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Abstract

In this paper, an alternating direction implicit (ADI) finite difference scheme is proposed for solving the two-

dimensional time-dependent nonlinear Schrödinger equation. In the proposed scheme, the nonlinear term is lin-
earized by using the values of the wave function from the previous time level at each iteration step. The resulting

block tridiagonal system of algebraic equations is solved using the Gauss-Seidel method in conjunction with sparse

matrix computation. The stability of the scheme is analyzed using matrix analysis and is found to be conditionally
stable. Numerical examples are presented to demonstrate the efficiency, stability, and accuracy of the proposed

scheme. The numerical results show good agreement with exact solutions.
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1. Introduction

The nonlinear Schrödinger equation is widely used to describe several physical phenomena in various fields of science
and engineering, including quantum mechanics, plasma physics, nonlinear optics, water waves, bimolecular dynamics,
and electromagnetic propagation [5, 6, 22]. The nonlinear Schrödinger equation in two-dimension can be written in
the following form [4]:

i
∂u(x, y, t)

∂t
+ α

∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2
+ β |u(x, y, t)|2 u(x, y, t) + p(x, y)u(x, y, t) = 0, (x, y) ∈ Ω, t ∈ (0, T ), (1.1)

with the initial condition
u(x, y, 0) = f(x, y), (x, y) ∈ Ω,

and the boundary condition u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, and t ∈ (0, T ), where u(x, y, t) is the complex-valued
wave function, i =

√
−1, Ω = [a, b] × [c, d] ⊂ R2, ∂Ω is the boundary of Ω, a and b are real constants, f and g are

sufficiently smooth functions. The function p(x, y) is a real-valued and bounded potential function defined on Ω.
Due to the importance of the nonlinear Schrödinger equation for describing several physical phenomena, finding a

solution to the equation is essential. Analytical solutions of the nonlinear Schrödinger equation are difficult to obtain
[7, 8, 18, 19], and thus numerical techniques are widely used. Several numerical methods have been proposed by
researchers to solve the nonlinear Schrödinger equation. Xu and Zhang [24] presented four ADI schemes for solving
the two-dimensional nonlinear Schrödinger equation. The authors confirmed the stability of the numerical schemes
and compared their accuracy and CPU time through numerical experiments. Bratsos [2] presented a linearized finite
difference method to obtain the solution of nonlinear Schrödinger equation. The author replaced the nonlinear term
with a parameterized linearized expression based on Taylor’s expansion. Lin et al. [16] performed numerical simulations
of the nonlinear Schrödinger equation using the implicit-Euler scheme and approximated the unknown function using
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Gaussian radial basis functions. They verified the efficiency and stability of the numerical scheme through numerical
experiments and quantified the error in solving 3D nonlinear Schrödinger problems. Eskar et al. [6] presented a high-
order compact finite difference method for solving the nonlinear Schrödinger equation. The authors demonstrated that
these schemes maintain conservation laws and offer precise and stable solutions for linear and nonlinear 3D Schrödinger
equations. Cavalcanti et al.[3] applied a finite difference scheme to solve a higher-order nonlinear Schrödinger equation.
This scheme is designed to uphold the numerical L2 norm and regulate energy based on the chosen parameters of the
equation.

Shivanian and Jafarabadi [21] used spectral meshless radial point interpolation technique for solving two-dimensional
nonlinear Schrödinger equation. The authors applied a predictor-corrector method to eliminate nonlinearity. They
demonstrated the stability and convergence of the numerical method and validated its accuracy through numerical
examples. Pathak et al. [20] introduced a simple, stable, efficient, and accurate numerical technique, the Kansa method
with polyharmonic radial basis function, for solving generalized 2D nonlinear Schrödinger equations, supported by
stability analysis. Jiwari et al. [14] used a meshfree approach to solve the nonlinear Schrödinger equation. The authors
employed the local radial basis function-based differential quadrature method to reduce the problem of ill-conditioning.
Karabaş et al. [15] used the meshless method with radial basis functions based on the Fréchet derivative to solve the
nonlinear Schrödinger equation.

Iqbal et al. [12] applied the cubic B-spline Galerkin method to solve the Schrödinger equation. The efficiency and
accuracy of the method were evaluated using three different cases: a single solitary wave, the collision of two solitary
waves, and the collision of three solitary waves. Arora et al. [1] used trigonometric cubic B-spline basis function
with the differential quadrature method to simulate nonlinear Schrödinger equations. This method transforms the
nonlinear equation into a collection of ordinary differential equations, which can then be solved using the Runge-Kutta
method. The obtained numerical results were found to closely match the exact solution. He and Lin et al. [9] used
the Lattice Boltzmann method for analysis and simulation of coupled nonlinear Schrödinger equation. The numerical
results obtained using this method were compared with those from the finite difference and analytical methods to
validate its efficiency. Ismail [13], Hu [10], Iqbal et al. [11], and Wang and Li [23] used different approaches of the
finite element method to solve the nonlinear Schrödinger equation. Dehghan et al. [4] used the time-space pseudo-
spectral method to find the solution of the nonlinear Schrödinger equation. The authors verified that this method
offers a satisfactory approximation even with a relatively small number of points. Liu et al. [17] applied Harr wavelets
multi-resolution collocation procedures to solve nonlinear Schrödinger equations. Stability analysis of the proposed
methods was conducted, indicating their accuracy and efficiency in time compared to other methods.

Several authors have used different techniques to develop linearized numerical schemes to solve the nonlinear
Schrödinger equation. As far as the authors are aware, some of the linearization techniques require lengthy procedures
for the formulation of the numerical schemes. The aim of this work is to develop an alternating direction implicit
scheme by replacing the nonlinear term with values of the unknown variable from the previous the time level, and
to investigate its practicality for solving nonlinear Schrödinger equation. The numerical scheme has been tested by
solving different nonlinear Schrödinger equations.

2. Numerical Scheme

In this study, an alternating direction implicit scheme is used to solve (1.1). This scheme involves two stages of
solving block tridiagonal systems of equations along the lines parallel to the x- and y-axes. To solve Eq. (1.1) with
the scheme, we divide the interval [a, b] into Nx subintervals with step size ∆x, the interval [c, d] into Ny subintervals
with step size ∆y and time interval [0, T ] into Nt subintervals with step size ∆x. The grid points of the subdivisions
are

x1, x2, ..., xNx + 1, x1 = a,xNx + 1 = b, xj = x1 + (j − 1)∆x, j = 2, 3, ..., Nx,

y1, y2, ..., yNy + 1, y1 = c,yNy + 1 = d, yk = y1 + (k − 1)∆y, k = 2, 3, ..., Ny,

t1, t2, ..., tNt + 1, t1 = 0,tNt + 1 = T, tn = t1 + (n− 1)∆t, n = 2, 3, ...., Nt.

The value of u(x, y, t) at (xj , yk, tn) is approximated as Un
j,k in the numerical approximation. The two stages of the

numerical scheme are discussed as follows in the discretization of Eq. (1.1). In the first stage, the derivatives ∂u
∂t ,

∂2u
∂x2 ,
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and ∂2u
∂y2 at (j, k, n+ 1

2 ), (j, k, n+1), and (j, k, n), respectively are approximated by central differences. The nonlinear

term and the last term in the left side of Eq. (1.1) are approximated by values of the functions at (j, k, n). From
these, we get

i

(
Un+1
j,k − Un

j,k

∆t

)
+ α

(
Un+1
j+1,k − 2Un+1

j,k + Un+1
j−1,k

∆x2
+

Un
j,k+1 − 2Un

j,k + Un
j,k−1

∆y2

)
+ β

∣∣Un
j,k

∣∣2 Un
j,k + pi,jU

n
j,k = 0,

or

rxU
n+1
j−1,k + (i− 2rx)U

n+1
j,k + rxU

n+1
j+1,k = −ryU

n
j,k−1 + (i+ 2ry − β∆t

∣∣Un
j,k

∣∣2 −∆tpi,j)U
n
j,k − ryU

n
j,k+1, (2.1)

where rx = α∆t
∆x2 and ry = α∆t

∆y2 .

In the second stage we advance from (n+ 1)th to (n+ 2)th time level to approximate ∂2u
∂y2 at (j, k, n+ 2) to obtain

the discretization of Eq. (1.1) as

i

(
Un+2
j,k − Un+1

j,k

∆t

)
+ α

(
Un+1
j+1,k − 2Un+1

j,k + Un+1
j−1,k

∆x2
+

Un+2
j,k+1 − 2Un+2

j,k + Un+2
j,k−1

∆y2

)
+ β

∣∣∣Un+1
j,k

∣∣∣2 Un+1
j,k + pi,jU

n+1
j,k = 0,

or

ryU
n+2
j−1,k + (i− 2ry)U

n+2
j,k + ryU

n+2
j+1,k = −rxU

n+1
j,k−1 +

(
i+ 2rx − β∆t

∣∣∣Un+1
j,k

∣∣∣2 −∆tpi,j

)
Un+1
j,k − rxU

n+1
j,k+1. (2.2)

By finding the truncation errors of the discretizations (2.1) and (2.2), it can be shown that the scheme is first-order
accurate in time and second-order accurate in space.

To see the basic form of the matrix equations resulting from (2.1) and (2.2), let us take Nx = Ny = 4 and
rx = ry = r. The iterative schemes (2.1) and (2.2) yield matrix equations

A1xU
n+1
x = A2xU

n
x + b1x, (2.3)

where

A1x =



i− 2r r 0 0 0 0 0 0 0
r i− 2r r 0 0 0 0 0 0
0 r i− 2r 0 0 0 0 0 0
0 0 0 i− 2r r 0 0 0 0
0 0 0 r i− 2r r 0 0 0
0 0 0 0 r i− 2r 0 0 0
0 0 0 0 0 0 i− 2r r 0
0 0 0 0 0 0 r i− 2r r
0 0 0 0 0 0 0 r i− 2r


,

A2x =



i+ 2r −B2,2 0 0 −r 0 0 0 0 0

0 i+ 2r −B3,2 0 0 −r 0 0 0 0
0 0 i+ 2r −B4,2 0 0 −r 0 0 0

−r 0 0 i+ 2r −B2,3 0 0 −r 0 0

0 −r 0 0 i+ 2r −B3,3 0 0 −r 0
0 0 −r 0 0 i+ 2r −B4,3 0 0 −r

0 0 0 −r 0 0 i+ 2r −B2,4 0 0

0 0 0 0 −r 0 0 i+ 2r −B3,4 0
0 0 0 0 0 −r 0 0 i+ 2r −B4,4


,

Bj,k = β∆t
∣∣∣Un

j,k

∣∣∣2 +∆tpi,j ,
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Un+1
x =



Un+1
2,2

Un+1
3,2

Un+1
4,2

Un+1
2,3

Un+1
3,3

Un+1
4,3

Un+1
2,4

Un+1
3,4

Un+1
4,4


, Un

x =



Un
2,2

Un
3,2

Un
4,2

Un
2,3

Un
3,3

Un
4,3

Un
2,4

Un
3,4

Un
4,4


, b1x =



−rUn+1
1,2

0
−rUn+1

5,2

−rUn+1
1,3

0
−rUn+1

5,3

−rUn+1
1,4

0
−rUn+1

5,4


, +



rUn
2,1

−rUn
3,1

−rUn
4,1

0
0
0

−rUn
2,5

−rUn
3,5

−rUn
4,5


,

A1yU
n+2
y = A2yU

n+1
y + b1y, (2.4)

where

A1y = A1x,

A2y =



i+ 2r − C2,2 0 0 −r 0 0 0 0 0

0 i+ 2r − C2,3 0 0 −r 0 0 0 0
0 0 i+ 2r − C2,4 0 0 −r 0 0 0

−r 0 0 i+ 2r − C3,2 0 0 −r 0 0

0 −r 0 0 i+ 2r − C3,3 0 0 −r 0
0 0 −r 0 0 i+ 2r − C3,4 0 0 −r

0 0 0 −r 0 0 i+ 2r − C4,2 0 0

0 0 0 0 −r 0 0 i+ 2r − C4,3 0
0 0 0 0 0 −r 0 0 i+ 2r − C4,4


,

Cj,k = β∆t
∣∣∣Un+1

j,k

∣∣∣2 +∆tpi,j ,

Un+2
y =



Un+2
2,2

Un+2
2,3

Un+2
2,4

Un+2
3,2

Un+2
3,3

Un+2
3,4

Un+2
4,2

Un+2
4,3

Un+1
4,4


, Un+1

y =



Un+1
2,2

Un+1
2,3

Un+1
2,4

Un+1
3,2

Un+1
3,3

Un+1
3,4

Un+1
4,2

Un+1
4,3

Un+1
4,4


, b1y =



−rUn+2
2,1

0
−rUn+2

2,5

−rUn+2
3,1

0
−rUn+2

3,5

−rUn+2
4,1

0
−rUn+2

4,5


+



−rUn+1
1,2

−rUn+1
1,3

−rUn+1
1,4

0
0
0

−rUn+1
5,2

−rUn+1
5,3

−rUn+1
5,4


,

The system described in (2.3) and (2.4) can be easily generalized for any mesh size. As observed in the above
discussion, the scheme requires solving a block tridiagonal system of equations. The Gauss-Seidel method with sparse
matrix computation is applied to solve the system at each stage of the scheme.

3. Stability Analysis

Here, we discuss the stability of the scheme using matrix analysis. Consider the matrices and vectors in (2.3) and
(2.4) for any mesh size with Nx = Ny . The vectors b1x and b1y contain values of the wave function at the boundaries,
and there is no error at the boundaries. Thus, the scheme is stable if the modulus of each eigenvalue of the matrices
A−1

1x A2x and A−1
1y A2y is less than or equal to 1. Let us consider the case when β = 0 and p(x, y), in which case we have

A−1
1x A2x = A−1

1y A2y. The maximum of the modulus of eigenvalues of A−1
1x A2x (spectral radii), taking Ω = [0, 1]× [0, 1]

and α = 1 at different spatial and time steps, is presented in Table 1. The corresponding spectral radii for solving the
two-dimensional heat equation

∂T (x, y, t)

∂t
=

∂2T (x, y, t)

∂x2
+

∂2T (x, y, t)

∂y2
, (3.1)
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Table 1. Spectral radii of A−1
1x A2x for solving the schrödinger equation for different mesh sizes.

∆x ↓ ∆t → 0.01 0.005 0.001 0.0005 0.0001
0.1 2.002261 1.479790 1.036043 1.009378 1.000380
0.05 3.981984 2.829080 1.370533 1.130283 1.006262
0.025 7.974991 5.650443 2.543146 1.829717 1.089373

Table 2. Spectral radii of A−1
1x A2x for solving heat Equation (3.1) for different mesh sizes.

∆x ↓ ∆t → 0.01 0.005 0.001 0.0005 0.0001
0.1 1.625842 0.952198 0.990259 0.995118 0.999022
0.05 3.683124 2.573814 0.990199 0.995087 0.999016
0.025 7.566080 5.431009 2.310299 1.477936 0.999014

using the scheme on the same domain and with the step sizes is shown in Table 2.
From Tables 1 and 2, it is observed that the scheme is conditionally stable for solving the two-dimensional

Schrödinger and heat equations.

4. Numerical Results and Discussions

In this section, numerical examples are provided to demonstrate the efficiency and accuracy of the numerical scheme.
Comparisons between the numerical and exact solutions are presented graphically. In the examples, equal numbers
of grid points on the x-axis and y-axis are used, i.e., Nx = Ny = N . R(x, y, t) and I(x, y, t) represent the real and
imaginary parts of u, respectively. The accuracy of the numerical scheme is tested using the absolute maximum error

E = max
1≤j,k≤N

∣∣u(xj , yk, tn)− Un
j,k

∣∣ , (4.1)

where u(xj , yk, tn) and Un
j,k are the exact and numerical solutions of u, respectively. The computations are carried

out using MATLAB code on a PC with Windows 10 OS (64-bit), Intel(R) Core i7-7500U, CPU @ 2.9 GHz, and 8GB
RAM.

Example 4.1. Consider a two-dimensional nonlinear Schrödinger equation, (1.1), with α = 1, β = 2π2 − 1 and
potential function p(x, y) = (2π2 − 1)(1− cos2πxcos2πy) [21]. The initial and boundary conditions are obtained from
the exact solution u(x, y, t) = cosπx cosπye−it.

The equation is solved on Ω = [0, 1] × [0, 1] for t > 0. Figure 1 shows the surface plot of the numerical and exact
solutions of Example 4.1 at t == 1 using N = 40, T = 1, and ∆t = 0.005. The maximum absolute errors for the
real part and imaginary part are 2.4933e − 04 and 1.811e − 04, respectively. From the computational results, the
solutions at y = 0.2 are displayed in Figure 2. From the figures, we observe that the numerical solution is in good
agreement with the exact solution and is consistent with [21]. In Table 3, the maximum absolute error and CPU time
of the scheme are presented for N = 10, 20, 40, 80, and ∆t = 0.001. The absolute error decreases as the number of
mesh points increases. Table 4 displays the maximum absolute error and CPU time by taking T = 1 and N = 40 for
different time step sizes. These tables confirm the accuracy and convergence of the numerical scheme.

Example 4.2. Consider (1.1) with α = 1
2 , β = −1, and the potential function p(x, y) = −1 + sin2 x cos2 y on

Ω = [0, 2π] × [0, 2π] for t > 0 [24]. The exact solution is u(x, y, t) = (sinx cosx)e−2it, and the initial and boundary
conditions are obtained from this solution. Numerical solution of Example 4.2 is obtained at t = 1 with N = 60,
T = 1, and ∆t = 0.005. In the computation, the maximum absolute errors of the scheme for real and imaginary parts
are 3.5435e − 3 and 2.9207e − 3, respectively. Figure 3 shows a surface plot of numerical and exact solutions for the
real and imaginary parts of u. The numerical and exact solutions at the diagonal, connecting the points (0, 2π) and
(2π, 0) of the domain, are displayed in Figure 4. As observed from the figures, the numerical solutions coincide with
the exact solution, demonstrating the accuracy of the numerical scheme.
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Figure 1. Surface plot of numerical and exact solutions for Example 4.1 at t = 1 withN = 40, T = 1,
and ∆t = 0.005.

Figure 2. Graph of numerical and exact solutions for Example 4.1 at y = 0.2 and t = 1 with N = 40,
T = 1, and ∆t = 0.005.

Example 4.3. Consider Eq. (1.1) with α = 1
2 , β = 1 and potential function p(x, y) = 1− sinhx sinh y−sinh2xsinh2y

on Ω = [0, 1] × [0, 1] for t > 0.The exact solution is u(x, y, t) = (i sinx sinh y)eit. As in the previous examples, the
initial and boundary conditions are computed from the exact solution.
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Table 3. Maximum absolute errors and CPU times with ∆t = 0.001, T = 1, and different mesh sizes
for Example 4.1.

R I
N E E CPU time(s)
10 1.933832 e-03 1.065042 e-03 22.415811
20 6.296480e-04 6.811864e-04 148.841399
40 2.385183e-04 1.441837e-04 3035.401684
80 1.717893e-04 6.176003e-06 38047.729067

Table 4. Maximum absolute errors and CPU times withN = 40, T = 1, and different time step sizes
for Example 4.1.

R I
Nt E E CPU time(s)
10 9.715348 e-03 5.730540 e-03 29.520303
50 2.223621 e-03 7.149175e-04 162.029855
100 1.029718e-03 4.836240e-04 223.20477
1000 2.385183e-04 1.441837e-04 3035.401684

Figure 3. Surface plot of numerical and exact solutions for Example 4.2 at t = 1 with N = 60,
T = 1, and ∆t = 0.005.
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Figure 4. Graph of numerical and exact solutions for Example 4.2 along the diagonal of the domain
(joining the points (0, 2π) and (2π, 0)) at t = 1 with N = 60, T = 1, and ∆t = 0.005.

Figure 5. Surface plot of numerical and exact solutions for Example 4.3 at t = 1 with N = 50,
T = 1, and ∆t = 0.005.

For computational work, N = 50, T = 1, ∆t = 0.005, and t = 1 are used. Surface plots of numerical and exact
solutions of the real and imaginary parts are presented in Figure 5. For better visualization, the graphs of numerical
and exact solutions along the diagonal, connecting the points (0, 0) and (1, 1), are displayed in Figure 6. These figures
show that the numerical results are in good agreement with the exact solutions.
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Figure 6. Graph of numerical and exact solutions for Example 4.3 along the diagonal (from (0, 0)
to (1, 1)) at t = 1 with N = 50, T = 1, and ∆t = 0.005.

5. Conclusion

In this work, an alternating direction implicit numerical scheme is presented for solving a two-dimensional nonlinear
Schrödinger equation. The Gauss-Seidel method is used to solve the system of algebraic equations resulting from the
discretization. The stability of the numerical scheme is analyzed and found to be conditionally stable. The efficiency
and accuracy of the scheme are demonstrated using three test examples. The obtained numerical results are compared
with exact solutions and it is observed that all results are in close agreement to the exact solutions.
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