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Abstract
The primary focus of this study is to introduce a new three-step iterative method without memory for root-

finding by merging two different existing techniques. Based on the computational cost, the proposed method
acquires optimal eight-order convergence with four functional evaluations (three evaluations for the function and

one computation of first derivative). Furthermore, the suggested scheme supports the Kung-Traub’s Conjecture

with efficiency index of 8
1
4 = 1.682. We also established the convergence criteria developed for the root-finding

technique and demonstrate the fact that the suggested approach is eighth-order convergent. In order to demonstrate

the efficacy as well as application of the constructed root-finding technique, we addressed a few practical engineering

models and some non-linear functions. In contrast to several existing approaches, this particular method converges
more quickly. Finally, several forms of complex functions are taken into consideration under basins of attraction

in order to observe the overall fractal behavior of the proposed technique.
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1. Introduction

The study of iterative methods for finding the simple roots of non-linear equations rapidly and accurately is one of
the challenging and fascinating problems in modern era. Although such kind of problems not occurs only in applied
mathematics alone but also appears in various disciplines of science and engineering. After the discretization of
many integral, partial, ordinary and integro-differential equations also results in non-linear equations. Not only this
non-linear phenomenon occurs in a variety of other domains including the problems related to economics modeling,
transport theory, neuro-physiology, business, social sciences, kinematics and so on. In general, we can say that by
using distinct models, non linear phenomenon are developed which contains non-linear equations. Solving such kind of
problems is not always possible and when physical systems are mathematically modeled, some nonlinear equations do
not have exact solutions. Therefore, relying on numerical methods based on iterative procedures one can obtain the
approximate solution. These iterative methods were developed using various existing techniques such as the homotopy
perturbation method [26], Taylor’s expansion [24, 25], multi-point iterative methods, Adomian decomposition method
[? ], variational iteration method [11, 30] and quadrature formula [2, 19, 32].

Nowadays, there has been a surge of research interest of either developing new multi-point iterative methods or to
do modifications with the existing ones for both with and without memory methods. The aim of developing these
methods is to increase the order of convergence with a lesser number of functional evaluations at the same time. In
other words, we can say that the primary aim of developing these methods is to achieve the maximum computational
efficiency. Among all the methods, Newtons method [20] serves as the basic building block of almost all the higher order
iterative methods for solving non linear equations due to its simplicity. In order to boost the order of convergence and
efficiency index numerous adjustments have been made to Newton’s approach with either increased cost of function
evaluations or to the modifications of derivatives or by varying iteration points. Many researchers aim to enhance
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the efficiency of iterative methods by achieving a high order of convergence while minimizing the number of function
evaluations in each iteration to make the iterative methods optimal [9, 28]. We must consider the idea of an efficiency

index given by (E) given by E = r
1
f , variable r represents the convergence order, which relates to the speed at which

an iterative method approaches a solution, while f denotes the count of evaluations needed for the functions. However,
it is not always possible to develop methods with optimal order of convergence keeping in view the hypothesis provided
by Kung and Traub [15].

In [8], the authors have improved the order of convergence by blending two different methods having convergence
order s1 and s2 respectively to form a new method having order of convergence s1s2. However, this strategy ofcourse
increases the order of convergence at each iteration step but with a larger number of function evaluations. Mir
and Zaman [17], combining Ostrowski’s approach and Halley’s method. They introduced a parameter, leading to
the development of families of iterative algorithms that exhibited convergence orders of sixth, seventh, and eighth.
However, the efficiency index were found to be 1.431, 1.383 and 1.476 respectively. Recently, S. Qureshi et al. [24]
merged a third-order Halley’s scheme with the modified Newton’s third order scheme results in obtaining a ninth
order iterative scheme with six functional evaluations per iteration having efficiency index 1.4422. Another method
was formed by the composition of Newton’s method and fifth-order modified halley’s method given by A. Tassaddiq
et. al [31] having tenth-order convergence with the evaluations of three functions and three first-order derivatives. The
efficiency index was found to be 1.4678. In the same way, Parhi et al. [22] proposed another sixth-order method by
combining a third-order method with Newton’s method and evaluated the first order derivatives by linear interpolations
having efficiency index 1.565. In brief, a lot of iterative methods have been established based on the concept of blending
different methods but at the same time with the lesser number of function evaluations.

Keeping in view the formation of aforementioned methods. we accomplished to build a new three-step numerical
procedure by blending a fourth-order technique [14] with classical Newton’s method. The combination produced a
new eighth-order iterative approach with five functional evaluations. In order to minimize the number of function
evaluations and align with the Kung Traub Conjecture, the utilization of the Gauss quadrature concept is employed for
approximating the first derivative in the final stage. In section 2, we provide some of the existing eighth-order optimal
iterative methods for comparison purpose. Construction of our proposed iterative method is discussed in section 4.
Section 5 involves a graphical analysis that employs basins of attraction to investigate the dynamic characteristics of the
proposed methods. In section 6, the implementation of the suggested methods on various nonlinear smooth functions is
presented, showcasing their efficiency and improved performance through comparison with existing methods of similar
orders. Finally, section 7 provides a summary of concluding remarks.

2. Literature Review

In this section, we will provide a brief review of a few popular numerical techniques that are frequently employed to
find approximations of nonlinear model solutions. In its most basic form, g(u) = 0 can be used to denote a one-variable
nonlinear equation, where the function g(u) is defined on the real interval I and is sufficiently differentiable. Solving
such kind of equations and yielding exact solutions is not always possible. Therefore, numerical methods are employed
in these situations in order to generate series of approximative solutions that eventually converge to the true solution
of the nonlinear problem.

Newton’s method [20] is one of the well known iterative method immediately comes into mind when one thinks
to solve non linear equations. The method is optimal having quadratic convergence and additionally requires two
evaluations of the functions given by:

un+1 = un −
g(un)

g′(un)
, n = 0, 1, 2, ..., (2.1)

where g′(un) 6= 0, and we denote (2.1) by NN1.
J. Dzunic and S. Petkovic [10] constructed a three point optimal iterative method for solving non linear equations

by merging a two-step Ostrowski’s fourth-order method with the modified Newton’s method. As a result, only four
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function evaluations were needed per iteration. The method is given as:

vn = un −
g(un)

g′(un)
,

wn = vn −
g(un)

g(un)− 2g(vn)

g(vn)

g′(un)
,

vn+1 = wn −
(1 + wk)(1 + 2vk)

(1− 2uk − u2k)

g(wn)

g′(un)
, (2.2)

where uk = g(vn)
g(un)

, vk = g(wn)
g(un)

and wk = g(wn)
g(vn)

. We denote (2.2) by DP1.

In 2022 S. Qureshi et al. [25] proposed a sixth-order three-point iterative method by blending Newton’s method
with the two-step existing. The method requires five function evaluations per iteration having efficiency index 1.4309
and is given as SQ1:

vn = un −
g(un)

g′(un)
,

wn = vn −
g(vn)

g′(vn)
,

vn+1 = wn −

(
1 + 2

(
g(vn)

g(un)

)2

+
2g(wn)

g(vn)

)
g(wn)

g′(vn)
. (2.3)

Sharma and Arora [27] presented an optimal three-step iterative method with eight-order convergence given by
JH1:

vn = un −
g(un)

g′(un)
,

wn = vn −
(

3− 2
g[vn, un]

g′(un)

)
g(vn)

g′(un)
,

vn+1 = wn −
g(wn)

g′(un)

(
g′(un)− g[vn, un] + g[wn, vn]

2g[wn, vn]− g[wn, un]

)
, (2.4)

where g[., .] is Newton’s first order divided difference.
L. Liu and X. Wang [16] derived a three step iterative method for solving non linear equations. The method is optimal
having efficiency index 1.682 given by LX1:

vn = un −
g(un)

g′(un)
,

wn = vn −
g(un)

g(un)− 2g(vn)

g(vn)

g′(un)
,

vn+1 = wn −
g(wn)

g′(un)

((
g(un)− g(vn)

g(un)− 2g(vn)

)2

+
g(wn)

g(vn)− α1g(wn)
+

4g(wn)

g(un) + α2g(wn)

)
, (2.5)

where α1, α2 ∈ R.
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In 2021, B. Kong-ied [13] proposed an eight-order three-step iterative method without memory. The method involves
the evaluation of five functions having an efficiency index of 1.5157 given as KG1:

vn = un −
g(un)

g′(un)
,

wn = vn −
(g(un))2g(vn)

(g(un))2g′(un)− 2g(un)g′(un)g(vn) + g′(un)(g(vn))2
,

vn+1 = wn −
g(wn)

g′(wn)
. (2.6)

N. Choubey and J. P. Jaiswal [7] modified an existing sixth-order method to optimal eight-order iterative method
without memory with the help of weight function technique and is given as NJ1:

vn = un −
g(un)

g′(un)
,

wn = vn −
g(vn)

g′(un)

g(un)

g(un)− 2g(vn)
,

vn+1 = wn −
g(wn)(wn − vn)

g(wn)− g(vn)
(A(t) +B(s) +H(q)), (2.7)

where A(t), B(s), and H(q) are weight functions with t = g(wn)
g(vn)

, s = g(wn)
g(un)

and q = g(vn)
g(un)

.

S. Parimala et al.[23] proposed an efficient three-step optimal-eighth order method for solving non linear equations
given as SP1:

vn = un −
g(un)

g′(un)
,

wn = vn −
g(un)

g′(un)

g(un)− g(vn)

g(un)− 2g(vn)
,

vn+1 = wn −
g(wn)(wn − vn)

g(wn)− g(vn)
(1 + 2τ)

(
1 + ζ2 + 2ζ3 +

7

24
ζ4)

)
, (2.8)

where τ = g(wn)
g(un)

and ζ = g(vn)
g(un)

.

Optimal eighth order-method by Kung and Traub [15] KT1:

vn = un −
g(un)

g′(un)

wn = vn −
g(vn)g(un)

(g(un)− g(vn))2
g(un)

g′(un)
,

vn+1 = wn −
g(un)

g′(un)

g(un)g(vn)g(wn)

(g(un)− g(vn))2
(g(un))2 + g(vn)(g(vn)− g(wn))

(g(un)− g(wn))2(g(vn)− g(wn)
. (2.9)

3. Development and Convergence Analysis of our Proposed Method

In this section, the main purpose is to develop a new multi-point iterative method without memory by blending
two existing without memory methods to produce a new scheme of convergence order s1 × s2. The idea of combining
different existing methods to yield better accuracy and to increase the convergence order by decreasing the number of
function evaluations at the same time has been conducted in a number of research articles including [5, 6, 24, 25, 31]
and the references cited therein. Being inspired by such recent studies, we proposed a new multi-point iterative method
by blending a fourth-order method proposed by Kou et al. [14] with a classic Newton’s method as shown below having
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eighth-order convergence:

vn = un −
g(un)

g′(un)
,

wn = vn −
(g(un))2 + (g(vn))2

g′(un)(g(un)− g(vn))
,

un+1 = wn −
g(wn)

g′(wn)
. (3.1)

The newly constructed scheme SN1 (3.1) requires five function evaluations per iteration, three evaluations of the
function itself and two of its first derivatives. The efficiency index is found to be approximately 1.5157 which is better
than Newton’s method and many other methods available in the literature.

In order to decrease the count of function evaluations in Equation (3.1) and to align it with the Kung Traub
conjecture We use the concept of Gauss Quadrature approximation [12] to approximate the value of g′(wn).

We first consider the Newton’s formula in order to derive Gauss quadrature approximation as:

g′(wn) = g′(un) +

∫ wn

un

g′′(s)ds. (3.2)

By means of weight function the second derivative in (3.2) can be approximated:

∫ wn

un

g′′(s)ds = c1g(un) + c2g(vn) + c3g(wn) + c4g
′(un). (3.3)

For finding the parameters c1, c2, c3 and c4. We employ four functions g(s) = 1, g(s) = s, g(s) = s2 and g(s) = s3

in order to obtain a family of four equations as:

c1 + c2 + c3 = 0,

c1un + c2vn + c3wn + c4 = 0,

c1u
2
n + c2v

2
n + c3w

2
n + 2c4un = 2(wn − un),

c1u
3
n + c2v

3
n + c3w

3
n + 3c4u

2
n = 3(w2

n − u2n). (3.4)

The solution of the system of Equations (3.4) is specified by four constants c1, c2, c3 and c4 and consequently by
substituting these values into (3.2), we obatin the value of g′(wn) as:

g′(wn) = − (vn − wn)(3un − 2vn − wn)

(un − wn)(un − vn)2
g(un) +

(un − wn)2

(vn − wn)(un − vn)2
g(vn)

− (un + 2vn − 3wn)

(un − wn)(vn − wn)
g(wn) +

(2un + vn − wn)

(un − vn)
g′(un), (3.5)

On simplifying the expression (3.5) and substituting it in the last step of (3.1). We achieve the following:

vn = un −
g(un)

g′(un)
,

wn = vn −
(g(un))2 + (g(vn)2)

g′(un)(g(un)− g(vn))
,

un+1 = wn − g(wn)
(un − wn)(un − vn)2(vn − wn)

Eg(un) + Fg(vn) +Gg(wn) +Hg′(un)
, (3.6)
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Table 1. Comparison of efficiency indices of various iterative methods without memory.

Method Order Function Evaluations (FE) Efficiency index (EI) New FE per iteration

NN1 2 2 1.4142 n+ n2

SQ1 6 5 1.4309 3n+ 2n2

KG1 8 5 1.5157 3n+ 2n2

DP1 8 4 1.6817 3n+ n2

NJ1 8 4 1.6817 3n+ n2

SN1 8 5 1.5157 3n+ 2n2

SN2 8 4 1.6817 3n+ n2

Figure 1. Efficiency index behavior of different iterative methods with increasing dimensions.

where

E = −(vn − wn)2(3un − 2vn − w),

F = (un − wn)3,

G = −(un − vn)2(un + 2vn − 3w),

H = (vn − wn)2(un − wn)(un − vn).

The iterative method (3.6) is an optimal eight-order iterative method and requires only the four function evaluations,
three computations of the function itself and one of its first derivative. The efficiency index of our proposed method

(SN2) is 8
1
4 = 1.6818, Although it would typically be shown as 8

1
n3+n2 for n ≥ 1 . To conduct the computation and

comparison of all the iterative methods employed in the current research, refer to the following Table 1 and Figure 1.

4. Convergence Analysis

The purpose of this section is to demonstrate the convergence analysis based on the hypothesis that at least
an eighth-order technique exists. By using Taylor’s series expansion, the required order of convergence has been
attained. It is important to note that the convergence analysis is performed similarly to many other publications that
have already been published and the development of higher-order procedures is primarily motivated by intellectual
curiosity.

Theorem 4.1. Let γ ∈ D be a simple root of a sufficiently differentiable function g : D ⊆ R → R within an
open interval D. Then, the three-step without memory method (3.1) possesses eighth-order of convergence with four
functional evaluations per iteration, and the asymptotic error is given by:

en+1 = d32(−3d22 + d3)2e8n +O(e9n), (4.1)
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Proof. Let en = un − γ be the error term in the n− th iteration. Assuming that g(γ) = 0 and applying the Taylor’s
series expansion for function g(un) around γ, we obtain:

g(un) = g′(γ)
[
en + d2e

2
n + d3e

3
n + d4e

4
n + d5e

5
n + d6e

6
n + d7e

7
n + d8e

8
n +O(e9n)

]
, (4.2)

where dk = gk(γ)
k!g′(γ) for k ∈ N . Similarly, applying Taylor’s series expansion for the function g′(un) around γ, we obtain

g′(un) = g′(γ)
[
1 + 2d2en + 3d3e

2
n + 4d4e

3
n + 5d5e

4
n + 6d6e

5
n + 7d7e

6
n + 8d8e

7
n + 9d9e

7
n +O(e9n)

]
. (4.3)

On dividing (4.2) by (4.3), we obtain

g(un)

g′(un)
= en − d2e2n + 2(d22 − d3)e3n + (−4d32 + 7d2d3 − 3d4)e4n +O(e9n). (4.4)

Substituting (4.4) in the first step of (3.1), we have

vn = γ + d2e
2
n + (−2d22 + d2)e3n + (4d32 − 7d2d3 + 3d4)e4n +O(e9n). (4.5)

Applying Taylor’s series expansion for the function g(vn) around β, we have

g(vn) = g′(γ)
[
d2e

2
n + (−2d22 + d2)e3n + (5d32 − 7d2d3 + 3d4)e4n +O(e9n)

]
. (4.6)

Also, from the second step of (3.1) with the aid of (4.2) and (4.6) , we have

g(un)− g(vn) = en + (2d22 − d3) + (−5d32 + 7d2d3 − 2d4)e4n +O(e5n), (4.7)

and

g(un)2 + g(vn)2 = e2n + 2d2e
3
n + (2d22 + 2d3)e4n +O(e5n), (4.8)

With the help of (4.3), (4.7), (4.8), we obtain

(g(un))2 + (g(vn))2

g′(un)(g(un)− g(vn))
= en + (−3d32 + d2d3)e4n + 2(9d42 − 10d22d3 + d22 + d2d4)e5n +O(e6n), (4.9)

Substitute (4.9) in the second step of (3.1), we have

wn = γ + (3d32 − d2d3)e4n − 2(9d42 + 10d22d3 + d22 + d2d4)e5n +O(e6n), (4.10)

Again, we apply Taylor’s series for the function g(wn) around γ, we obtain

g(wn) = g′(γ)
[
(3d32 − d2d3)e4n − 2(9d42 + 10d22d3 + d22 + d2d4)e5n +O(e6n)

]
, (4.11)

Taylor’s series for the function g′(wn) around γ, we obtain

g(wn) = g′(γ)
[
1 + 2d2(3d32 − d2d3)e4n − 4(d2(9d42 + 10d22d3 + d22 + d2d4))e5n +O(e6n)

]
, (4.12)

Substituting (4.10) and (4.12) in the last step of (3.1), we have

en+1 = d32(−3d22 + d3)2e8n +O(e9n). (4.13)

�

Theorem 4.2. Let γ ∈ D be a simple root of a sufficiently differentiable function g : D ⊆ R → R within an open
interval D. Then, the three-step without memory method (3.6) possesses optimal eighth order of convergence with four
functional evaluations per iteration, and the asymptotic error is given by:

en+1 = c22(3d22 − d3)(3d32 − d2d3 + d4)e8n +O(e9n). (4.14)
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Proof. Let en = un − γ be the error term in the nth iteration. Assuming that g(γ) = 0 and applying the Taylor’s
series expansion for function g(un) around γ, we obtain:

g(un) = g′(γ)
[
en + d2e

2
n + d3e

3
n + d4e

4
n + d5e

5
n + d6e

6
n + d7e

7
n + d8e

8
n +O(e9n)

]
, (4.15)

where dk = gk(γ)
k!g′(γ) for k ∈ N . Similarly, applying Taylor’s series expansion for the function g′(un) around γ, we obtain

g′(un) = g′(γ)
[
1 + 2d2en + 3d3e

2
n + 4d4e

3
n + 5d5e

4
n + 6d6e

5
n + 7d7e

6
n + 8d8e

7
n + 9d9e

7
n +O(e9n)

]
. (4.16)

On dividing (4.15) by (4.16), we obtain

g(un)

g′(un)
= en − d2e2n + 2(d22 − d3)e3n + (−4d32 + 7d2d3 − 3d4)e4n +O(e5n). (4.17)

Substituting (4.17) in the first step of (3.6), we have

vn = γ + d2e
2
n + (−2d22 + d2)e3n + (4d32 − 7d2d3 + 3d4)e4n +O(e5n). (4.18)

Applying Taylor’s series expansion for the function g(vn) around γ, we have

g(vn) = g′(γ)
[
d2e

2
n + (−2d22 + d2)e3n + (5d32 − 7d2d3 + 3d4)e4n +O(e5n)

]
. (4.19)

Also, from the second step of (3.6) with the aid of (4.15) and (4.19) , we have

g(un)− g(vn) = en + (2d22 − d3)e3n + (−5d32 + 7d2d3 − 2d4)e4n +O(e5n), (4.20)

and

(g(un))2 + (g(vn))2 = e2n + 2d2e
3
n + (2d22 + 2d3)e4n +O(e5n), (4.21)

with the help of (4.16), (4.20), and (4.21), we obtain

(g(un))2 + (g(vn))2

g′(un)(g(un)− g(vn))
= en + (−3d32 + d2d3)e4n + 2(9d42 − 10d22d3 + d22 + d2d4)e5n +O(e6n). (4.22)

Substitute (4.22) in the second step of (3.6), we have

wn = γ + (3d32 − d2d3)e4n − 2(9d42 + 10d22d3 + d22 + d2d4)e5n +O(e6n). (4.23)

Again, we apply Taylor’s series for the function g(wn) around γ, we obtain

g(wn) = g′(γ)
[
(3d32 − d2d3)e4n − 2(9d42 + 10d22d3 + d22 + d2d4)e5n +O(e6n)

]
, (4.24)

with the aid of (4.15), (4.16), (4.18), (4.19), (4.23), and (4.24), we obtain the following

Eg(un) = (−(v − w)2(3u− 2v − w))g(un) = −3d22e
5
n +O(e6n), (4.25)

Fg(vn) = (u− w)3g(vn) = e3n + (−9d42 + 3d2d3)e6n +O(e7n), (4.26)

Gg(wn) = (u− v)2(u+ 2v − 3w)g(wn) = e3n + (d22 + 4d3 + 2(−2d22 + d32))e5n +O(e6n), (4.27)

Hg′(un) = (v − w)2(u− w)(u− v)g′(un) = d22e
6
n + (−d32 + 2d2 + (−2d22 + 2d2))e7n +O(e8n), (4.28)

and

(u− w)(u− v)2(v − w) = d2e
5
n + (−4d22 + 2d3)e6n +O(e7n). (4.29)

Finally, we employ (4.24)-(4.29) in the last step of the proposed method (3.6), we obtain

en+1 = d22(3d22 − d3)(3d22 − d2d3 + d4)e8n. (4.30)
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Therefore, our proposed method (3.6) is eighth-order optimal iterative method with the evaluation of three functions

and one of the first derivative. Note that the efficiency index of our proposed method is 8
1
4 ≈ 1.6818 which is better

than Newton’s method and others available in the literature. �

Figure 2. Basins of attraction for JH1, KT1, LX1, CC1, DP1, NJ1, SP1, SN1 and SN2 respec-
tively for p1(z).

Figure 3. Basins of attraction for JH1, KT1, LX1, CC1, DP1, NJ1, SP1, SN1 and SN2 respec-
tively for p2(z).

5. Basin of attraction

With the use of a concept known as the basins of attraction, it is possible to determine the stability of solutions
(roots) for the nonlinear function g(z) = 0 using an iterative method. Basins of attractions serves as phase-planes
that indicate iterations utilized by an iterative approach, which can assume multiple choices for the initial estimate.
Small alterations to the initial estimate may result in convergence to distinct roots or sometimes no convergence at
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Figure 4. Basins of attraction for JH1, KT1, LX1, CC1, DP1, NJ1, SP1, SN1 and SN2 respec-
tively for p3(z).

Table 2. Some non-linear test functions.

function root

g1(u) = log(u2 + u+ 2) + u− 1 0.1960..
g2(u) = 0.5− sin(u) 0.5235..

g3(u) = u2 sin(u)− cos(u) 0.8952..
g4(u) = 4 sin(u)− u+ 1 -0.3421..

all. The areas where the iterative method’s behaviour varies are indicated by these basin boundaries. Each point is
assigned a color based on the root to which the corresponding method converges when starting from that point; if
the method diverges, the point is colored white. The dynamical analysis provided below shows that there are several
key areas where the novel method performs better than other existing methods that are being used. This property
of a rational function associated with an iterative scheme operating on a polynomial provides important information
about the numerical characteristics of the method, such as its stability and reliability. For complex functions, we used
Mathematica 11 to find basin of attraction. In this connection, we consider a rectangle R = [−2, 2]× [−2, 2] ⊂ C and
each point z0 ∈ R has a different color allocated to it.
Many researchers have utilized basins of attraction to compare their iterative techniques. For instance, Obadah So-
laiman [29] investigated various iterative strategies for solving nonlinear equations of different orders. It was concluded
that the effectiveness of these methods is influenced by factors beyond just the convergence order.

For illustrating graphic features in the complex plane, we employed the three complex polynomials listed below
together with their roots:
Problem 1 : Let us consider

p1(z) = z3 − 1, (5.1)

having roots as cube roots of unity. The basins are depicted in Figure 2. It can be seen from the figure that our
proposed methods SN1 and SN2 contains fewer number of white points and having much larger basins as compared
to other existing methods of same order.

Problem 2 : Let us consider:

p2(z) = z3 − z, (5.2)
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Table 3. Numerical Comparisons of optimal three-point without memory methods for g1 and g2.

Function Method Guess |u1 − α| |u2 − α| |u3 − α| COC CPU

g1 JH1 2.2 4.1630e-4 5.9730e-31 1.0757e-245 8.0000 0.922
3.7 1.2345e-2 3.2996e-19 9.3298e-152 8.0000 2.047

KT1 2.2 1.6648e-3 3.3556e-34 9.1513e-272 8.0000 0.985
3.7 6.0416e-3 9.7216e-22 4.5414e-172 8.0000 1.313

LX1 2.2 1.6188e-4 5.3172e-34 7.2116e-270 8.0000 0.921
3.7 5.4517e-3 8.4943e-22 3.0593e-172 8.0000 1.234

CC1 2.2 2.9501e-4 6.9325e-34 6.4529e-271 8.0000 0.92
3.7 8.7916e-3 4.1952e-22 1.1606e-176 8.0000 2.25

DP1 2.2 1.1200e-5 6.9325e-43 2.1549e-345 8.0000 1.172
3.7 3.0199e-3 5.9319e-24 1.3341e-189 8.0000 1.485

NJ1 2.2 3.1267e-1 6.5803e-8 6.3577e-67 8.0000 1.157
3.7 NC

SP1 2.2 1.6501e-3 2.4329e-34 5.4383e-273 8.0000 0.97
3.7 5.7361e-3 5.0136e-82 1.7689e-174 8.0000 1.298

SN1 2.2 3.4047e-4 2.6233e-40 3.2597e-321 8.0000 0.969
3.7 1.3119e-3 1.2631e-27 9.4161e-220 8.0000 1.608

SN2 2.2 1.7040e-3 1.7805e-34 2.5325e-272 8.0000 0.891
3.7 6.5262e-3 7.9579e-22 4.0322e-173 8.0000 0.859

g2 JH1 0.9 2.4175e-4 1.6403e-31 7.3538e-249 8.0000 1.047
-0.2 9.2502e-6 7.5230e-43 1.4398e-43 8.0000 1.390

KT1 0.9 5.4730e-5 7.5281e-37 9.6506e-292 8.0000 1.188
-0.2 5.0354e-7 3.8663e-53 4.6711e-422 8.0000 1.547

LX1 0.9 1.0095e-4 1.9988e-34 4.7250e-272 8.0000 1.234
-0.2 1.0263e-6 2.2829e-50 1.3680e-399 8.0000 1.593

CC1 0.9 4.0020e-4 3.6107e-38 1.5853e-302 8.0000 1.017
-0.2 2.1096e-6 2.1526e-48 2.5293e-384 8.0000 1.408

DP1 0.9 2.1378e-5 3.9349e-40 5.1844e-318 8.0000 1.391
-0.2 8.0959e-6 1.6647e-43 5.3213e-345 8.0000 1.704

NJ1 0.9 2.0194e-5 2.3278e-40 7.2569e-320 8.0000 1.001
-0.2 1.5577e-5 2.9181e-41 4.4257e-327 8.0000 1.313

SP1 0.9 52306e-5 3.8477e-37 3.3006e-294 8.0000 1.233
-0.2 4.9117e-3 2.3270e-53 5.9065e-424 8.0000 1.298

SN1 0.9 3.4047e-4 2.6233e-40 3.2597e-321 8.0000 0.969
-0.2 1.3119e-3 1.2631e-27 9.4161e-220 8.0000 1.608

SN2 0.9 3.2708e-5 4.3753e-39 4.4874e-310 8.0000 1.015
-0.2 2.1288e-7 1.4094e-56 5.2015e-450 8.0000 1.312

having roots 0, 1 and −1. The basins are depicted in Figure 3. It can be seen from the figure that our proposed
methods SN1 and SN2 contains fewer number of white points and having much larger basins as compared to other
existing methods of same order.
Problem 3 : Let us consider:

p3(z) = z4 − 1, (5.3)

having roots 1,−1, ι and −ι. The basins are depicted in Figure 4. It can be seen from the figure that our proposed
methods SN1 and SN2 contains fewer number of white points and having much larger basins as compared to other
existing methods of same order.
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Table 4. Numerical Comparisons of optimal three-point without memory methods for g3 and g4.

Function Method Guess |u1 − α| |u2 − α| |u3 − α| COC CPU

g3 JH1 1.6 1.8209e-2 2.6774e-14 7.2897e-109 8.0000 1.328
1.9 1.2345e-2 3.2996e-19 9.3298e-152 8.0000 2.047

KT1 1.6 22864e-4 8.1366e-30 2.0970e-233 8.0000 1.296
1.9 1.1846e-3 4.1924e-24 1.0417e-187 8.0000 1.953

LX1 1.6 4.6523e-4 3.3938e-27 2.7307e-212 8.0000 1.391
1.9 2.1810e-3 7.8161e-22 2.1615e-169 8.0000 2.078

CC1 1.6 1.358e-4 1.5105e-22 1.1282e-176 8.0000 1.358
1.9 2.6908e-3 1.1699e-24 1.4604e-195 8.0000 2.092

DP1 1.6 5.9232e-4 6.1568e-27 8.4122e-211 8.0000 1.427
1.9 4.0453e-3 2.9755e-20 2.5034e-157 8.0000 1.328

NJ1 1.6 NC
1.9 NC

SP1 1.6 2.1113e-4 3.0038e-30 5.0509e-237 8.0000 1.220
1.9 1.1563e-3 2.4109e-24 8.6980e-190 8.0000 1.829

SN1 1.6 3.9605e-4 5.6924e-31 1.0391e-245 8.0000 1.298
1.9 2.7833e-3 3.3419e-24 1.4661e-191 8.0000 1.97

SN2 1.6 5.9263e-5 1.1516e-34 2.3425e-272 8.0000 1.188
1.9 4.8212e-4 2.2002e-27 4.1589e-173 8.0000 1.767

g4 JH1 -2.5 8.2065e-7 3.7642e-50 7.3759e-397 8.0000 1.016
-3.6 4.4177e-5 2.6555e-34 4.5245e-286 8.0000 1.422

KT1 -2.5 7.7616e-7 1.2930e-50 7.6680e-401 8.0000 1.077
-3.6 7.3784e-8 8.6231e-59 3.0012e-486 8.0000 1.593

LX1 -2.5 1.2978e-6 1.2130e-48 7.0650e-385 8.0000 0.906
-3.6 1.2814e-7 1.0957e-56 3.1311e-449 8.0000 1.313

CC1 -2.5 8.1415e-7 5.0989e-55 1.2068e-440 8.0000 0.999
-3.6 7.0552e-6 8.2806e-44 2.9825e-347 8.0000 1.467

DP1 -2.5 6.5141e-7 1.6020e-51 2.1431e-408 8.0000 0.969
-3.6 2.1251e-5 2.0549e-39 1.5709e-311 8.0000 1.313

NJ1 -2.5 1.5507e-1 1.1806e-6 5.3658e-48 8.0000 1.001
-3.6 NC

SP1 -2.5 5.5379e-7 6.1002e-52 1.3223e-411 8.0000 1.001
-3.6 7.3776e-8 6.0521e-59 1.2412e-467 8.0000 1.345

SN1 -2.5 1.5231e-6 3.7808e-52 5.4494e-417 8.0000 1.063
-3.6 4.6336e-8 1.4168e-60 1.0825e-480 8.0000 1.469

SN2 -2.5 3.7495e-7 2.3304e-53 5.1881e-423 8.0000 0.922
-3.6 3.7007e-8 2.0985e-61 2.2436e-487 8.0000 1.251

6. Numerical Implementations

We carried out several numerical simulations with a few existing optimal eighth-order iterative algorithms to show
the efficiency of our suggested approach. In Table 2, we consider some non linear functions taken from different research
articles. Furthermore, we take some application based problems to strengthen the results. Each Table contains initial
guess, absolute error of functions, computational order of convergence and CPU time. All the numerical results have
been tabulated. Furthermore, Algorithms 1 and 2 present the code for both the numerical comparisons and the basins
of attraction, respectively, which were utilized in this paper.
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Tables 3 and 7 shows the numerical comparisons of various three points optimal iterative methods without memory.
It is clearly visible that our results are superior and efficient than existing methods. Besides computational order of
convergence, CPU time is also one of the best way to compare the effectiveness of the iterative methods. At this
juncture, with the help of Mathematica11 the command Timeused[] is used to calculate the CPU time. The absolute
errors |uk−α| for the first three iterations along with the computational order of convergence for the presented scheme
and the existing schemes. The numerical results were performed with the Mathematica11 system running under
Windows 10 pro with an installed memory of 10GB having a processor Intel(R) Core(TM) i5 CPU @ 1.80 GHz speed
and system type 64-bit operating system. The COC has been calculated by using the usual formula [21]:

COC ∼ ln|g(un+1)/g(un)|
ln|g(un)/g(un−1)|

, (6.1)

to verify the hypothesized convergence rate and assess computational effectiveness.

Algorithm 1

Algorithm 1
Solve1 = FindRoot[f(x) == 0, x,−1, WorkingPrecison → 1000];

digits= The number of digits for high-precision arithmetic;
no=Choose the maximum no of iterations;

Co[0]= initial guess;
For [i = 1 to no

fx = SetAccuracy[f(x), digits];

f
′

x = SetAccuracy[f ′(x), digits];

y = SetAccuracy[x− fx
f ′
x

, digits];

fy = SetAccuracy[f(y), digits];

f
′

y = SetAccuracy[f ′(y), digits];

z = SetAccuracy[x− f2
x+f

2
y

f ′
x(fx−fy)

, digits];

fz = SetAccuracy[f(z), digits];

f
′

z = SetAccuracy[f ′(z), digits];
u = SetAccuracy[z − fz((x− z) ∗ (x− y)2 ∗ (y − z))/(−(y − z)2 ∗ (3 ∗ x− 2 ∗ y − z) ∗ fx + (x− z)3 ∗ fy − (x− y)2 ∗

(x+ 2 ∗ y − 3z) ∗ fz + (y − z)2 ∗ (x− z) ∗ (x− y) ∗ f ′

x), digits];
x = u;

Co[i] = x; Print[N [Abs[x− b], 5]];]
COC = N [Log[Abs[f [Co[(no)]]/f [Co[(no− 1)]]]]/Log[Abs[f [Co[(no− 1)]]/f [Co[(no− 2)]]]], 5];TimeUsed[];

Example 6.1. German physicist Max Planck developed the mathematical formula known as Planck’s radiation law
in 1900 to describe the spectral-energy distribution of radiation emitted by a black body given by [3]:

f(λ) =
8πChpλ

−5

e
Chp
λBkT

−1
, (6.2)

where λ = Wavelength of the radiation.
hp = Planck’s constant.
Bk= Boltzmann Constant.
T = Absolute temperature of the Blackbody raditaion.
C = Speed of light.
We are interested in determining the wavelength that fits the highest energy density. For that purpose using (6.2), we
obtain

f ′(λ) =

(
8πChpλ

−6

eChp/λBkT − 1

)(
(Chp/λBkT )eChp/λBkT

eChp/λBkT − 1
− 5

)
= RṠ. (6.3)
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Algorithm 2

Algorithm 2
p[z] = (z3 − 1);
h[z] := p[z]/p′[z];

theRoots = z/.NSolve[h[z] == 0, z];
y = Simplify[z − p[z]/p′[z]];

w = Simplify[z − ((p[z]2 + p[y]2)/(p′[z] ∗ (p[z]− p[y])))];
Simplify[w − (p[w]/p′[w])]cp = Compile[z, Complex,Evaluate[h[z]]];

n = Compile[z, Complex,Evaluate[Simplify[w− (p[w] ∗ (((z −w) ∗ (z − y)2 ∗ (y −w))/((−(y −w)2 ∗ (3 ∗ z − 2 ∗ y −
w) ∗ p[z]) + ((z − w)3 ∗ p[y])− ((z − y)2 ∗ (z + 2 ∗ y − 3 ∗ w) ∗ p[w]) + ((y − w)2 ∗ (z − w) ∗ (z − y) ∗ p′[z]))))]

bail = 300; orbitData = Table[NestWhileList[n, x+ Iy,Abs[cp[]] > 0.001, 1, bail], y,−3, 3, 0.01
, x,−3, 3, 0.01]

numRoots = Length[Union[theRoots]];
sameRootFunc = Compile[z,C omplex, Evaluate[Abs[3h[z]/h′[z]]]];

whichRoot[orbit] := Module[i, z, z = Last[orbit]; i = 1;Scan[If [Abs[z] < sameRootFunc[z],
If [i <= numRoots, i, Length[orbit], None]];
rootData = Map[whichRoot, orbitData, 2];

colorList = CMYKColor[cc, 0, 0.5], CMYKColor[0.7, cc, 0], CMYKColor[0, 0.2, cc], CMYKColor[0, 0.5, cc];
cols = rootData// kInteger, lInteger(colorList[[k]] //. cc− > (1− l/(bail + 1))8),

None− > CMYKColor[0, 0, 0];
Rasterize[Show[Graphics[RasterArray[cols]], AspectRatio− > Automatic], ImageResolution− > 72]

Table 5. Numerical Comparisons of optimal three-point without memory methods for g5.

Function Method Guess |u1 − α| |u2 − α| |u3 − α| COC CPU

g5 JH1 2.2 2.3547e-1 9.0106e-8 6.9729e-61 8.0000 1.080
2.5 1.1211e-2 4.6576e-20 3.5540e-159 8.0000 1.486

KT1 2.2 5.1383e-2 1.1010e-14 9.8100e-116 8.0000 1.296
2.5 4.8976e-3 1.4055e-22 6.9193e-179 8.0000 1.953

LX1 2.2 2.6755e-1 5.4938e-10 5.1603e-78 8.0000 1.453
2.5 1.3274e-2 4.9454e-19 2.2249e-150 8.0000 1.860

CC1 2.2 2.9299e-1 2.5831e-6 9.8236e-49 8.0000 1.391
2.5 3.7784e-3 2.1645e-23 2.3878e-185 8.0000 1.813

DP1 2.2 3.8378e-2 2.4955e-15 1.3083e-120 8.0000 1.032
2.5 3.4315e-3 1.5983e-23 3.7039e-186 8.0000 1.438

NJ1 2.2 NC
2.5 NC

SP1 2.2 9.9011e-2 1.0596e-12 6.5437e-100 8.0000 1.391
2.5 6.2505e-3 8.8131e-22 1.4985e-190 8.0000 1.875

SN1 2.2 4.4671e-3 4.3121e-24 3.4684e-192 8.0000 1.390
2.5 6.0113e-4 4.9042e-31 9.7081e-248 8.0000 1.749

SN2 2.2 4.6159e-3 7.2491e-23 2.8535e-181 8.0000 1.079
2.5 2.1466e-3 1.6391e-25 1.9498e-202 8.0000 1.455

It is clear that when S = 0, there is a maximum for f , that is, when(
(Chp/λBkT )eChp/λBkT

eChp/λBkT − 1
− 5

)
= 0. (6.4)
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Table 6. Numerical Comparisons of optimal three-point without memory methods for g6.

Function Method Guess |u1 − α| |u2 − α| |u3 − α| COC CPU

g6 JH1 0.7 1.9951e-4 9.3186e-33 2.1092e-259 8.0000 0.97
1.2 1.4724e-3 8.2299e-26 7.8063e-204 8.0000 1.001

KT1 0.7 1.0293e-4 5.7698e-34 5.6251e-286 8.0000 1.046
1.2 7.78606e-4 6.1835e-29 9.7885e-230 8.0000 1.405

LX1 0.7 1.8590e-4 7.3515e-34 4.3961e-269 8.0000 1.156
1.2 1.5589e-3 1.7980e-26 5.6285e-210 8.0000 1.220

CC1 0.7 4.5297e-6 1.5721e-46 3.3102e-370 8.0000 1.141
1.2 3.6135e-4 2.5759e-31 1.7191e-248 8.0000 1.610

DP1 0.7 7.9877e-5 2.6434e-38 3.8082e-306 8.0000 1.141
1.2 1.0402e-3 2.1468e-29 7.2085e-235 8.0000 1.391

NJ1 0.7 3.0788e-4 4.4155e-32 7.8990e-255 8.0000 1.094
1.2 5.0015e-2 1.9364e-14 1.0809e-113 8.0000 1.532

SP1 0.7 6.2505e-3 2.6660e-37 9.0403e-297 8.0000 1.078
1.2 6.2152e-4 7.8826e-30 5.2800e-237 8.0000 1.469

SN1 0.7 9.4815e-5 6.1863e-36 2.0323e-285 8.0000 1.064
1.2 6.1701e-4 1.9878e-29 2.3092e-233 8.0000 1.156

SN2 0.7 2.7963e-5 2.1140e-40 2.2557e-321 8.0000 0.954
1.2 1.1700e-4 1.9849e-35 1.3626e-281 8.0000 1.267

Table 7. Numerical Comparisons of optimal three-point without memory methods for g7.

Function Method Guess |u1 − α| |u2 − α| |u3 − α| COC CPU

g7 JH1 -2.9 2.6559e-2 3.6314e-13 3.4115e-100 8.0000 0.75
-3.5 1.2787e-1 3.0892e-7 9.3560e-53 8.0000 0.859

KT1 -2.9 5.1207e-2 1.3452e-11 4.1465e-88 8.0000 0.703
-3.5 6.6020e-2 9.4130e-11 2.3831e-81 8.0000 0.828

LX1 -2.9 6.7377e-2 1.2647e-10 2.8804e-80 8.0000 0.781
-3.5 8.9289e-2 1.0627e-9 7.1621e-73 8.0000 0.906

CC1 -2.9 4.1678e-2 1.1673e-12 7.0429e-97 8.0000 0.797
-3.5 6.4198e-2 2.8589e-11 9.1169e-86 8.0000 0.922

DP1 -2.9 5.8271e-2 1.0298e-11 1.2198e-89 8.0000 0.812
-3.5 9.3462e-2 3.9431e-10 5.6342e-77 8.0000 0.953

NJ2 -2.9 NC
-3.5 NC

SP1 -2.9 4.6526e-2 4.1823e-12 2.4164e-92 8.0000 0.812
-3.5 6.3953e-2 4.7738e-11 6.9626e-84 8.0000 0.922

SN1 -2.9 3.9432e-2 1.7254e-12 3.0454e-95 8.0000 0.719
-3.5 5.1127e-2 1.2734e-11 2.6804e-88 8.0000 0.844

SN2 -2.9 3.1471e-2 2.9056e-13 1.9127e-101 8.0000 0.641
-3.5 3.8318e-2 1.3387e-12 3.8831e-96 8.0000 0.751

Let us take u = CPh
λBkT

, then equation (51) becomes:

g5(u) = e−u +
u

5
− 1. (6.5)
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As mentioned in [24] the approximate root of the Equation (6.5) is x = 4.96511423174427. Therefore, the wavelength
of radiation where the energy density is maximum can be approximately determined using the formula below:

λ ≈ Chp
4.965114BkT

. (6.6)

Example 6.2. The following equation describes the path of an electron traverses in the region between two parallel
plates by considering the multi factor effect:

r(t) = r0 +

(
v0 + q0

E

mφ
sinφt0(t− t0) + β

)
(t− t0) + q0

E0

mφ2
(cos(φt+ β) + sin(φt+ β)), (6.7)

where r0 and v0 are the position and velocity of the electron at time t0, q0 and m are the charge and mass of an
electron at rest and E0sinφ(t) + β is the RF electric field between the plates. If we choose the specific parameters,
then Equation (6.7) can be expressed as:

g6(u) =
π

4
− cosu

2
+ u = 0. (6.8)

The desired root of Equation (6.8) is ζ = −0.3090932715417949.

Example 6.3. Civil engineering beams [4] used in a mathematical model of a beam are horizontal building components
used to sustain loads and cover voids such as the topmost section is either made of stone or brick (the beam is referred
to as lintel in that case). The term “floor joist” or “roof joist” is used to describe a beam depending on whether it
is supporting a floor or a roof. While the stringers support the lesser weights over the bridge deck, the floor beams
are the heavier transverse components. Often referred to as girders, large beams are used to support the terminal
ends of smaller, perpendicular beams. Single rolled pieces of metal can be utilized, or I-shaped girders can be built by
joining plates and angles using rivets or welding to increase rigidity and lengthen spans. Moreover, concrete girders are
widely used. In this context, many nonlinear equation-based mathematical models have been developed to describe
the precise beam location. The model below is an example which was taken from [18]:

g7(u) = u4 + 4u3 − 24u2 + 16u+ 16 = 0. (6.9)

The roots of the above fourth order polynomial are 2, 2 and −4± 2
√

3.

7. Conclusion

In this study, we provide additional contributions to the theory of iteration processes and suggest a new family
of eighth-order technique that is optimal for solving nonlinear equations quickly. The proposed method acquires
eighth-order convergence with only four functional evaluations. The order of convergence and asymptotic error of the
suggested three-step hybrid approach have been theoretically stated using the Taylor series. In terms of absolute errors
and CPU time in seconds computed during the final iteration, the proposed three-step composite technique surpasses
other known numerical algorithms. Polynomiography is used to demonstrate the proposed method’s fast convergence
when it is implemented on a number of complex-valued polynomials. Further research can be conducted to explore
the conversion of the proposed method into a derivative free method by making suitable approximations. Also, it is
further possible to add different self-accelerated parameters to convert it into a derivative free with memory method.
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