} \left\{ \tan\left(\frac{1}{2} \arctan\left[\frac{e^{2b(\xi+C)} - 1}{e^{2b(\xi+C)} + 1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)} + 1}\right] \right) - (3.63)$$

$$\cot\left(\frac{1}{2}\arctan\left[\frac{e^{2b(\xi+C)}-1}{e^{2b(\xi+C)}+1}, \frac{2e^{b(\xi+C)}}{e^{2b(\xi+C)}+1}\right]\right)\right\}e^{i\eta}$$

$$u_{80}(\xi) = \mp \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{8\sigma}} \left\{ 2 \left(\frac{1}{2} - \frac{e^{ka(\xi+C)}}{\left[e^{ka(\xi+C)} - 1\right]} \right) - \frac{1}{2} \left(\frac{1}{2} - \frac{e^{ka(\xi+C)}}{\left[e^{ka(\xi+C)} - 1\right]} \right)^{-1} \right\} e^{i\eta},$$
(3.64)

$$u_{81}(\xi) = \pm \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{8\sigma}} \left\{ \frac{b-a}{b} \left(\frac{a}{a-b} - \frac{(a+b)e^{b(\xi+C)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right) - \frac{b}{b-a} \left(\frac{a}{a-b} - \frac{(a+b)e^{b(\xi+C)} - 1}{(a-b)e^{b(\xi+C)} - 1} \right)^{-1} \right\} e^{i\eta}$$

$$u_{82}(\xi) = \pm \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{8\sigma}} \left\{ \frac{b-c}{b} \left(\frac{c}{c-b} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right) - \frac{b}{b-c} \left(\frac{c}{c-b} + \frac{(b+c)e^{b(\xi+C)} + 1}{(b-c)e^{b(\xi+C)} - 1} \right)^{-1} \right\} e^{i\eta},$$

$$u_{83}(\xi) = \pm \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{8\sigma}} \left\{ \frac{b+a}{b} \left(-\frac{a}{a+b} + \frac{e^{b(\xi+C)} + b-a}{e^{b(\xi+C)} - b-a} \right) - \frac{b}{b+a} \left(-\frac{a}{a+b} + \frac{e^{b(\xi+C)} + b-a}{e^{b(\xi+C)} - b-a} \right)^{-1} \right\} e^{i\eta},$$

$$u_{84}(\xi) = \mp \sqrt{\frac{\alpha + \beta^2 - \varepsilon \alpha \beta}{8\sigma}} \left\{ \frac{2c}{a} \left(\frac{a}{2e} - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right) - \frac{a}{2c} \left(\frac{a}{2c} - \frac{ae^{a(\xi+C)}}{ce^{a(\xi+C)} - 1} \right)^{-1} \right\} e^{i\eta},$$
where $\xi = \sqrt{\frac{\varepsilon \alpha \beta - \alpha - \beta^2}{2(a^2 + b^2 - c^2)(s^2 + \varepsilon s)}} (x - st), \eta = \alpha x + \beta t \text{ and } s = \frac{1 - \varepsilon \beta}{2\beta - \alpha \varepsilon}.$

Remark 3.1. Remark.Eslami and Mirzazadeh [15] studied the exact solutions of the Hamiltonian amplitude equation through the simplest equation method and found only three soliton solutions as singular exponential wave solution ((20) in [15]), soliton wave solution ((23) in [15]). Similarly, it can be shown that Demiray et al. [13] with (G'/G, 1/G)expansion method have obtained some solutions including travelling wave solution ((3.1.9) and (3.1.14) in [13]), solitary wave solution ((3.1.11) and (3.1.12) in [13]), periodic wave solution ((3.1.16) and (3.1.17) in [13]) and rational wave solution ((3.1.19) in [13]). On the other hand, by means of the ITEM we have obtained 84 solutions for the Hamiltonian amplitude equation. Our solutions with ITEM are including hyperbolic, periodic, singular kink and rational solutions. Moreover, for particular values of the free parameters, some of our solutions coincide with solutions of Wazwaz [15]. It proves that the other solutions are newly derived through the improved $\tan(\phi(\xi)/2)$ -expansion method. Moreover, the numerical simulations of the Hamiltonian amplitude equation will be given. We depict the graph and explain the obtained solutions to the Hamiltonian amplitude equation. In Figures 1-5, we plot three dimensional graphics of real and imaginary values of (3.15), (3.33), (3.34) and (3.35) respectively, which denote the dynamics of solutions with appropriate parametric selections. We plot three dimensional graphics of Figs 1-5, when -10 < x < 10, -10 < t < 10. Solutions u_1, u_{34} of the Hamiltonian amplitude equation represent the exact periodic traveling wave solutions. Also, solutions u_{36}, u_{37}, u_{43} of the Hamiltonian amplitude equation are presented cuspon.

FIGURE 1. Graphs of (a) and (b) real values and (c) and (d) imaginary values of u_1 (3.15) are demonstrated at $a = 1, b = 1, c = 2, B_1 = 1, \varepsilon = \frac{1}{3}, \beta = 2, \sigma = 1$ and by considering the values (a) and (c) -10 < x < 10, -10 < t < 10 and (b) and (d) -40 < x < 40, t = 1.

4. FORMULATION OF THE VARIATIONAL PRINCIPLE

In this section, we consider the Hamiltonian amplitude equation as the general forth order nonlinear fractional partial differential equation of the form:

$$iu_x + u_{tt} + 2\sigma |u|^2 u - \varepsilon u_{xt} = 0, \tag{4.1}$$

where u(x,t) is a complex function, $|u|^2 = u.u^*$ and * denotes a complex conjugate. Substituting u(x,t) = U(x,t) + iV(x,t), where U(x,t) and V(x,t) are real functions of x and t in Equation (4.1), leads to the following coupled nonlinear partial differential equations:

$$U_x + V_{tt} + 2\sigma V (U^2 + V^2) - \varepsilon V_{xt} = 0, (4.2)$$

$$-V_x + U_{tt} + 2\sigma U(U^2 + V^2) - \varepsilon U_{xt} = 0.$$
(4.3)

By discussing the existence of a Lagrangian and the invariant variational principle for Equation (4.1) in order to reduce it to a system of two second-order equations, we can express it in the following forms:

$$M(U,V) = U_x + V_{tt} + 2\sigma V(U^2 + V^2) - \varepsilon V_{xt},$$
(4.4)

$$N(U,V) = -V_x + U_{tt} + 2\sigma U(U^2 + V^2) - \varepsilon U_{xt}.$$
(4.5)

FIGURE 2. Graphs of (a) and (b) real values and (c) and (d) imaginary values of u_{34} (3.33) are demonstrated at $a = 1, b = 1, c = 2, A_1 = 1, \varepsilon = \frac{1}{3}, \beta = 2, \sigma = 1$ and by considering the values (a) and (c) -10 < x < 110, -10 < t < 10 and (b) and (d) -40 < x < 40, t = 1.

The coupled nonlinear partial differential Equations (4.4) and (4.5) satisfied the consistency conditions are expressed in [39, 40], then a functional integral J(U, V) can be written down using the formula given by [39, 40], as

$$J(U,V) = \int_{\Upsilon} U \left[\int_{0}^{1} N(\lambda U, \lambda V) d\lambda \right] d\Upsilon + \int_{\Upsilon} V \left[\int_{0}^{1} M(\lambda U, \lambda V) d\lambda \right] d\Upsilon,$$

$$= \frac{1}{2} \int_{\Upsilon} U \left[-V_{x} + U_{tt} + 2\sigma U (U^{2} + V^{2}) - \varepsilon U_{xt} \right] d\Upsilon + \frac{1}{2} \int_{\Upsilon} V \left[U_{x} + V_{tt} + 2\sigma V (U^{2} + V^{2}) - \varepsilon V_{xt} \right] d\Upsilon,$$

$$(4.6)$$

where $d\Upsilon = dxdt$. On choosing the boundary on u_x and v_x to be such that the boundary terms vanish, we get the functional integral in the form

$$J(U,V) = \frac{1}{2} \int_{\Upsilon} \left[-UV_x + U(U_{tt} - \varepsilon U_{xt}) + 2\sigma (U^2 + V^2)^2 + VU_x + V(V_{tt} - \varepsilon V_{xt}) \right] d\Upsilon.$$
(4.7)

Therefore, the Lagrangian L is given by

~

$$L(U,V) = \frac{1}{2} \left[-UV_x + U(U_{tt} - \varepsilon U_{xt}) + 2\sigma (U^2 + V^2)^2 + VU_x + V(V_{tt} - \varepsilon V_{xt}) \right].$$
(4.8)

As a necessary check to our calculations, we use the value of L in the Euler-Lagrange equations,

$$\frac{\partial L}{\partial u} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial u_t} \right) - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial u_x} \right) = 0, \qquad \frac{\partial L}{\partial v} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial v_t} \right) - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial v_x} \right) = 0, \tag{4.9}$$

which yields the Hamiltonian amplitude equation.

FIGURE 3. Graphs of (a) and (b) real values and (c) and (d) imaginary values of u_{36} (3.34) are demonstrated at $a = 0, b = 2, c = 0, A_1 = 1, \varepsilon = \frac{1}{3}, \beta = 2, \sigma = 1$ and by considering the values (a) and (c) -10 < x < 10, -10 < t < 10 and (b) and (d) -40 < x < 40, t = 1.

4.1. The rectangular box. Based on linear Jost functions in a single nontrivial variational parameter, we take the box-shaped initial pulse and an ansatz as follows

$$U(x,t) = \begin{cases} \frac{1}{2} \left[\exp(6\pi - x - t) - \exp(-2\pi - x - t) \right], & \text{if } t > \pi, \ x > \pi, \\ \sinh(2\pi + x + t), & \text{if } |x| < \pi, \ |t| < \pi, \\ 0, & \text{if } x < -\pi, \ t < -\pi, \end{cases}$$
(4.10)
$$0, & \text{if } x < -\pi, \ t < -\pi, \\ \sinh(2\pi - x - t), & \text{if } |x| < \pi, \ |t| < \pi, \\ \frac{1}{2} \left[\exp(6\pi + x + t) - \exp(-2\pi + x + t) \right], & \text{if } x < -\pi, \ t < -\pi. \end{cases}$$
(4.11)

Substituting Eqs. (4.10) and (4.11) into (4.7), one can find the values of the integral L, which determine the Lagrangian according to (4.8),

$$J(U,V) = \int_{-\infty}^{-\pi} \int_{-\infty}^{-\pi} L(U,V) dx dt + \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} L(U,V) dx dt + \int_{\pi}^{\infty} \int_{\pi}^{\infty} L(U,V) dx dt,$$
(4.12)
$$J(U,V) = 1.056432344 \times 10^{20},$$

FIGURE 4. Graphs of (a) and (b) real values and (c) and (d) imaginary values of u_{37} (3.34) are demonstrated at $a = 3, b = 4, c = 5, A_1 = 1, \varepsilon = \frac{1}{3}, \beta = 2, \sigma = 1$ and by considering the values (a) and (c) -10 < x < 10, -10 < t < 10 and (b) and (d) -40 < x < 40, t = 1.

where has been considered $\epsilon = 0.01$ and $\sigma = 1$ in (4.8).

4.2. The two-box potential. We consider the Jost functions being approximated by a piece-wise linear ansatz, which has two variational parameters. The following Jost functions are to two cases: Case I: First Set.

$$U(x,t) = \begin{cases} \frac{1}{2} \left[\exp(\pi^2 (3+2\alpha+\alpha^2) - \pi x - \pi t) - \exp(\pi^2 (1-2\alpha-\alpha^2) - \pi x - \pi t) \right], & \text{if } t > \pi, \ x > \pi, \\ \sinh(\pi+\alpha t)(\pi+\alpha x), & \text{if } 0 < x < \pi, \ 0 < t < \pi, \\ \sinh(\pi+t)(\pi+x), & \text{if } -\pi < x < 0, \ -\pi < t < 0, \\ 0, & \text{if } x < -\pi, \ t < -\pi, \end{cases}$$

$$(4.13)$$

FIGURE 5. Graphs of (a) and (b) real values and (c) and (d) imaginary values of u_{43} (3.35) are demonstrated at $a = 3, b = 4, c = -4, A_1 = 1, \varepsilon = \frac{1}{3}, \beta = 2, \sigma = 1$ and by considering the values (a) and (c) -10 < x < 10, -10 < t < 10 and (b) and (d) -40 < x < 40, t = 1.

$$V(x,t) = \begin{cases} 0, & \text{if } t > \pi, \ x > \pi, \\ \sinh(\pi - t)(\pi - x), & \text{if } -\pi < x < 0, \ -\pi < t < 0, \\ \sinh(\pi - \alpha t)(\pi - \alpha x), & \text{if } 0 < x < \pi, \ 0 < t < \pi, \\ \frac{1}{2} \left[\exp(\pi^2 (1 - 2\alpha - \alpha^2) + \pi x + \pi t) - \exp(\pi^2 (3 + 2\alpha + \alpha^2) + \pi x + \pi t) \right], & \text{if } x < -\pi, \ t < -\pi. \end{cases}$$

$$(4.14)$$

Substituting Eqs. (4.13) and (4.14) into (4.7), one can find the values of the integral L, which determine the Lagrangian according to (4.8),

$$J(U,V) = \int_{-\infty}^{-\pi} \int_{-\infty}^{-\pi} L(U,V) dx dt + \int_{-\pi}^{0} \int_{-\pi}^{0} L(U,V) dx dt + \int_{0}^{\pi} \int_{0}^{\pi} L(U,V) dx dt + \int_{\pi}^{\infty} \int_{\pi}^{\infty} L(U,V) dx dt, \quad (4.15)$$

where

$$\int_{-\infty}^{-\pi} \int_{-\infty}^{-\pi} L(U,V) dx dt = 8.031387692 \times 10^{150}, \qquad \int_{\pi}^{\infty} \int_{\pi}^{\infty} L(U,V) dx dt = 8.031387623 \times 10^{150}, \qquad (4.16)$$
$$\int_{-\pi}^{0} \int_{-\pi}^{0} L(U,V) dx dt = 2.121070169 \times 10^{149}, \qquad \int_{0}^{\pi} \int_{0}^{\pi} L(U,V) dx dt = -1.597675814 \times 10^{151},$$

2	ľ	N	
)		E	ľ
	;		: М) Е

Thus, one can found J(U, V) as

 $J(U,V) = 2.981241919 \times 10^{149},$

where has been considered $\epsilon = 0.01$, $\sigma = 1$ and $\alpha = 2$ in (4.8). Case II: Second Set.

$$U(x,t) = \begin{cases} \frac{1}{2} \left[\exp(4\pi - x - t + 2\pi\alpha) - \exp(-x - t - 2\pi\alpha) \right], & if \ t > \pi, \ x > \pi, \\ \sinh(2\pi + \alpha t + \alpha x), & if \ 0 < x < \pi, \ 0 < t < \pi, \\ \sinh(2\pi + t + x), & if \ -\pi < x < 0, \ -\pi < t < 0, \\ 0, & if \ x < -\pi, \ t < -\pi, \end{cases}$$
(4.17)
$$0, & if \ x < -\pi, \ t < -\pi, \\ \sinh(2\pi - t - x), & if \ -\pi < x < 0, \ -\pi < t < 0, \\ \sinh(2\pi - \alpha t - \alpha x), & if \ 0 < x < \pi, \ 0 < t < \pi, \\ \frac{1}{2} \left[\exp(4\pi + x + t + 2\pi\alpha) - \exp(x + t - 2\pi\alpha) \right], \quad if \ x < -\pi, \ t < -\pi. \end{cases}$$
(4.18)

Substituting Eqs. (4.17) and (4.18) into (4.7), one can find the values of the integral L, which determine the Lagrangian according to (4.8),

$$J(U,V) = \int_{-\infty}^{-\pi} \int_{-\infty}^{-\pi} L(U,V) dx dt + \int_{-\pi}^{0} \int_{-\pi}^{0} L(U,V) dx dt + \int_{0}^{\pi} \int_{0}^{\pi} L(U,V) dx dt + \int_{\pi}^{\infty} \int_{\pi}^{\infty} L(U,V) dx dt + \int_{0}^{\infty} \int_{0}^{\infty} L(U,V) dx dt + \int_{0}^{\infty}$$

$$J(U,V) = 5.429158739 \times 10^{30}, \quad \epsilon = 0.01, \ \sigma = 1, \ \alpha = 2, \tag{4.20}$$

$$J(U,V) = 2.176960534 \times 10^9, \quad \epsilon = 0.01, \ \sigma = 1, \ \alpha = -2, \tag{4.21}$$

$$J(U,V) = 1.750089295 \times 10^9, \quad \epsilon = 0.01, \ \sigma = 1, \ \alpha = -1.5,$$
(4.22)

$$J(U,V) = 2.187852023 \times 10^{25}, \quad \epsilon = 0.01, \ \sigma = 1, \ \alpha = 1.5,$$
(4.23)

where has been considered in (4.8).

4.3. Tanh functions series. On the basis of a different ansatz, where we approximate the Jost functions by quadratic polynomials instead of the tanh series of piecewise linear functions.. The following Jost functions are to three cases: Case I: First Set.

$$U(x,t) = \tanh(2\pi - x - t), \quad |x| < 10, \quad |t| < 10, \tag{4.24}$$

$$V(x,t) = \tanh(2\pi + x + t), \quad |x| < 10, \quad |t| < 10.$$
(4.25)

Substituting Eqs. (4.24) and (4.25) into (4.7), one can find the values of the integral L, which determine the Lagrangian according to (4.8),

$$J(U,V) = \int_{-10}^{10} \int_{-10}^{10} L(U,V) dx dt = 1371.569402,$$
(4.26)

where has been considered $\epsilon = 0.01$ and $\sigma = 1$ in (4.8). Case II: Second Set.

$$U(x,t) = sech^{2}(2\pi - x - t), \quad |x| < 1, \quad |t| < 1,$$
(4.27)

$$V(x,t) = \operatorname{sech}^{2}(2\pi + x + t), \quad |x| < 1, \quad |t| < 1.$$
(4.28)

Substituting Eqs. (4.27) and (4.28) into (4.7), one can find the values of the integral L, which determine the Lagrangian according to (4.8),

$$J(U,V) = \int_{-1}^{1} \int_{-1}^{1} L(U,V) dx dt = 1.318697734 \times 10^{-7},$$
(4.29)

where has been considered $\epsilon = 0.1$ and $\sigma = 1$ in (4.8). Case III: Third Set.

$$U(x,t) = \operatorname{sech}(2\pi - x - t) \tanh(2\pi - x - t), \quad |x| < 1, \quad |t| < 1, \quad (4.30)$$

$$V(x,t) = \operatorname{sech}(2\pi + x + t) \tanh(2\pi + x + t), \quad |x| < 1, \quad |t| < 1.$$
(4.31)

Substituting Eqs. (4.27) and (4.28) into (4.7), one can find the values of the integral L, which determine the Lagrangian according to (4.8),

$$J(U,V) = \int_{-1}^{1} \int_{-1}^{1} L(U,V) dx dt = 0.0002207618081,$$
(4.32)

where has been considered $\epsilon = 0.1$ and $\sigma = 1$ in (4.8).

Remark 4.1. Figures 1-3 show the examples of the Lagrangian L(x;t) with Eq. (4.1). In Figure 1 case (a), by choosing the trial functions (4.10) and (4.11) in the interval $-\pi < x < \pi, -\pi < t < \pi$, in Figure 1 case (b), by choosing the trial functions (4.13) and (4.14) in the interval $0 < x < \pi, 0 < t < \pi$, in Figure 2 case(a), by choosing the trial functions (4.17) and (4.18) in the interval $0 < x < \pi, 0 < t < \pi$, in Figure 2 case (b), by choosing the trial functions (4.24) and (4.25) in the interval -10 < x < 10, -10 < t < 10, in Figure 3, by choosing the trial functions (4.27), (4.28), (4.30) and (4.31) in the interval -1 < x < 1, -1 < t < 1.

• Note that: All the obtained results have been checked with Maple 13 by putting them back into the original equation and found correct.

5. Conclusions

In this paper, we presented the improved $\tan(\phi(\xi)/2)$ -expansion method for solving the Hamiltonian amplitude equation. We extended the ITEM proposed by Manafian et al. [26] to construct new types of soliton wave solutions of nonlinear partial differential equations. The merit of the presented method is finding the further solutions of the considering problems including soliton, periodic, kink, kink-singular wave solutions. Comparing our new results with other results show that our results give the further solutions. To the best of our knowledge, the application of the ITEM to the HSE has not been previously submitted to the literature. By using the invariant variational principle, the HSE transformed to two coupled equations. The approximation solutions of HSE are obtained. By using trial

FIGURE 6. (a) Graphs of Lagrangian L by (4.10) and (4.11) for the HAE when $-\pi < x < \pi, -\pi < t < \pi$, (b) Graphs of Lagrangian L by (4.13) and (4.14) for the HAE when $0 < x < \pi, 0 < t < \pi$.

FIGURE 7. (a) Graphs of Lagrangian L by (4.17) and (4.18) for the HAE when $0 < x < \pi, 0 < t < \pi$, (b) Graphs of Lagrangian L by (4.24) and (4.25) for the HAE when -10 < x < 10, -10 < t < 10.

21

FIGURE 8. (a) Graphs of Lagrangian L by (4.27) and (4.28) for the HAE when -1 < x < 1, -1 < t < 1, (b) Graphs of Lagrangian L by (4.30) and (4.31) for the HAE when -1 < x < 1, -1 < t < 1.

functions, the functional integral and the Lagrangian of the system without loss are found. Moreover, the general case for the two-box potential can be obtained in the basis of a different ansatz, where we approximated the Jost function by series in the tanh function method instead of the piece-wise linear function one. It can be concluded that these methods are very powerful and efficient techniques in finding exact solutions for wide classes of problems, as particular in mechanics engineering.

References

- N. H. Ali, S. A. Mohammed, and J. Manafian, Study on the simplified MCH equation and the combined KdVmKdV equations with solitary wave solutions, Partial Diff. Eq. Appl. Math., 9 (2024), 100599.
- [2] Z. Alsalami, Modeling of Optimal Fully Connected Deep Neural Network based Sentiment Analysis on Social Networking Data, Journal of Smart Internet of Things, 2022(1) (2023), 114-132.
- [3] A. A. Al-Ansari, M. M. Kharnoob, and Mustafa A. Kadhim, Abaqus Simulation of the Fire's Impact on Reinforced Concrete Bubble Deck Slabs, E3S Web of Conferences 427, (2023), 02001.
- [4] H. M. Baskonus and H. Bulut, Exponential prototype structures for (2+1)-Dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Waves in Random and Complex Media, 26 (2016), 201-208.
- [5] A. Biswas, 1-soliton solution of the generalized Zakharov-Kuznetsov modified equal width equation, Applied Mathematics Letters, 22 (2009), 1775-1777.
- [6] Y. Chen, B. Li, and H. Zhang, Explicit exact solutions for a new generalized Hamiltonian amplitude equation with nonlinear terms of any order, Z. angew. Math. Phys., 55 (2004), 983-993.
- [7] M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numerical Methods for Partial Differential Equations Journal, 26 (2010), 448-479.
- [8] M. Dehghan and J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method, Zeitschrift f
 ür Naturforschung A, 64(a) (2009), 420-430.
- [9] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses, Mathematical Methods in the Applied Sciences, 33 (2010), 1384-1398.

REFERENCES

- [10] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, International Journal of Numerical Methods for Heat and Fluid Flow, 21 (2011), 736-753.
- [11] M. Dehghan, J. Manafian, and A. Saadatmandi, Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method, International Journal of Modern Physics B, 25 (2011), 2965-2981.
- [12] S. T. Demiray an H. Bulut, New Exact Solutions of the New Hamiltonian Amplitude Equation and Fokas Lenells Equation, Entropy, 17 (2015), 6025-6043.
- [13] S. Demiray, Ö. Ünsal, and A. Bekir, Exact solutions of nonlinear wave equations using (G'/G,1/G)-expansion method, J. Egyptian Math. Soc., 23 (2015), 78-84.
- [14] A. M. Diop, J. L. Polleux, C. Algani, S. Mazer, M. Fattah, and M. E. Bekkali, *Design electrical model noise and perform nonlinearities of SiGe bipolar phototransistor*, International Journal of Innovative Research and Scientific Studies, 6(4) (2023), 731-740.
- [15] M. Eslami and M. Mirzazadeh, The simplest equation method for solving some important nonlinear partial differential equations, Acta Univ Apul., 33 (2013), 167-170.
- [16] M. Gaidur, I. Pascal, E., Rakosi, T. M. Ulian, and G. Manolache, Analytical study regarding the topological optimization of an automotive gear wheel pair, Edelweiss Applied Science and Technology, 7(1) (2023) 38-70.
- [17] Y. Gu, S. Malmir, J. Manafian, O. A. Ilhan, A. A. Alizadeh, and A. J. Othman, Variety interaction between k-lump and k-kink solutions for the (3+1)-D Burger system by bilinear analysis, Results Phys., 43 (2022), 106032.
- [18] A. Hasseine, Z. Barhoum, M. Attarakih, and H. J. Bart, Analytical solutions of the particle breakage equation by the Adomian decomposition and the variational iteration methods, Advanced Powder Technology, 24 (2013), 252-256.
- [19] E. R. Ibrahim, M. S. Jouini, F. Bouchaala, and J. Gomes, Simulation and validation of porosity and permeability of synthetic and real rock models using three-dimensional printing and digital rock physics, ACS omega, 6(47) (2021), 31775-31781.
- [20] S. Kumar, K. Singh, and R. K. Gupta, Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G'/G)-expansion method, Pramana J. Phys., 79 (2012), 41-60.
- [21] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Comput. Meth. Diff. Equ., 10(2) (2022), 445-460.
- [22] J. Manafian and M. Lakestani, Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity, The European Physical Journal Plus, 130 (2015), 1-12.
- [23] J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, The European Physical Journal Plus, 130 (2015), 1-20.
- [24] J. Manafian and M. Lakestani, Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G'/G)-expansion method, Pramana, 130 (2015), 31-52.
- [25] J. Manafian and M. Lakestani, New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients, International Journal of Engineering Mathematics, 2015 (2015), Article ID 107978.
- [26] J. Manafian, M. Lakestani, and A. Bekir, Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach, International Journal of Applied and Computational Mathematics, 130 (2015), 1-12.
- [27] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via $tan(\phi(\xi))$ expansion method, Optik, 127(14) (2016), 5543-5551.
- [28] J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov-Ivanov model via tan(φ/2)-expansion method, Optik, 127(20) (2016), 9603-9620.
- [29] J. Manafian and M. Lakestani, Application of $tan(\phi/2)$ -expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127 (2016), 2040-2054.
- [30] J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics, Optical and Quantum Electronics, 48 (2016), 116.

- [31] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ/2)-expansion method, Optik, 127 (2016), 5543-5551.
- [32] J. Manafian, Optical soliton solutions for Schrödinger type nonlinear evolution equations by the $tan(\phi/2)$ expansion method, Optik, 127 (2016), 4222-4245.
- [33] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+ 1)- dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Geom. Phys., 150 (2020), 103598.
- [34] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p = 3 via a generalized bilinear differential operator, Partial Differ. Equ. Appl. Math., 9 (2024), 100600.
- [35] M. Mirzazadeh, Topological and non-topological soliton solutions of Hamiltonian amplitude equation by He's semiinverse method and ansatz approach, J. Egyptian Math. Soc., 23 (2015), 292-296.
- [36] S. R. Moosavi, N, Taghizadeh, and J. Manafian, Analytical approximations of one-dimensional hyperbolic equation with non-local integral conditions by reduced differential transform method, Comput. Meth. Diff. Equ., 8(3) (2020), 537-552.
- [37] T. Nawaz, A. Yildirim, and S. T. Mohyud-Din, Analytical solutions Zakharov-Kuznetsov equations, Advanced Powder Technology, 24 (2013), 252-256.
- [38] M.M. Rashidi, T. Hayat, T. Keimanesh, and H. Yousefian, A study on heat transfer in a second-grade fluid through a porous medium with the modified differential transform method, Heat Transfer-Asian Research, 42 (2013), 31-45.
- [39] E. Tonti, Acad. R. Belg. Bull. Cl. Sci. 55 (1969).
- [40] E. Tonti, Acad. R. Belg. Bull. Cl. Sci., 55 (1969).
- [41] S. Ullah, M. Y. Ali, M. A. Iqbal, F. Bouchaala, and H. Saibi, Structures and stratigraphy of Al Jaww Plain, southeastern Al Ain, United Arab Emirates: implications for aquifer systems and mantle thrust sheet, Geoscience Letters, 10(1) (2023), 53.
- [42] M. Wadati, H. Segur, M. J. Ablowitz, A new hamiltonian amplitude equation governing modulated wave instabilities, J. Phys. Soc. Japan, 61 (1992), 1187-1193.
- [43] Z. Yan, Symbolic computation and new families of solitary wave solutions to a Hamiltonian amplitude equation,
 Z. angew. Math. Phys., 53 (2002), 533-537.
- [44] Zhao, G., Bouchaala, F. and Jouini, M.S. Anisotropy estimation by using machine learning methods. In Seventh International Conference on Engineering Geophysics, Al Ain, UAE, Society of Exploration Geophysicists, (2024), 217-221.
- [45] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, J. Adv. Res., 38 (2022), 131-142.