
Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. *, No. *, *, pp. 1-11
DOI:10.22034/cmde.2024.59702.2544

Hyers-Ulam and exponential stabilities of autonomous and non-autonomous difference equa-
tions

Gul Rahmat1, Afaq Ahmad1, Muhammad Sarwar2,3, Kamaleldin Abodayeh3, Cemil Tunç 4,∗
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Abstract
In this manuscript, we studied the Hyers-Ulam and exponential stabilities of autonomous and non-autonomous
difference equations of first and second order. At the end we provide some examples to support the results.
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1. Introduction

Differential equations have been used to analyze a variety of biological systems and models for a very long time
in mathematics. Differential equations have several uses in a variety of disciplines, including engineering, economics,
statistics, and the natural sciences [1–4]. Even while differential equations are quite useful, some real-world issues
call for discrete data sampling, which necessitates the usage of difference equations [5, 6]. Difference equations have
become crucial tools in the study of biological systems as well as in the sciences, technology and mathematical physics.
They offer a structure for precisely describing phenomena, such as wind flow dynamics and monographs, which helps
in problem-solving in these fields.
Stability is one of the key qualitative characteristics of different systems that play a vital impact. System performance
must be ensured by stability assessment. Due to its applicability in a variety of situations, Hyers-Ulam stability has
attracted a lot of attention from researchers. The concept of Hyers-Ulam stability emerged almost eighty years ago in
1940 when Ulam[7] put a question befor mathematicians in a conference about the existence of a group homomorphism
which can be near to an approximate group homomorphism on groups. After a year in 1941, Hyers [8] addressed Ulam’s
puzzles by considering the group as a Banach space and provided solutions. Consequently, the stability was named
Hyers-Ulam stability. Donald H. Hyers made significant contributions in this field by providing a partially positive
response to Ulam’s query in the case of additive mappings within Banach spaces. Since then, many works have
been published regarding various extensions of Ulam’s problem and Hyers’ theorem. In 1978, Rassias [9] provided
an overview of this stability and applied the concept to the Cauchy problem. Furthermore, Obloza [10] use this
concept in the field of differential equations, while Jung [11] and Khan et al, [12] discussed the idea for difference
equations. Z. Gao et al. [13] and S.O. Shah et al, [14] reported the same stability results on delayed first-order
nonlinear dynamic system. Recent studies have focused on generalized Hyers-Ulam stability. A.R. Aruldass [15].
Additionally, investigations were made on the Hyers-Ulam stability of differential equations of order two utilizing the
Mahgoub type. For other models and its solution we refer to [22] and [23]. Hyers-Ulam stability, is a mathematical
concept related to functional equations. Hyers-Ulam stability is a mathematical concept that deals with the stability
of functional equations. More precisely, it concerns the question of whether small perturbations of the inputs of a

Received: 23 December 2023 ; Accepted: 19 August 2024.
∗ Corresponding author. Email: cemtunc@yahoo.com .

1



2 G. RAHMAT, A. AHMAD, M. SARWAR, K. ABODAYEH AND C. TUNÇ

functional equation lead to correspondingly small perturbations of the output. Additionally, Ulam type stabilities
several different mathematical models have been invstigated [25–30] and some intereting result have been obtained in
these sources.

In this paper, we describe the exponential stability and Hyers-Ulam stability of autonomous and non-autonomous
difference systems of the type.

{
yn+1 = (1 + r)yn, n ≥ 0,

y0 = θ,
(1.1)


yn+2 = (1 + r)yn, n ≥ 0,

y0 = a,

y1 = b,

(1.2)

{
yn+1 = rnyn, n ≥ 0,

y0 = θ,
(1.3)

and 
yn+2 = rnyn, n ≥ 0,

y0 = α,

y1 = β,

(1.4)

where r, rn ∈ R, yn ∈ C(Z+,X) where C(Z+,X) is the space of convergent sequences equiped with norm supremum,
Z+ = {0, 1, 2, · · · } and X = Rm.

For other recent work related to the Hyers-Ulam stability of different type of difference equations we refer to [18],
[19], [20], [21], and [24].

2. Preliminaries

Throughout the paper we will use the following notations: the vector norm will be denoted by ‖·‖, the n-dimensional
Euclidean space will be represented by the symbol X = Rm. The collection of real, integer, and non-negative integer
numbers are represented by the symbols R,Z and Z+, respectively.

Definition 2.1. We recall that a family E = {E(n, k) : n ≥ k ≥ 0} of bounded linear operators acting on a Banach
space X is called a discrete evolution family if it satisfy the following two conditions:
(i) E(n, n) = I for all n ≥ 0, (ii) E(n, s)E(s, k) = E(n, k) for all n ≥ s ≥ k ≥ 0.

In the solutions of non-autonomous systems we can take the evolution family as given below:

E(n, k) :=

{
I, if all n = k;
rn−1rn−2rn−3...rk, for all n ≥ k ≥ 0.

Definition 2.2. The systems (1.1) to (1.4) are said to be uniformly exponentially stables if there are two positive
real numbers ξ and µ, such that ‖yn‖ ≤ ξe−µn, ∀n ≥ 0.

Definition 2.3. A sequence Ψn is referred to as an ε-approximate solution of the (1.1), (1.2), (1.3), and (1.4) if the
following inequalities holds.

‖Ψn+1 − (1 + r)Ψn‖ 6 ε, n ≥ 0, (2.1)

‖Ψn+2 − (1 + r)Ψn‖ 6 ε, n ≥ 0, (2.2)
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‖Ψn+1 − rnΨn‖ 6 ε, n ≥ 0, (2.3)

‖Ψn+2 − rnΨn‖ 6 ε, n ≥ 0. (2.4)

Remark 2.4. From Definition 2.3 we have that yn ∈ C(Z+,X) will satisfies (2.1), (2.2), (2.3), and (2.4) if and only
if there is a sequence f ∈ C(Z+,X) with ‖fn‖ 6 ε such that{

yn+1 = (1 + r)yn + fn, n ≥ 0,

y0 = θ,
yn+2 = (1 + r)yn + fn, n ≥ 0,

y0 = a

y1 = b,{
yn+1 = rnyn + fn, n ≥ 0,

y0 = θ,
yn+2 = rnyn + fn, n ≥ 0,

y0 = α,

y1 = β.

Lemma 2.5. The systems (1.1), (1.2), (1.3), and (1.4) have the solutions:

yn = (1 + r)nθ,

yn =

{
(1 + r)

n
2 a, when n is even,

(1 + r)
n−1
2 b, when n is odd,

yn = E(n, 0)θ,

and

yn =

{∏n
2

λ=1 rn−2λα, when n is even,∏n−1
2

λ=1 rn−2λβ, when n is odd.

respectively.

Lemma 2.6. The systems (1.1), (1.2), (1.3), and (1.4) have the approximate solutions:

ϕn = (1 + r)nγ +

n−1∑
λ=0

(1 + r)n−1−kfλ,

ψn =

{
(1 + r)

n
2 a+

∑n
2−1

λ=0 (1 + r)
n
2−1−λf2λ, n = 2, 4, 6, 8, ...

(1 + r)
n−1
2 b+

∑n−1
2 −1

λ=0 (1 + r)
n−1
2 −1−λf2λ+1, n = 1, 3, 5, 7, ...

φn = E(n, 0)θ +

n∑
λ=1

E(n, λ)fλ−1,

and

Ψn =

{∏n
2

λ=1(rn−2λ)α+
∑n

2−1
j=1

∏j
λ=1(rn−2λ)fn−2λ−2 + fn−2, n = 2, 4, 6, 8, ...∏n−1

2

λ=1 (rn−2λ)β +
∑n−1

2 −1
j=1

∏j
λ=1(rn−2λ)fn−2λ−2 + fn−2, n = 1, 3, 5, 7, ...

respectively.

The solutions in Lemmas 2.5 and 2.6 can easily be obtained by putting the values of n.
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Definition 2.7. The systems (1.1), (1.2), (1.3) and (1.4) are said to be Hyers-Ulam stable if there exists a positive
real numbers L such that for every approximate solutions ψn of the system (1.1), (1.2), (1.3) and (1.4) there are
solutions yn of (1.1), (1.2), (1.3) and (1.4) such that

‖yn − ψn‖ ≤ Lε, n ∈ I.

Remark 2.8. [17] Every semigroup is an evolution but the converse is not true in general.

Remark 2.9. [17] An evolution family is a semigroups if it is periodic of period one.

From Remarks 2.8 and 2.9 the relation between autonomous and non-autonomous is very clear that every autonmous
may be consider as non-autonomus but for the reverse it is neccessary that the time dependent matrix must be periodic
with period 1.

3. hyers-ulam stability of autonomous systems

In this section we study the Hyers-Ulam stability of autonomous difference systems of first and second order. For
both the results we need the following assumption:

Λ1 : |1 + r| < 1.

Theorem 3.1. If Λ1 holds then, the system (1.1) is Hyer-Ulam stable.

Proof. Since by Lemmas 2.5 and 2.6 the system (1.1) has the exact and approximate solutions:

yn = (1 + r)nγ

and

ϕn = (1 + r)nγ +

n−1∑
λ=0

(1 + r)n−1−kfλ,

respectively.
Now consider

‖yn − ϕn‖ = ‖(1 + r)nγ − (1 + r)nγ −
n−1∑
λ=0

(1 + r)n−1−λfλ‖

= ‖
n−1∑
λ=0

(1 + r)n−1−λfλ‖ 6 ε
n−1∑
λ=0

(1 + r)n−1−λ

= ε(an−1 + an−2 + ...+ a0) = ε(1 + a1 + a2 + ...+ an−1)

6 ε(1 + a1 + a2 + ...) =
ε

1− a
=

ε

1− (1 + r)
=

ε

−r
= Lε,

where L = 1
−r , hence the system is Hyers-Ulam stable. �

Theorem 3.2. If Λ1 holds then, the system (1.2) is Hyer-Ulam stable.

Proof. Since by Lemmas 2.5 and 2.6 the system (1.2) has the exact and approximate solutions

yn =

{
(1 + r)

n
2 a, n = 2, 4, 6, 8, ...

(1 + r)
n−1
2 b, n = 1, 3, 5, 7, ...

and

ψn =

{
(1 + r)

n
2 a+

∑n
2−1

λ=0 (1 + r)
n
2−1−λf2λ, n = 2, 4, 6, 8, ...

(1 + r)
n−1
2 b+

∑n−1
2 −1

λ=0 (1 + r)
n−1
2 −1−λf2λ+1, n = 1, 3, 5, 7, ...
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Now if n is even, we have

‖yn − ψn‖ = ‖(1 + r)
n
2 a− (1 + r)

n
2 a−

n
2−1∑
λ=0

(1 + r)
n
2−1−λf2λ‖

= ‖
n
2−1∑
λ=0

(1 + r)
n
2−1−λf2λ‖

6 ε

n
2−1∑
λ=0

|1 + r|n2−1−λ

6 ε

∞∑
λ=0

|1 + r|λ = ε(1 + c1 + c2 + c3 + ...)

= ε
c

1− c

= ε
1 + r

1− (1 + r)

= ε
1 + r

−r
= Lε. (3.1)

Now if n is odd, we have

‖yn − ψn‖ = ‖(1 + r)
n−1
2 b− (1 + r)

n−1
2 b−

n−1
2 −1∑
λ=0

(1 + r)
n−1
2 −1−λf2λ+1‖

= ‖

n−1
2 −1∑
λ=0

(1 + r)
n−1
2 −1−λf2λ+1‖

6 ε

n−1
2 −1∑
λ=0

(1 + r)
n−1
2 −1−λ

6 ε

∞∑
λ=0

|1 + r|λ

= ε(1 + c1 + c2 + c3 + ...)

= ε
c

1− c

= ε
1 + r

1− (1 + r)

= ε
1 + r

−r
= Lε, (3.2)

where L = 1+r
−r , hence the system is Hyers-Ulam stable. �

4. hyers-ulam stability of non-autonomous systems

In this section we study the Hyers-Ulam stability of non-autonomous difference systems of first and second order.
For the next two results we need the following assumptions:
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Λ3 : |r(n, λ+ 1)| ≤Me−γ(n−λ−1),

Λ4 : |
∏j
λ=1(rn−2λ)| < Me−µ(j−1).

Theorem 4.1. If Λ3 holds then, the system (1.3) is Hyer-Ulam stable.

Proof. Since by Lemmas 2.5 and 2.6 the system (1.3) has the exact and approximate solutions

yn = E(n, 0)θ

and

φn = E(n, 0)θ +

n∑
λ=1

E(n, λ)fλ−1,

where E(n, k) is the evolution family. Now consider

‖yn − φn‖ = ‖r(n, 0)θ − r(n, 0)θ +

n−2∑
λ=0

r(n, λ+ 1)fλ + fn−1‖

= ‖ −
n−2∑
λ=0

r(n, λ+ 1)fλ + fn−1‖ = ‖
n−2∑
λ=0

r(n, λ+ 1)fλ + fn−1‖

6 εM

n−2∑
λ=0

e−γ(n−λ−1)

= εM(e−γ(n−1) + e−γ(n−2) + e−γ(n−3) + ..+ 1)

6 εM(1 + e−γ + e−2γ + e−3γ + e−4γ + ...)

= εM
1

1− e−γ
= εM

1

1− 1
eγ

= εM
eγ

eγ − 1
= εL, (4.1)

where L = M eγ

eγ−1 , hence the system (1.3) is Hyers-Ulam stable. �

Theorem 4.2. If Λ4 holds then, the system (1.4) is Hyers-Ulam stable.

Proof. Since by Lemmas 2.5 and 2.6 the system (1.4) has the exact and approximate solutions

yn =

{∏n
2

λ=1 rn−2λα, n = 2, 4, 6, 8, ...∏n−1
2

λ=1 rn−2λβ, n = 1, 3, 5, 7, ...

and

Ψn =

{∏n
2

λ=1(rn−2λ)α+
∑n

2−1
j=1

∏j
λ=1(rn−2λ)fn−2λ−2 + fn−2, n = 2, 4, 6, 8, ...∏n−1

2

λ=1 (rn−2λ)β +
∑n−1

2 −1
j=1

∏j
λ=1(rn−2λ)fn−2λ−2 + fn−2, n = 1, 3, 5, 7, ...

.
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Now if n is even, we have

‖yn −Ψn‖ = ‖
n
2∏

λ=1

(rn−2λ)α−
n
2∏

λ=1

(rn−2λ)α−
n
2−1∑
j=1

j∏
λ=1

(rn−2λ)fn−2λ−2 + fn−2‖

= ‖
n
2−1∑
j=1

j∏
λ=1

(rn−2λ)fn−2λ−2 + fn−2‖ 6 ε‖
n
2−1∑
j=1

j∏
λ=1

(rn−2λ)‖

6 εM

n
2−1∑
j=1

e−µ(j−1) = εM(1 + e−µ + e−2µ + e−3µ + ..+ e−(n−4
2 )µ

6 εM(1 + e−µ + e−2µ + e−3µ + ...) = εM
1

1− e−µ
= εM

eµ

eµ − 1
= εL. (4.2)

Now if n is odd, we have

‖yn −Ψn‖ = ‖

n−1
2∏

λ=1

(rn−2λ)β −

n−1
2∏

λ=1

(rn−2λ)β −

n−1
2 −1∑
j=1

j∏
λ=1

(rn−2λ)fn−2λ−2 + fn−2‖

= ‖

n−1
2 −1∑
j=1

j∏
λ=1

(rn−2λ)fn−2λ−2 + fn−2‖ 6 ε‖

n−1
2 −1∑
j=1

j∏
λ=1

(rn−2λ)‖

6 εM

n−1
2 −1∑
j=1

e−µ(j−1) = εM(1 + e−µ + e−2µ + e−3µ + ..+ e−(n−5
2 )µ

6 εM(1 + e−µ + e−2µ + e−3µ + ...) = εM
1

1− e−µ
= εM

eµ

eµ − 1
= εL, (4.3)

where L = M eµ

eµ−1 , hence the system is Hyers-Ulam stable. �

5. uniform exponential stability

In this section we study the uniform exponential stability of autonomous difference systems.

Theorem 5.1. If Λ1 holds then the system (1.1) is uniformly exponentially stable.

Proof. Since system (1.1) has the solution
yn = (1 + r)nγ.

Consider

‖yn‖ = ‖anγ‖ 6 |γ|‖a‖n ≤ ξe−µn (5.1)

where a = 1+r and an = eln |a|n = en ln |a| = e−µn, 0 < a < 1, ln |a| = −µ, hence the system is uniformly exponentially
stable. �

Theorem 5.2. If Λ1 holds then, the system (1.2) is uniformly exponentially stable.

Proof. Since the system (1.2) has the solution:

yn =

{
(1 + r)

n
2 a, n = 2, 4, 6, 8, ...

(1 + r)
n−1
2 b, n = 1, 3, 5, 7, ...

Now if n is even, we have

‖yn‖ = ‖(1 + r)
n
2 a‖ = ‖λn2 a‖ 6 |a|‖λ‖n2 6 |a|‖λ‖n

6 Ψe−µn.
(5.2)
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Now if n is odd, we have

‖yn‖ = ‖(1 + r)
n−1
2 b‖ = ‖λ

n−1
2 b‖ 6 |b|‖λ‖

n−1
2 6 |b|‖λ‖n

6 Ψe−µn,
(5.3)

where λ = 1 + r and λn = eln |λ|n = en ln |λ| = e−µn, 0 < λ < 1 ln |λ| = −µ, hence the system is UES. �

6. Examples

In this section we will present some examples which will elaborate the above results.
For the autonomous and first order difference equation, we have the following example.

Example 6.1. Consider the autonomous difference equation:{
yn+1 = (1 + r)yn, r = −0.5, n ≥ 0

y0 = 0.3.

Then the following will be its solution:

yn = (1 + r)nγ = (0.5)n(0.3).

For approximate solution let fn = ε0.6 and consider the purterb system:{
ϕn+1 = (1 + r)ϕn + ε0.6, r = −0.5, n ≥ 0

ϕ0 = 0.3.

Its solution is

ϕn = (0.5)n(0.3) +

n−1∑
j=0

(0.5)n−1−j(ε0.6),

which is the approximate solution of the above system.

Now consider

‖yn − ϕn‖ = ‖(0.5)n(0.3)− (0.5)n(0.3)−
n−1∑
j=0

(0.5)n−1−j(ε0.6)‖

≤ (ε0.6)

n−1∑
j=0

(0.5)n−1−j

≤ (ε0.6)

∞∑
j=0

(0.5)j =
ε0.6

0.5
=

6

5
ε.

Thus by Theorem 3.1 the above system is Hyer-Ulam stable.
Now for the uniform exponential stability we have, ‖yn‖ ≤ 0.3e−µn, where µ = ln 2, since e−µn = (0.5)n ⇒ ln(e−µn) =
ln(0.5)n ⇒ −µn = n ln(0.5) ⇒ −µ = − ln 2 ⇒ µ = ln 2. Hence by Theorem 5.1 the system is also unifromly
exponentially stable.

For second order autonomous system we have the following example.

Example 6.2. Consider the second order difference equation:
yn+2 = 1

2yn, n ≥ 0

y0 = a

y1 = b.

(6.1)
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The solution is given as

yn =

{
( 1

2 )
n
2 a, when n is even,

( 1
2 )

n−1
2 b, when n is odd.

Since the axiom λ1 is satisfied so the system is Hyer-Ulam as well as uniformly exponentially stable.

The next example is for the case of non-autonomous system.

Example 6.3. Consider the non-autonomous difference equation:{
yn+1 = 1

2n yn, n ≥ 0

y0 = 0.3.

Then the following will be its solution:

yn = E(n, 0)θ =
1

2n−1

1

2n−2

1

2n−3
...

1

20
θ =

1

2
n(n−1)

2

θ.

The approximate solution of the above system will be:

φn = E(n, 0)θ +

n∑
λ=1

E(n, λ)fλ−1 =
1

2
n(n−1)

2

θ +

n∑
λ=1

1

2
n(n−1)−λ(λ−1)

2

fλ−1,

where ‖f‖ ≤ ε.
Consider

‖yn − φn‖ = ‖
n∑
λ=1

1

2
n(n−1)−λ(λ−1)

2

fλ−1‖ ≤ ε
n∑
λ=1

1

2λ
≤ ε

∞∑
λ=1

1

2λ
= 1.ε,

hence by Theorem 4.1, the system is Hyers-Ulam stable.
For unifrom exponential stability we have:

‖yn‖ = ‖ 1

2
n(n−1)

2

θ‖ ≤ ‖θ‖ 1

2n
,

which goes to zero exponentially hence by Theorem 5.1, the system is uniformly exponentially stable.

On the same way we can easily construct an example for non-autonomous second order difference system which we
leave for the reader.

7. Cocnlusion

The study of difference equations is too much important and have a lot of applications in the different fileds of
sciences. The main purpose of this paper is to discussed the solutions, Hyer-Ulam and uniform exponential stabilities
of autonomous and non-autonomous difference equations of first and second order. These models are not discussed yet
before and therefore it can be fruitfull for other reseacrchers working in the field of difference equations and stability
theory. Simple conditions were provided for each system through which one can easily check the stability of the
propoesed models. Some examples are also given to make sure the credibility of the main results.
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