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Abstract

The purpose of this study is to develop a mathematical model that incorporates a diffusion term in one dimension in

the dynamics of coronavirus disease-19 (COVID-19) in Ghana. A reaction-diffusion model is derived by applying
the law of conservation of matter and Fick’s law, which are fundamental theorems in fluid dynamics. Since

COVID-19 is declared to be a pandemic, most African countries are affected by the negative impacts of the

disease. However, controlling the spread becomes a challenge for many developing countries like Ghana. A lot
of studies about the dynamics of the infection do not consider the fact that since the disease is pandemic, its

model should be spatially dependent, therefore failing to incorporate the diffusion aspect. In this study, the

local and global stability analyses are carried out to determine the qualitative solutions to the SEIQRF model.
Significant findings are made from these analyses as well as the numerical simulations and results. The basic

reproduction number (Ro) calculated at the disease-free fixed point is obtained to be Ro ≈ 2.5, implying that,
an infectious individual is likely to transmit the coronavirus to about three susceptible persons. A Lyapunov

functional constructed at the endemic fixed point also explains that the system is globally asymptotically stable,

meaning that COVID-19 will be under control in Ghana for a long period of time.
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1. Introduction

A disease like pneumonia from an unknown cause broke out in Wuhan city in China on 31st December 2019. As
the Chinese authorities could not figure out the causal virus of this pneumonic disease [13], they reported it to the
World Health Organization [5]. In a week’s time, that is, January 7, 2020, the virus was identified to be a new
coronavirus called (2019 Cov) disease and later named the disease COVID-19. Coronavirus disease is caused by severe
acute respiratory syndrome coronavirus-2. It is believed to be the third human coronavirus disease to outbreak after
SARS-CoV and MERS-CoV which occurred in 2002 and 2012 respectively [22]. As the name of the virus implies, it
affects the respiratory system of an individual, which causes them to exhibit mild to severe symptoms like loss of smell
and taste, headaches, dry cough, and difficulty in breathing.

Coronavirus is usually transmitted through human-to-human contact, whereby if a person interacts with the droplets
of an infected person, they may also get infected [13]. COVID-19 started as an epidemic in Wuhan, China. It invaded
throughout China within a short period of time. Strict control measures were adhered to; some of these were closure
of schools, businesses, and other social places; wearing of face masks; and regular washing of hands were the hygienic
protocols of the time [16]. Wuhan, a city of about 11 million people, was put under total lock-down; COVID-19
patients were given treatment as they were put under mandatory isolation [17].

Unfortunately, China alone could not contain the disease; therefore, the infection spread to many other parts of the
world. By March 2020, China had recorded about 81,394 cases with 3,281 deaths. South Korea’s first confirmed case
was believed to have occurred in Church. The USA had recorded about 6,368 positive cases, with 1,681 deaths [2]. In
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Europe, every country had confirmed cases, and all have reported at least one death. Italy confirmed 28,126 positive
cases, of which 3,418 were deaths. Due to this, Italy was termed the epicenter of the infection. In Africa, South Africa
had recorded 202 cases, Nigeria, 2 cases, Togo, 1 case, and Ghana also got its share of the infection with 2 confirmed
cases in March 2020. As 26th of March, 2020, 503,274 confirmed cases with 22,342 deaths were recorded cumulatively
worldwide [20]. Nevertheless, Ghana also got its share of the infection in March 2020.

According to a report from the World Health Organization (WHO), the world recorded a total of 1,353,361 infected
cases with 79,235 deaths, representing 5.85% from the onset of the outbreak [20]. Due to the alarming impact of the
disease across the world, the WHO declared COVID-19 a global pandemic. Within two months from the onset of
the outbreak, Ghana had recorded about 12,000 positive cases through contact tracing, out of which 49 were deaths
[2]. Some control measures like social and physical distancing, closure of schools, wearing of face masks, and banning
of social gatherings were adopted by some stakeholders and the Ghana government [7]. COVID-19 has caused many
lives and brought immense negative impact on the global economy. Now Ghana is still battling with coronavirus as
well as the world at large, even as we are experiencing other forms of this pandemic, like the Delta and the Omicron
variants. Thus, there is the need for intensive research on COVID-19 by looking at it from the pandemic view and
not the epidemic.

This study seeks to dispute the established claim from some studies of COVID-19 as an epidemic [17]. As the
diffusion term is incorporated in the model, it makes the dynamics of the model spatially dependent, thus revealing a
more relevant view that COVID-19 is a pandemic but not an epidemic [23]. This is because, as people keep moving
from one position or space to another, the disease also keeps spreading, obviously revealing spatial, dependence nature
of COVID-19.

The mathematical model developed to describe the dynamics of COVID-19 includes a diffusion term in one dimen-
sion. The study also determines the qualitative and quantitative solutions of the model. The stability analysis, which
determines the qualitative solution of the model, calls for the need to also check for any parameter that has a greater
or lesser effect on the basic reproduction number (Ro) [21].

This study makes some significant contributions to the mathematical modeling of COVID-19. The particular
significance of this study basically lies in the law of conservation of matter, Fick’s law, and the divergence theorem,
which have been extensively applied. In the study, the reaction-diffusion equation was birthed from these fundamental
theorems of fluid dynamics upon which the SEIQRF model was built. The SEIQRF model developed is a mixture
of nonlinear partial and ordinary differential equations. In the model, the constant diffusion term is attached to the
spatially dependent population states, which are Susceptible (S), Exposed (E), and Infectious (I). However, the
remaining three states, namely Quarantined (Q), Recovered (R), and Fatality (F ), are assumed to depend on only
time. Local and global stability analyses are carried out as well, where the next-generation matrix is obtained from
the SEIQRF model and used to derive the basic reproduction number Ro 9.

The new Lyapunov functions constructed at the endemic fixed point gave an insight about the fate of COVID-19.
The Lyapunov functions as well as the Routh-Hurwitz criterion generated are able to determine the global asymptotic
stability of the system. Which actually means that, COVID-19 will be under control with time in Ghana. The
numerical simulations made in this work also depict a positive result that the disease will decay with time. Most
COVID-19 researchers tailored the dynamics of the coronavirus as though its epidemiology is an epidemic. But as the
infection continues to spread from one concentrated region to a low-infection or no-infection region, its study ceases
to be an epidemic but rather a pandemic.

The objective in the paper of [1] was to determine the global stability of constant fixed-point solutions to the
reaction-diffusion system with the Neumann boundary conditions. They constructed a Lyanpunov functional for delay
partial differential equations or partial differential equations.

In the same paper [1], they modeled COVID-19 as an SEIR model in Pakistan. They added the quarantined, isolated,
and asymptomatic classes to their model compartments. The dynamics of the COVID-19 outbreak in Pakistan were
qualitatively different before and after the lockdown was eased. They estimated the value of the R0 in Pakistan
before lockdown and after lockdown of the outbreak, noting that during this time no medication was available. They
projected the infection curve considering minimal intervention as well as various control strategies.



872 V. OSEI-BUABENG, A. A. FRIMPONG, AND B. BARNES

In [17], the authors simulated the outbreak in Wuhan using a deterministic stage-structured SEIR model over a
year period, during which the modeled outbreak peters out. They failed to incorporate the diffusion term since, at
the time this study was embarked on, the WHO had declared COVID-19 a pandemic. However, in [23], the authors
considered the diffusion aspect in their model. They felt the need to prove the existence of the wavefront solutions of
their model and hence considered equal diffusivity coefficients for the three compartments.

2. Model description and stability analysis

This section explains the description of both the model and the compartmental model (flowchart). The analysis of
some stability methods used in the study is also discussed here.

2.1. Assumptions of the Study. The assumptions of the study are:

(1) The diffusivity coefficient D is the same for susceptible, exposed, and infectious classes.
(2) There is homogeneous mixing of COVID-19 patients and susceptibles.
(3) The spatial spread is in one dimension.
(4) Recovered persons do not get reinfected.

2.2. Construction of a COVID-19 mathematical model. The mathematical model in this study was birthed
out of the spirits of Kermack-Mckendrick and reaction-diffusion models [3, 15]. A COVID-19 model in a human
population was constructed and analyzed. The total human population at time t, denoted by N , is stratified into
six mutually exclusive sub-populations, namely, susceptible S(t), exposed E(t), infectious I(t), quarantined Q(t),
detected recovered R(t) and fatality F (t) sub-populations. Thus, the total human population is given by N =
S(t) + E(t) + I(t) +Q(t) +R(t) + F (t).

Theorem 2.1. From Fick’s law, the amount of flow per unit area (J) of a material (density of human beings or
chemical) is proportional to the gradient of the concentration (ϕ) of the material.

J = −D∂ϕ
∂x
, (2.1)

where D is the coefficient of diffusion.

Theorem 2.2. Also, from the law of conservation of matter, the rate of change of the amount of material in volume
V is equal to the rate of flow of material across the surface area S into V plus the material created in V. Thus

∂

∂t

∫ ∫ ∫
V

ϕ(x, t)dV = −
∫ ∫

S

J · dS +

∫ ∫ ∫
V

f(ϕ, x, t)dV. (2.2)

Theorem 2.3. Suppose that Q ⊂ R3 is bounded by the closed surface ∂Q and n(x, y, z) denotes the exterior unit
normal vector to ∂Q. Then if the component of F (x, y, z) contains the first partial derivative in Q∫ ∫

∂Q

F · ndS =

∫ ∫ ∫
V

∇ · FdV. (2.3)

Eq. (2.3) is called the divergence theorem, and it is used here because it allows for the conversion of surface integrals
into volume integrals.

Remark 2.4. F is a continuous vector field on the surface S with the unit normal vector n. Thus, the surface integral
of F over S is given by∫ ∫

S

F · dS =

∫ ∫
S

F · ndS. (2.4)

The integral in (2.4) is the flux of F across the surface S, and it simply means the surface integral of F over S is
equal to the surface integral of its normalized component n over surface S. Now in (2.4), the integral on the RHS has
n because the surface is in the direction of n, whose magnitude is one. Similarly, the first integral on the RHS of (2.2)
is also the flux of J and takes the form of (2.4). Therefore, Eq. (2.3) can be applied.
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Applying the divergence theorem to the first term on the RHS of (2.2) yields∫ ∫ ∫
V

∂

∂t
ϕ(x, t)dV +

∫ ∫ ∫
V

∇ · JdV −
∫ ∫ ∫

V

f(ϕ, x, t)dV = 0.

By the linearity of the integral operator∫ ∫ ∫
V

(
∂

∂t
ϕ(x, t) +∇ · J − f(ϕ, x, t)

)
dV = 0,

∂ϕ(x, t)

∂t
= f(ϕ, x, t)−∇ · J. (2.5)

Substituting Eq. (2.1) into (2.5) gives:

∂ϕ(x, t)

∂t
= f(ϕ, x, t)−∇ ·

(
−D∂ϕ

∂x

)
,

hence

∂ϕ

∂t
= f(ϕ) +D

∂2ϕ

∂x2
. (2.6)

Eq. (2.6) is the reaction-diffusion equation, where f(ϕ) is the reaction and D ∂2ϕ
∂x2 is the diffusion. Now the

mathematical model governing the dynamics of COVID-19 in humans is described by the system of nonlinear partial
and ordinary differential equations given in (2.7), which takes the form of the reaction-diffusion equation.

∂S

∂t
= αN − βS

N
(I +Q)− µS +D

∂2S

∂X2
,

∂E

∂t
=
βS

N
(I +Q)− (γ + σ + µ)E +D

∂2E

∂X2
,

∂I

∂t
= γE − (ψ + δ + κ) I +D

∂2I

∂X2
,

dQ

dt
= ψI + σE − (ϵ+ µ+ ω)Q,

dR

dt
= ϵQ+ κI − µR,

dF

dt
= δI + ωQ,

(2.7)

where N = S(t) + E(t) + I(t) +Q(t) +R(t) + F (t).

2.3. Description of the model. The model can be classified into six compartments, as seen in Figure 1. The S class
in this figure, denoting the susceptible class, contains persons who have never contracted COVID-19 but are likely to
be infected. New births are born into this group by the birth rate α, and µ is the natural death rate at which the
susceptible persons die of any other conditions. Persons who get infected as a result of an interaction with COVID-19
patients are moved from the susceptible group by the rate β into the exposed class (E) [17].

After the 10- to 14-days incubation period [8], exposed individuals begin to show symptoms and can also infect
others. The rate at which this happens is γ. Hence they are classified as the infectious (I). The quarantined class (Q)
contains infected and infectious individuals that either self-isolate or are put under mandatory quarantine by σ and ψ
rates, respectively [12]. Some COVID-19 patients may recover naturally, while others may undergo treatment before
recovering. These persons belong to the recovered class (R), and the rates at which this is done are ϵ and κ. Patients
that lose their lives by δ and ω rates belong to the fatality class (F ). All arrows indicate transition from one disease
status to another. Table 1 illustrates the symbols used to define the previous disease states and parameters. Table 2
illustrates the initial population and proportions of each state.
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Figure 1. Compartmental diagram for the COVID-19 model in Eq. (2.7).

Table 1. Representation of the assigned symbols to the various disease states and parameters.

Symbols Description

S(0) Initial susceptible individuals
E(0) Initial exposed individuals
I(0) Initial infected individuals
Q(0) Initial quarantined individuals
R(0) Initial recovered individuals
F (0) Initial deceased individuals
α New birth rate
β Transmission rate from infected persons
γ Rate at which exposed persons move into the infectious class
σ Rate at which exposed persons get self-isolation
ψ Rate at which detected infected persons are quarantined
ϵ Recovery rate of being quarantined
κ Recovery rate without being quarantined
δ Disease-induced death rate from infectious class
ω Disease-induced death rate from quarantined class
µ Natural death rate

2.4. Local stability analysis of the model. Local stability of the model seeks to determine the fixed points of the
six states or compartments [11]. Here qualitative solutions are found at the disease-free fixed point with and without
the diffusion speed c [15]. This is relevant when the initial conditions of the states are in proportion. Doing this
requires a set of dimensionless parameters, which are put in Eq. (2.8).

s =
S(X, t)

N
, e =

E(X, t)

N
, i =

I(X, t)

N
, q =

Q(t)

N
, r =

R(t)

N
, f =

F (t)

N
,

a1 =
β

α
, a2 =

µ

α
, a3 =

γ

α
, a4 =

σ

α
, a5 =

ψ

α
, a6 =

δ

α
, a7 =

κ

α
, a8 =

ϵ

α
, (2.8)

a9 =
ω

α
, x = X

( α
D

)1/2

, τ = αt, [15].
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Hence, the required non-dimensionalized system gives the equations below, which will be converted into first-order
scalar differential equations.

∂s

∂τ
= 1− a1s(i+ q)− a2s+

∂2s

∂x2
,

∂e

∂τ
= a1s(i+ q)− (a2 + a3 + a4) e+

∂2e

∂x2
,

∂i

∂τ
= a3e− (a5 + a6 + a7) i+

∂2i

∂x2
,

dq

dτ
= a5i+ a4e− (a2 + a8 + a9) q,

dr

dτ
= a8q + a7i− a2r,

df

dτ
= a6i+ a9q.

(2.9)

If invaders traveled into the country with constant speed, then it implies z(x, τ) = x− cτ, and s(z) = s(x, τ) [15].

⇒ ds

dz
=
∂s

∂x
,

⇒ d2s

dz2
=
∂2s

∂x2
, (2.10)

∂s

∂τ
= −cds

dz
. (2.11)

Substituting (2.10) and (2.11) into (2.9) yields

−cds
dz

= 1− a1s(i+ q)− a2s+
d2s

dz2
. (2.12)

Again, setting

s(z) = u1(z), (2.13)

and

ds

dz
= u2(z), (2.14)

differentiating (2.13) gives

ds

dz
=
du1
dz

, ⇒ du1
dz

= u2. (2.15)

Differentiating (2.14)

d2s

dz2
=
du2
dz

,

gave the first scalar differential equation in (2.16)

du2
dz

= −cu2 − 1 + a1u1(w1 + q) + a2u1. (2.16)
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Similar computations for the rest of (2.9) were carried out, and the scaled model was obtained in the following
equations.

du1
dz

= u2,

du2
dz

= −cu2 − 1 + a1u1(w1 + q) + a2u1,

dv1
dz

= v2,

dv2
dz

= −cv2 − a1u1(w1 + q) + (a2 + a3 + a4) v1,

dw1

dz
= w2,

dw2

dz
= −cw2 − a3v1 + (a5 + a6 + a7)w1,

dq

dz
= a5w1 + a4v1 − (a2 + a8 + a9) q,

dr

dz
= a8q + a7w1 − a2r,

df

dz
= a6w1 + a9q.

(2.17)

Now, solving (2.17) simultaneously yielded two fixed points, the disease-free fixed point and the endemic fixed point
in (2.18) and (2.19), respectively.

u∗1
v∗1
w∗

1

q∗1
r∗1
f∗1

 =



1
a2

0
0
0
0
0

 , (2.18)


u∗2
v∗2
w∗

2

q∗2
r∗2
f∗2

 =



a1a9mnd
a1a2a9mnd+(a1a3d−a2a9mn)d

a1a3d−a2a9mn
a1a3md

a1a3d−a2a9mn
a1mnd

−a6(a1a3d−a2a9mn)
a1a9mnd

(a1a3d−a2a9mn)(a7a9−a6a8)
a1a2a9mnd

0


. (2.19)

2.4.1. Stability at the disease-free fixed point with diffusion speed. At the disease-free fixed point, the basic reproduction
number is determined by using the next generation matrix (NGM).

J =



0 1 0 0 0 0 0 0
a1(w1 + q) + a2 −c 0 0 a1u1 0 a1u1 0

0 0 0 1 0 0 0 0
−a1(w1 + q) 0 m −c −a1u1 0 −a1u1 0

0 0 0 0 0 1 0 0
0 0 −a3 0 n −c 0 0
0 0 a4 0 a5 0 −p 0
0 0 0 0 a7 0 a8 −a2


,
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det(J) =
∣∣J − λI

∣∣ = 0,

⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0 0 0 0 0 0
a1(w1 + q) + a2 −c− λ 0 0 a1u1 0 a1u1 0

0 0 −λ 1 0 0 0 0
0 0 m −c− λ −a1u1 0 −a1u1 0
0 0 0 0 −λ 1 0 0
0 0 −a3 0 n −c− λ 0 0
0 0 a4 0 a5 0 −p− λ 0
0 0 0 0 a7 0 a8 −a2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The basic reproduction number with diffusion speed c is derived in the analysis below. The scaled model in (2.17)

has a disease-free fixed point D = (s∗, e∗, i∗, q∗, r∗, f∗) =
(

1
a2
, 0, 0, 0, 0, 0

)
, where S(0) represents the initial size of the

population that is susceptible to COVID-19. The asymptotic stability of the disease-free fixed point will be analyzed
using the NGM [9]. The matrices, F and V, representing new infection terms and the transition terms, respectively,
are given by

F =


0 0 0 0 0
0 0 −a1

a2
0 −a1

a2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , V =


0 1 0 0 0
m −c 0 0 0
0 0 0 1 0

−a3 0 n −c 0
a4 0 a5 0 −p

 ,

FV−1 =


0 0 0 0 0
0 0 −a1

a2
0 −a1

a2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

×


0 1 0 0 0
m −c 0 0 0
0 0 0 1 0

−a3 0 n −c 0
a4 0 a5 0 −p


−1

,

FV−1 =


0 0 0 0 0

−a1(a4cn+a3cp+a3a5c)
a2mnp −a1(a4n+a3p+a3a5)

a2mnp −a1(a5c+cp)
a2np

−a1(a5+p)
a2np

a1

a2p

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Ro =
∣∣∣−a1(a4cn+a3cp+a3a5c)

a2mnp

∣∣∣ . (2.20)

2.4.2. Stability at the disease-free fixed point without diffusion speed. The basic reproduction number without diffusion
speed c was also derived using the following technique:


a1(w1 + q) + a2 0 a1u1 a1u1 0

0 m −a1u1 −a1u1 0
0 −a3 n 0 0
0 a4 a5 −p 0
0 0 a7 a8 −a2

 ,
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F =

0 0 0
0 −a1

a2
−a1

a2

0 0 0

 , V =

 0 0 0
m 0 0
−a3 n 0

 ,

FV−1 =

 0
0

−a1(a4n+a3p+a3a5)
a2mnp

 ,

Ro =
αβ (σ(ψ + δ + κ) + γ(µ+ ϵ+ ψ + ω))

µ(ϵ+ µ+ ω)(γ + µ+ σ)(ψ + δ + κ)
. (2.21)

Similarly,

det(J) =
∣∣J − λI

∣∣ = 0,

⇒

∣∣∣∣∣∣∣∣∣∣
(a1(w1 + q) + a2)− λ 0 a1u1 a1u1 0

0 m− λ −a1u1 −a1u1 0
0 −a3 n− λ 0 0
0 a4 a5 −p− λ 0
0 0 a7 a8 −a2 − λ

∣∣∣∣∣∣∣∣∣∣
= 0.

The eigenvalues determined at the Jacobian matrix are

λ = (a1(w1 + q) + a2) > 0,

λ = m > 0,

λ = n > 0,

λ = −p < 0,

λ = −a2 < 0.

Clearly, the Jacobian matrix without the speed c has three of its eigenvalues positive, whereas two of the real parts
of the eigenvalues are negative, which indicates an unstable system. Thus, by making the unstable system stable, the
method of Routh-Hurwitz was adapted.

The characteristic equation for the Jacobian matrix above is given by

P (λ) = λ5 +Bλ4 +Gλ3 +Hλ2 +Kλ+ Y = 0. (2.22)

2.4.3. The Routh-Hurwitz stability criterion. The Routh-Hurwitz criterion is used to tune variable parameters in order
to keep the system in its stable state. Here, the coefficients of the characteristic equation are ordered into an array,
also known as the Routh array. If the values in the first column are positive, then the system is stable.

Given that

B = p− n−m− a1 (q + w1) ,

G = [a1(m+ n− p)− a1a2] (q + w1)− [a1 (a3 − a4)]u1 +m (n− p)− np,

H = [a1(mp+ np−mn)− a1a2(m+ n− p)] (q + w1)− [a1a4n+ a1a3(p+ a5)]u1 +mnp,

K = [a1a2 (mp+ np−mn)− a1mnp] (q + w1) ,

Y = −a1a2mnp (q + w1) ,

from (2.22). Then the characteristic equation in (2.22) is summarized into the Routh array, which yielded the results
below.

B > 0;
BG−H

B
> 0; H −

(
B(BK − Y )

BG−H

)
> 0.
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2.5. Global stability analysis of the model. The global stability of the endemic fixed point of the scaled system
with Dirichlet boundary conditions is established in this subsection. This is possibly done by constructing Lyapunov
functionals for the state populations. Thus, the constructed Lyapunov functionals for the model are found based on
the following theorems [10].

Theorem 2.5. Let x(t) = (s(t), e(t), i(t), q(t), r(t), f(t)). Suppose L̇(x) = f(x) has a fixed point x∗; then the Lyapunov
function with the two conditions is required.

(1) L(x(t)) > 0, ∀ x on Ω in Rnand x ̸= x∗,

(2) L̇(x(t)) < 0 ∀ x ∈ Ω and x ̸= x∗.

Remark 2.6. The definition for the first condition yields the following inequalities:

L (x(t)) = s∗
(
s

s∗2
− ln

s

s∗2

)
e∗2

(
e

e∗2
− ln

e

e∗2

)
+ a5i

∗
(
i

i∗2
− ln

i

i∗2

)
+ q∗2

(
q

q∗2
− ln

q

q∗2

)
+
a6
n
r∗2

(
r

r∗2
− ln

r

r∗2

)
> 0,

L (x(t)) =

(
s− s∗2 ln

s

s∗2

)(
e− e∗2 ln

e

e∗2

)
+ a5

(
i− i∗2 ln

i

i∗2

)
+

(
q − q∗2 ln

q

q∗2

)
+
a6
n

(
r − r∗2 ln

r

r∗2

)
> 0.

Remark 2.7. The definition for the second condition gives the inequality below

L̇(x(t)) =
∂L

∂s
× ds

dt
+
∂L

∂e
× de

dt
+
∂L

∂i
× di

dt
+
∂L

∂q
× dq

dt
+
∂L

∂r
× dr

dt
+
∂L

∂f
× df

dt
< 0.

Then the Lyapunov function constructed at the endemic fixed point requires the two conditions in order to be
asymptotically stable [10].

Theorem 2.8. Let L(u) be a C1 function defined on some domain in Rm, where u(t) is a solution of the scaled
equations in (2.17). Computing the time derivative of L(u(t)), then

dL(u(t))

dt
= ∇L(u).f(u), (2.23)

and set

W =

∫
Ω

L(u(t, x))dx, (2.24)

where (2.24) is the Lyapunov functional constructed for the model. By calculating the derivative across the positive
solution of the model, set

dW

dt
=

∫
Ω

∇L(u).f(u)dx+

n∑
i=1

Di

∫
Ω

∂L

∂ui
∆uidx,

dW

dt
=

∫
Ω

a8q
∗
(
4− q

q∗
− q∗

q
− r

r∗
− r∗

r

)
+ a2r

∗
(
5− q∗

q
− qr∗s

q∗rs∗
− qr∗e

q∗re∗
− qr∗i

q∗ri∗
− rs∗e∗i∗

r∗sei

)
dx

−
(
s∗e∗i∗

a2a3

∫
Ω

|∇s|2

s2
+

|∇e|2

e2
+

|∇i|2

i2

)
dx.

Hence,

dW

dt
≤ 0.

It follows that W is a Lyapunov functional of the scaled model at the endemic fixed point (s∗, e∗, i∗, q∗, r∗) and that it
is valid for the conditions.



880 V. OSEI-BUABENG, A. A. FRIMPONG, AND B. BARNES

Figure 2. Plots of 3-D and 2-D for susceptible.

3. Numerical Results and Discussion

The results and findings of this study are presented in phase plots of the nonlinear differential equations of the
population states in (2.7) [6]. These plots discussed in this section were plotted by using the data presented in Table
3 and the finite difference methods (FDM). Plots of the spatially dependent population states (S,E, and I) are first
presented in the first three figures, while those of the states that do not depend on space but only time i.e. (Q,R, andF )
are presented in the last plot.

3.1. Plots of the susceptible population. Figure 2 represents the three dimensional (3-D) and corresponding two
dimensional (2-D) plots of the susceptible population. It can be observed from the 3-D plot that, from the onset of
the outbreak of the disease, that is, between the times 0 and 100 days, the susceptible population was at its peak
but started declining from 200 days. The deep blue color indicates the decrease in the susceptible population. This
can be inferred from the compartmental model in the flowchart that the susceptible compartment loses to both the
exposed class and natural death and gains from new births. Although there are newborn individuals being added to
the susceptible class on a daily basis, the susceptible population decreases drastically at the expense of the new births
as they (susceptible persons) interact with infectious persons. Again, as susceptible individuals travel throughout the
domain, there is a constant spread of coronavirus within the domain, hence losing susceptible persons to the exposed
class.

Figure 3. Plots of 3-D and 2-D for exposed.
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Figure 4. Plots of 3-D and 2-D for infectious.

3.2. Plots of the exposed population. Figure 3 is the phase plots of the exposed state. These figures are in purple
and mint, as shown above. At the initial time of the outbreak, there are fewer infections of the disease. Between
100 and 200 days, the infection was at its peak, indicating a large proportion of the susceptible population had been
exposed to COVID-19. Again, as time increases, the curve declines and falls flat, which implies the exposed population
decreases as a result of losing to the infectious population or natural death. Making inferences from the compartmental
diagram in Figure 1 or (2.7), the exposed population gains infected persons from the susceptible and has three losses
to infectious, quarantined classes and natural death by the rates.

3.3. Plots of the infectious population. It can be observed from the time and space axes of the plot in Figure
4, the infectious figure, that there were no infections at time zero and space zero (no movement). However, as time
started to increase, the infection became prevalent and peaked between the times of 200 and 300 days. The darker
color indicates no disease, while the brighter color signifies the spread of the disease. Referring to the compartmental
diagram in Figure 1 again, it can be seen that the infectious population losses to three other populations, Q,R, and F .
Nevertheless, the one gain from E is a negative gain. Thus, the I state tends to have massive loss as compared to S
and E. After 300 days, the curve does not decline completely since, at this time, there are still infectious persons in
Ghana.

Figure 5. Plot of the quarantined, recovered, and fatality states.
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Table 2. Initial conditions of the states and their proportions.

State Description Initial Population Population at risk Proportion

S(0) Initial susceptible individuals 31,072,940 31,072,940 0.995889
E(0) Initial exposed individuals 64,630 64,630 0.002071
I(0) Initial infected individuals 5,358 5,358 0.000172
Q(0) Initial quarantined individuals 0 920 0.000029
R(0) Initial recovered individuals 0 56955 0.001825
F (0) Initial deceased individuals 0 398 0.000013

Table 3. Initial values of the parameters.

Symbols Description Initial value

α New birth rate 0.00007162
β Transmission rate from infected persons 0.5500
γ Rate at which exposed persons move into the infectious class 0.0714
σ Rate at which exposed persons get self-isolation 0.9900
ψ Rate at which detected infected persons are quarantined 0.0002
ϵ Recovery rate of being quarantined 0.2000
κ Recovery rate without being quarantined 0.9944
δ Disease-induced death rate from infectious class 0.0500
ω Disease-induced death rate from quarantined class 0.0056
µ Natural death rate 0.00007868

3.4. Plot of the quarantined, recovered, and fatality states. Before the onset of the outbreak in Ghana,
there had not been any quarantined individuals, nor any recoveries or deaths from COVID-19. Figure 5 depicts this
dynamic. As the infection increased, patients with COVID-19 were put into mandatory quarantine. Many patients
also responded to treatment and recovered, while the death curve in yellow gradually increased.

4. Conclusion

The study developed a new SEIQRF model with a constant diffusion term in Ghana. This model is a modification
of the usual SIR and SEIR models that some authors used to describe the dynamics of COVID-19 [12, 17]. The
diffusion term is incorporated in one dimension. The local stability analysis gave the qualitative solution to the model.
This analysis explained how the basic reproduction number could be calculated at the disease-free fixed point. Also,
the global stability analysis, however, was carried out at the endemic fixed points.

A study by [1] used a method of the Lyapunov functionals by constructing a delay partial differential equation. This
study, however, focused on two conditions for the Lyapunov functionals using the Dirichlet boundary conditions. The
findings from the global stability analysis indicate that the system is globally asymptotically stable at the endemic fixed
point, which concludes that COVID-19 can be under control for a longer period of time. Both analyses ascertained
relevant conclusions for this study, as the approximate value of the R0 = 3 can help inform about how an infectious
person is capable of infecting three more susceptible individuals. Though it is assumed that recovered persons cannot
get reinfected.

For future studies, it is recommended that researchers modify this work by studying the bifurcation analysis of
COVID-19, as many forms like the Omicron and Delta variants keep emerging and infecting the susceptible population.
They can also consider the diffusion aspect in two or more dimensions as well as consider modeling using time-fractional
diffusion equations.
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