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Abstract
The purpose of this study is to develop a mathematical model that incorporates diffusion term in one dimension

in the dynamics of Corona Virus Disease-19 (Covid-19) in Ghana. A reaction-diffusion model is derived by

applying the law of conservation of matter and Fick’s law which are fundamental theorems in fluid dynamics.
Since Covid-19 is declared to be pandemic, most African countries are affected by the negative impacts of the

disease. However, controlling the spread becomes a challenge for many developing countries like Ghana. A lot of

studies about the dynamics of the infection do not consider the fact that since the disease is pandemic, its model
should be spatially dependent, therefore fail to incorporate the diffusion aspect. In this study, the local and global

stability analysis are carried out to determine the qualitative solutions to the SEIQRF model. Significant findings

are made from these analysis as well as the numerical simulations and results. The basic reproduction number
(Ro) calculated at the disease-free fixed point is obtained to be Ro ≈ 2.5 implying that, an infectious individual

is likely to transmit the corona virus to about three susceptible persons. A Lyapunov functional constructed at

the endemic fixed point also explains that, the system is globally asymptotically stable, meaning that Covid-19
will be under control in Ghana for a long period of time.
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1. Introduction

A disease like pneumonia from an unknown cause broke out in Wuhan city in China on 31st December, 2019 as the
Chinese authorities could not figure out the causal virus of this pneumonic disease [13], they reported to the World
Health Organization [4]. In a week’s time that is January 7, 2020, the virus was identified to be a new Corona Virus
called (2019 Cov) disease and later named the disease Covid-19. Corona virus disease is caused by Severe Acute
Respiratory Syndrome Corona Virus-2. It is believed to be the third human corona virus disease to outbreak after
Sars-Cov and Mers-Cov which occurred in 2002 and 2012 respectively[22]. As the name of the virus implies, it affects
the respiratory system of an individual which causes them to exhibit from mild to severe symptoms like loss of smell
and taste, headaches, dry cough and difficulty in breathing.

Corona virus is usually transmitted through human to human contact whereby if a person interacts with the droplets
of an infected person, they may also get infected [13]. Covid-19 started as an epidemic in Wuhan, China. It invaded
throughout China within a short period of time. Strict control measures were adhered to, some of these were closure
of schools, businesses and other social places; wearing of face masks and regular washing of hands were the hygienic
protocols of the time [16]. Wuhan city of about 11 million people was put to total lock-down, Covid-19 patients were
given treatment as they were put under mandatory isolation [17].

Unfortunately, China alone could not contain the disease, therefore the infection spread to many other parts of the
world. By March 2020, China had recorded about 81,394 cases with 3,281 deaths, South Korea first confirmed case
was believed to have occurred in Church. USA had recorded about 6,368 positive cases with 1,681 deaths [10]. In
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Europe, every country had confirmed cases and all have reported at least one death. Italy confirmed 28,126 positive
cases of which 3,418 were deaths. Due to this Italy was termed as the epicenter of the infection. In Africa, South Africa
had recorded 202, Nigeria, 2 cases, Togo 1 case and Ghana also got its share of the infection with 2 confirmed cases
in March 2020. As at 26th of March, 2020, 503,274 confirmed cases with 22,342 deaths were recorded cumulatively
worldwide [20]. Nevertheless, Ghana also got its share of the infection in March 2020.

According to a report from World Heath Organization (WHO), the world recorded a total of 1,353,361 infected
cases with 79,235 deaths representing 5.85% from the onset of the outbreak [20]. Due to the alarming impact of the
disease across the world, the WHO declared Covid-19 a global pandemic. Within two months from the onset of the
outbreak, Ghana had recorded about 12,000 positive cases through contact tracing out of which 49 were deaths [10].
Some control measures like social and physical distancing, closure of schools, wearing of face masks and banning of
social gatherings were adopted by some stakeholders and the Ghana government [6]. Covid-19 has caused many lives
and brought immense negative impact on the global economy. Now Ghana is still battling with corona virus as well
as the world at large even as we are experiencing other forms of this pandemic like the delta variant and the omicron.
Thus there is the need for intensive researches on Covid-19 by looking at it from the pandemic view and not epidemic.

This study seeks to dispute the established claim from some studies of Covid-19 as an epidemic [17]. As the
diffusion term is incorporated in the model, it makes the dynamics of the model spatially dependent thus revealing
a more relevant view that Covid-19 is pandemic but not epidemic [23]. This is because, as people keep moving from
one position or space to another, the disease also keeps spreading, and obviously revealing spatial dependence nature
of Covid-19.

The mathematical model developed to describe the dynamics of Covid-19 includes diffusion term in one dimension.
The study also determines the qualitative and quantitative solutions of the model. The stability analysis which
determines the qualitative solution of the model calls for the need to also check for any parameter that has greater or
less effect on the basic reproduction number (Ro) [21].

This study makes some significant contributions to the mathematical modeling of Covid-19. The particular sig-
nificance of this study basically lies on the law of conservation of matter, the Fick’s law and Divergence theorem
which have been extensively applied. In the study, the reaction-diffusion equation was birthed from these fundamental
theorems of fluid dynamics upon which the SEIQRF model was built. The SEIQRF model developed is a mixture of
nonlinear partial and ordinary differential equations. In the model, the constant diffusion term is attached to the spa-
tially dependent population states which are Susceptible (S), Exposed (E) and Infectious (I). However, the remaining
three states namely Quarantined (Q), Recovered (R) and Fatality (F ) are assumed to depend on only time. Local
and global stability analysis are carried out as well where the next generation matrix is obtained from the SEIQRF
model and used to derive the the basic reproduction number Ro, 8.

The new Lyapunov functions constructed at the endemic fixed point gave an insight about the fate of Covid-19.
The Lyapunov functions as well as the Routh Hurwitz criterion generated are able to determine the global asymptotic
stability of the system. Which actually means that, covid-19 will be under control with time in Ghana. The numerical
simulations made in this work also depict a positive result that the disease will decay with time. Most covid-19
researchers tailored the dynamics of the corona virus as though its epidemiology is an epidemic. But as the infection
continues to spread from one concentrated region to a low infection or no infection region, its study ceases to be
epidemic but rather pandemic.

The objective in the paper of [1] was to determine the global stability of constant fixed point solutions to reaction-
diffusion system with Neumann boundary conditions. They constructed Lyanpunov functional for delayed partial
differential equations or partial differential equations.

In the same paper, [1] they modeled Covid 19 as an SEIR model in Pakistan. They added the quarantined, isolated,
and asymptomatic classes to their model compartments. The dynamics of the Covid 19 outbreak in Pakistan was
qualitatively different before and after the lock down was eased. They estimated the value of the R0 in Pakistan
before lock down and after lock down of the outbreak, noting that during this time no medication was available. They
projected the infection curve considering minimal intervention as well as various control strategies.
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[17] simulated the outbreak in Wuhan using a deterministic stage-structured SEIR model over a year period, during
which the modeled outbreak peters out. He failed to incorporate the diffusion term since as at the time this study
was embarked on, WHO had declared Covid-19 a pandemic.

However, in the work of [23], he considered the diffusion aspect in his model. They felt the need to prove the existence
of the wavefront solutions of their model hence considered equal diffusivity coefficients for the three compartments.

2. Method

This section explains the description of both the model and the compartmental model(flowchart). The analysis of
some stability methods used in the study are also discussed here.

2.1. Assumptions of the Study. The assumptions of the study are:

(1) The diffusivity coefficient D is the same for susceptibles, exposed and infectious classes,
(2) There is homogeneous mixing of COVID-19 patients and the susceptibles,
(3) The spatial spread is in one dimension,
(4) Recovered persons do not get reinfected.

2.2. Construction of Covid-19 mathematical model. The mathematical model in this study was birthed out from
the spirits of Kermack-Mckendrick and Reaction-diffusion models [2] [15]. A Covid-19 model in a human population was
constructed and analyzed. The total human population at time t denoted by N is stratified into six mutually exclusive
sub-populations, namely; Susceptible S(t), Exposed E(t), Infectious I(t), Quarantined Q(t), detected Recovered R(t)
and Fatality F (t) sub-populations. Thus, the total human population is given by: N = S(t) + E(t) + I(t) + Q(t) +
R(t) + F (t).

Theorem 2.1. From Fick’s law, the amount of flow per unit area (J) of a material (density of human beings or
chemical) is proportional to the gradient of the concentration (φ) of the material.

J = −D∂φ
∂x
, (2.1)

where D is the coefficient of diffusion.

Theorem 2.2. Also, from the law of conservation of matter, the rate of change of the amount of material in volume
V is equal to the rate of flow of material across the surface area S into V plus the material created in V . Thus

∂

∂t

∫ ∫ ∫
V

φ(x, t)dV = −
∫ ∫

S

J · dS +

∫ ∫ ∫
V

f(φ, x, t)dV. (2.2)

Theorem 2.3. Suppose that Q ⊂ R3 is bounded by the closed surface ∂Q and n(x, y, z) denotes the exterior unit
normal vector to ∂Q. Then if the component of F (x, y, z) contains first partial derivative in Q

∫ ∫
∂Q

F · ndS =

∫ ∫ ∫
V

∇ · FdV. (2.3)

(2.3) is called the Divergence Theorem and it is used here because it allows for the conversion of surface integrals into
volume integrals.

Remark 2.4. F is a continuous vector field on the surface S with the unit normal vector n. Thus the surface integral
of F over S is given by∫ ∫

S

F · dS =

∫ ∫
S

F · ndS. (2.4)

The integral in (2.4)is the flux of F across the surface S and it simply means, the surface integral of F over S is equal
to the surface integral of its normalized component n over surface S. Now in (2.4), the integral on the RHS has n
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because the surface is in the direction of n whose magnitude is one. Similarly, the first integral on the RHS of (2.2) is
also the flux of J and takes the form of (2.4). Therefore (2.3) can be applied.

Applying the divergence theorem to the first term on the RHS of (2.2) yields:∫ ∫ ∫
V

∂

∂t
φ(x, t)dV +

∫ ∫ ∫
V

∇ · JdV −
∫ ∫ ∫

V

f(φ, x, t)dV = 0.

By the linearity of integral operator,∫ ∫ ∫
V

(
∂

∂t
φ(x, t) +∇ · J − f(φ, x, t)

)
dV = 0

∂φ(x, t)

∂t
= f(φ, x, t)−∇ · J. (2.5)

Substituting Equation (2.1) into (2.5) gives:

∂φ(x, t)

∂t
= f(φ, x, t)−∇ ·

(
−D∂φ

∂x

)
,

hence
∂φ

∂t
= f(φ) +D

∂2φ

∂x2
. (2.6)

(2.6) is the reaction-diffusion equation, where f(φ) is the reaction and D ∂2φ
∂x2 is the diffusion. Now the mathematical

model governing the dynamics of Covid-19 in humans is described by the system of nonlinear partial and ordinary
differential equations given in (2.7) which takes the form of the reaction-diffusion equation.

∂S

∂t
= αN − βS

N
(I +Q)− µS +D

∂2S

∂X2
,

∂E

∂t
=
βS

N
(I +Q)− (γ + σ + µ)E +D

∂2E

∂X2
,

∂I

∂t
= γE − (ψ + δ + κ) I +D

∂2I

∂X2
,

dQ

dt
= ψI + σE − (ε+ µ+ ω)Q,

dR

dt
= εQ+ κI − µR,

dF

dt
= δI + ωQ.

(2.7)

where N = S(t) + E(t) + I(t) +Q(t) +R(t) + F (t).

2.3. Description of the model. The model can be classified into six compartments as seen in 1. S denoting the
susceptible class contains persons who have never contracted Covid-19 but are likely to be infected. New births are
born into this group by the birth rate α and µ the natural death rate at which the susceptible persons die of any
other conditions. Persons who get infected as a result of an interaction with Covid-19 patients are moved from the
susceptible group by the rate β into the exposed class (E) [17].

After the 10 to 14 days incubation period [7], exposed individuals begin to show symptoms and can also infect the
rate at which this happens is γ. Hence they are classified as the Infectious (I). Quarantined (Q) class contains infected
and infectious individuals that either self isolate or are put under mandatory quarantine by σ and ψ rates respectively
[12]. Some Covid-19 patients may recover naturally while others may undergo treatment before recovering. These
persons belong to the Recovered (R) class and the rates by which this is done are ε and κ. Patients that lose their lives
by δ and ω rates belong to the Fatality class (F ). All arrows indicate transition from one disease status to another.
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Figure 1. Compartmental diagram for COVID-19 model in 2.7.

Table 1. Table representing state and parameter definition.

Symbols Description

S(0) Initial susceptible individuals
E(0) Initial exposed individuals
I(0) Initial infected individuals
Q(0) Initial quarantined individuals
R(0) Initial recovered individuals
F (0) Initial removed individuals
α New birth rate
β Transmission rate from infected persons
γ Rate at which exposed persons move into the infectious class
σ Rate at which exposed persons get self isolation
ψ Rate at which detected infected persons are quarantined
ε Recovery rate of being quarantined
κ Recovery rate without being quarantined
δ Disease induced death rate from infectious class
ω Disease induced death rate from quarantined class
µ Natural death rate

2.4. Local Stability analysis of the model. Local stability of the model seeks to determine the fixed points of the
six states or compartments [11]. Here qualitative solutions are found at the disease-free fixed point with and without
the diffusion speed c [15]. This is relevant when the initial conditions of the states are in proportion. Doing this
requires a set of dimensionless parameters which are put in Equation (2.8).

s =
S(X, t)

N
, e =

E(X, t)

N
, i =

I(X, t)

N
, q =

Q(t)

N
, r =

R(t)

N
, f =

F (t)

N
,

a1 =
β

α
, a2 =

µ

α
, a3 =

γ

α
, a4 =

σ

α
, a5 =

ψ

α
, a6 =

δ

α
, a7 =

κ

α
,a8 =

ε

α
,

a9 =
ω

α
, x = X

( α
D

)1/2

, τ = αt

[15] (2.8)



6 V. OSEI-BUABENG, A. A. FRIMPONG, AND B. BARNES

Hence, the required non-dimensionalized system gives the equations below which will be converted into first order
scalar differential equations.

∂s

∂τ
= 1− a1s(i+ q)− a2s+

∂2s

∂x2
,

∂e

∂τ
= a1s(i+ q)− (a2 + a3 + a4) e+

∂2e

∂x2
,

∂i

∂τ
= a3e− (a5 + a6 + a7) i+

∂2i

∂x2
,

dq

dτ
= a5i+ a4e− (a2 + a8 + a9) q,

dr

dτ
= a8q + a7i− a2r,

df

dτ
= a6i+ a9q.

(2.9)

If invaders traveled into the country with constant speed, then it implies,

z(x, τ) = x− cτ. And s(z) = s(x, τ) [15].

⇒ ds

dz
=
∂s

∂x
,

⇒ d2s

dz2
=
∂2s

∂x2
, (2.10)

∂s

∂τ
= −cds

dz
. (2.11)

Substituting (2.10) and (2.11) into (2.9) yields

−cds
dz

= 1− a1s(i+ q)− a2s+
d2s

dz2
. (2.12)

Again setting

s(z) = u1(z), (2.13)

and

ds

dz
= u2(z), (2.14)

differentiating (2.13) gives

ds

dz
=
du1

dz
.

⇒ du1

dz
= u2. (2.15)

Differentiating (2.14)

d2s

dz2
=
du2

dz
,
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gave the first scalar differential equation in (2.16)

du2

dz
= −cu2 − 1 + a1u1(w1 + q) + a2u1. (2.16)

Similar computations for the rest of (2.9) were carried out and the scaled model obtained in (2.17).

du1

dz
= u2,

du2

dz
= −cu2 − 1 + a1u1(w1 + q) + a2u1,

dv1

dz
= v2,

dv2

dz
= −cv2 − a1u1(w1 + q) + (a2 + a3 + a4) v1,

dw1

dz
= w2,

dw2

dz
= −cw2 − a3v1 + (a5 + a6 + a7)w1,

dq

dz
= a5w1 + a4v1 − (a2 + a8 + a9) q,

dr

dz
= a8q + a7w1 − a2r,

df

dz
= a6w1 + a9q.

(2.17)

Now, solving (2.17) simultaneously yielded two fixed points, the disease-free fixed point and the endemic fixed point
in (2.18) and (2.19) respectively.


u∗1
v∗1
w∗

1

q∗1
r∗1
f∗1

 =



1
a2
0
0
0
0
0

 , (2.18)


u∗2
v∗2
w∗

2

q∗2
r∗2
f∗2

 =



a1a9mnd
a1a2a9mnd+(a1a3d−a2a9mn)d

a1a3d−a2a9mn
a1a3md

a1a3d−a2a9mn
a1mnd

−a6(a1a3d−a2a9mn)
a1a9mnd

(a1a3d−a2a9mn)(a7a9−a6a8)
a1a2a9mnd

0


. (2.19)

2.4.1. Stability at disease free fixed point with diffusion speed. At the disease-free fixed point, the basic reproduction
number is determined by using the next generation matrix (NGM).
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J =



0 1 0 0 0 0 0 0
a1(w1 + q) + a2 −c 0 0 a1u1 0 a1u1 0

0 0 0 1 0 0 0 0
−a1(w1 + q) 0 m −c −a1u1 0 −a1u1 0

0 0 0 0 0 1 0 0
0 0 −a3 0 n −c 0 0
0 0 a4 0 a5 0 −p 0
0 0 0 0 a7 0 a8 −a2


,

det(J) =
∣∣J − λI∣∣ = 0,

⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0 0 0 0 0 0
a1(w1 + q) + a2 −c− λ 0 0 a1u1 0 a1u1 0

0 0 −λ 1 0 0 0 0
0 0 m −c− λ −a1u1 0 −a1u1 0
0 0 0 0 −λ 1 0 0
0 0 −a3 0 n −c− λ 0 0
0 0 a4 0 a5 0 −p− λ 0
0 0 0 0 a7 0 a8 −a2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The basic reproduction number with diffusion speed c is derived in the analysis below. The scaled model in (2.17)

has a disease-free fixed point D = (s∗, e∗, i∗, q∗, r∗, f∗) =
(

1
a2
, 0, 0, 0, 0, 0

)
where S(0) represents the initial size of the

population that is susceptible to Covid-19. The asymptotic stability of the disease free fixed point will be analyzed
using the NGM [8]. The matrices, F and V representing new infection terms and the transition terms are, respectively,
given by

F =


0 0 0 0 0
0 0 −a1a2 0 −a1a2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , V =


0 1 0 0 0
m −c 0 0 0
0 0 0 1 0
−a3 0 n −c 0
a4 0 a5 0 −p

 ,

FV−1 =


0 0 0 0 0
0 0 −a1a2 0 −a1a2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

×


0 1 0 0 0
m −c 0 0 0
0 0 0 1 0
−a3 0 n −c 0
a4 0 a5 0 −p


−1

,

FV−1 =


0 0 0 0 0

−a1(a4cn+a3cp+a3a5c)
a2mnp

−a1(a4n+a3p+a3a5)
a2mnp

−a1(a5c+cp)
a2np

−a1(a5+p)
a2np

a1
a2p

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Ro =
∣∣∣−a1(a4cn+a3cp+a3a5c)

a2mnp

∣∣∣ . (2.20)
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2.4.2. Stability at disease-free fixed point without diffusion speed. The basic reproduction number without diffusion
speed c was also derived using the following technique.


a1(w1 + q) + a2 0 a1u1 a1u1 0

0 m −a1u1 −a1u1 0
0 −a3 n 0 0
0 a4 a5 −p 0
0 0 a7 a8 −a2

 ,

F =

0 0 0
0 −a1a2 −a1a2
0 0 0

 , V =

 0 0 0
m 0 0
−a3 n 0

 ,

FV−1 =

 0
0

−a1(a4n+a3p+a3a5)
a2mnp

 .

Ro =
αβ (σ(ψ + δ + κ) + γ(µ+ ε+ ψ + ω))

µ(ε+ µ+ ω)(γ + µ+ σ)(ψ + δ + κ)
. (2.21)

Similarly,

det(J) =
∣∣J − λI∣∣ = 0,

⇒

∣∣∣∣∣∣∣∣∣∣
(a1(w1 + q) + a2)− λ 0 a1u1 a1u1 0

0 m− λ −a1u1 −a1u1 0
0 −a3 n− λ 0 0
0 a4 a5 −p− λ 0
0 0 a7 a8 −a2 − λ

∣∣∣∣∣∣∣∣∣∣
= 0.

The eigen values determined at the Jacobian matrix are:

λ = (a1(w1 + q) + a2) > 0,

λ = m > 0,

λ = n > 0,

λ = −p < 0,

λ = −a2 < 0.

Clearly, the Jacobian matrix without the speed c has three of its eigenvalues positive whereas two of the real parts
of the eigenvalues are negative which indicates an ustable system. Thus by making the unstable system stable the
method of Routh Hurwitz was adapted.

The characteristic equation for the Jacobian matrix above is given by:

P (λ) = λ5 +Bλ4 +Gλ3 +Hλ2 +Kλ+ Y = 0. (2.22)
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2.4.3. Routh Hurwitz stability criterion. Routh Hurwitz criterion is used to tune variable parameters in order to keep
the system in its stable state. Here, the coefficients of the characteristic equation are ordered into an array, also known
as the Routh array. If the values in the first column are positive, then the system is stable.

Given that

B = p− n−m− a1 (q + w1) ,

G = [a1(m+ n− p)− a1a2] (q + w1)− [a1 (a3 − a4)]u1 +m (n− p)− np,
H = [a1(mp+ np−mn)− a1a2(m+ n− p)] (q + w1)− [a1a4n+ a1a3(p+ a5)]u1 +mnp,

K = [a1a2 (mp+ np−mn)− a1mnp] (q + w1) ,

Y = −a1a2mnp (q + w1) .

from (2.22). Then the characteristic equation in (2.22) is summarized into the Routh array which yielded the results
below.

B > 0;
BG−H

B
> 0; H −

(
B(BK − Y )

BG−H

)
> 0.

2.5. Global stability analysis of the model. The global stability of the endemic fixed point to the scaled system
with Dirichlet boundary conditions is established in this subsection. This is possibly done by constructing Lyapunov
functionals for the state populations, Thus the constructed Lyapunov functionals for the model are found based on
the following theorems [9].

Theorem 2.5. Let x(t) = (s(t), e(t), i(t), q(t), r(t), f(t)). Suppose L̇(x) = f(x) has a fixed point x∗, then the Lyapunov
function with the two conditions are required.

(1) L(x(t)) > 0, ∀ x on Ω in Rnand x 6= x∗,

(2) L̇(x(t)) < 0 ∀ x ∈ Ω and x 6= x∗.

Remark 2.6. The definition for the first condition yields the following inequalities.

L (x(t)) = s∗
(
s

s∗2
− ln

s

s∗2

)
e∗2

(
e

e∗2
− ln

e

e∗2

)
+ a5i

∗
(
i

i∗2
− ln

i

i∗2

)
+ q∗2

(
q

q∗2
− ln

q

q∗2

)
+
a6

n
r∗2

(
r

r∗2
− ln

r

r∗2

)
> 0.

L (x(t)) =

(
s− s∗2 ln

s

s∗2

)(
e− e∗2 ln

e

e∗2

)
+ a5

(
i− i∗2 ln

i

i∗2

)
+

(
q − q∗2 ln

q

q∗2

)
+
a6

n

(
r − r∗2 ln

r

r∗2

)
> 0.

Remark 2.7. The definition for the second condition gives the inequality below

L̇(x(t)) =
∂L

∂s
× ds

dt
+
∂L

∂e
× de

dt
+
∂L

∂i
× di

dt
+
∂L

∂q
× dq

dt
+
∂L

∂r
× dr

dt
+
∂L

∂f
× df

dt
< 0.

Then the Lyapunov function constructed at the endemic fixed point requires the two conditions in order to be
asymptotically stable [9].

Theorem 2.8. Let L(u) be a C1 function defined on some domain in Rm; where u(t) is a solution of the scaled
Equations (2.17). Computing the time derivative of L(u(t)), then

dL(u(t))

dt
= ∇L(u).f(u), (2.23)
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and set

W =

∫
Ω

L(u(t, x))dx, (2.24)

where (2.24) is the Lyapunov functional constructed for the model. By Calculating the derivative across the positive
solution of the model, set

dW

dt
=

∫
Ω

∇L(u).f(u)dx+

n∑
i=1

Di

∫
Ω

∂L

∂ui
∆uidx.

dW

dt
=

∫
Ω

a8q
∗
(

4− q

q∗
− q∗

q
− r

r∗
− r∗

r

)
+ a2r

∗
(

5− q∗

q
− qr∗s

q∗rs∗
− qr∗e

q∗re∗
− qr∗i

q∗ri∗
− rs∗e∗i∗

r∗sei

)
dx

−
(
s∗e∗i∗

a2a3

∫
Ω

|∇s|2

s2
+
|∇e|2

e2
+
|∇i|2

i2

)
dx.

Hence,

dW

dt
≤ 0.

It follows that, W is a Lyapunov functional of the scaled model at the endemic fixed point (s∗, e∗, i∗, q∗, r∗) and that
it is valid for the conditions.

3. Numerical Results and Discussion

The results and findings of this study are presented in phase plots of the non-linear differential equations of the
population states in (2.7) [5]. These plots discussed in this section were plotted by using the data presented in Table
III and finite difference methods (FDM). Plots of the spatially dependent population states (S,E and I) are first
presented in the first three figures while that of the states that do not depend on space but only time i.e.(Q,R andF )
are presented in the last plot.

3.1. Plots of the Susceptible population.

Figure 2. Plots of 3-D and 2-D for Susceptible.

2 are the figures above which represent the three dimensional(3-D) and corresponding two dimensional(2-D) plots of
susceptible population. It can be observed from the 3-D plot that, from the onset of the outbreak of the disease, that
is between the times 0 and 100 days, the susceptible population was at its peak but started declining from 200 days.
The deep blue color indicates, the decrease in susceptible population. This can be inferred from the compartmental
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model in flowchart that, the susceptible compartment loses to both the exposed class and natural death and gains
from new births. Although, there are new born individuals being added to the susceptible class on a daily basis, yet
susceptible population decreases drastically at the expense of the new births as they (susceptible persons) interact
with infectious persons. Again, as susceptible individuals travel throughout the domain, there is a constant spread of
corona virus within the domain hence losing susceptible persons to the exposed class.

Figure 3. Plots of 3-D and 2-D for Exposed.

3.2. Plots of the Exposed population. 3 is the phase plots of the exposed state.These figures are in purple and
mint as shown above. At the initial time of the outbreak, there is a lesser infections of the disease. Between 100
and 200 days, the infection was at its peak indicating a large proportion of susceptible population has been exposed
to Covid-19. Again as time increases, the curve declines and falls flat which implies exposed population decreases as
a result of losing to the infectious population or natural death. Making inferences from the compartmental diagram
in 1 or (2.7), the exposed population gains infected persons from susceptible, and have three losses to infectious,
quarantined classes and natural death by the rates.

3.3. Plots of the Infectious population.

It can be observed from the time and space axes of the plot in 4, the infectious figure that, there was no infections
at time zero and space zero (no movement). However, as time started to increase, the infection became prevalent
and peaked between the times of 200 and 300 days. The darker color indicates no disease, while the brighter color
signifies the spread of the disease. Referring to the compartmental diagram in 1 again, it can be seen that infectious
population losses to three other populations Q,R and F . Nevertheless, the one gain from E is a negative gain. Thus
I tends to have massive loss as compared to S and E. After 300 days, the curve does not decline completely since as
at this time, there are still infectious persons in Ghana.

3.4. Plot of quarantined, recovered and fatality states. Before the onset of the outbreak in Ghana, there had
not been any quarantined individuals nor recovered nor death from Covid-19. 5 depicts this dynamic. As the infection
increased, patients of COVID-19 were put to mandatory quarantined, many patients also responded to treatment and
got recovered while the death curve in yellow gradually increased.
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Figure 4. Plots of 3-D and 2-D for Infectious.

Figure 5. Plot of Quarantined,Recovered and Fatality.

4. Conclusion

The study developed a new model SEIQRF model with constant diffusion term in Ghana. This model is a modifi-
cation of the usual SIR and SEIR models in which some authors used to describe the dynamics of Covid-19 [12] and
[17]. The diffusion term incorporated in one dimension. The local stability analysis gave the qualitative solution to
the model. This analysis explained how the basic reproduction number could be calculated at the disease free fixed
point. Also the global stability analysis however was carried out at the endemic fixed points.

A study by [1], used a method of Lyapunov functionals by constructing a delayed partial differential equation. This
study however focused on two conditions for the Lyapunov functionals using the Dirichlet boundary conditions. The
findings from the global stability analysis indicates that, the system is globally asymptotically stable at the endemic
fixed point which concludes that Covid-19 can be under control for a longer period of time. Both analysis ascertained
relevant conclusion for this study as the approximate value of the R0 = 3 can help inform about how an infectious
person is capable of infesting three more susceptible individuals. Though it is assumed that, recovered persons cannot
get reinfected.

For future studies, it is recommended that, researchers modify this work by studying the bifurcation analysis of
covid-19, as many forms like the omicron, delta variant as the virus keeps emerging and infecting the susceptible
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population. They can also consider the diffusion aspect in two or more dimensions as well as considering modeling
using time-fractional diffusion equations.
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The authors declare that there is no known competing financial or otherwise interests that could have appeared to
influence this work.

6. Data Availability

The Covid-19 data from march 2020 to February 2022 from Ghana Health Service were used, which are available
at [6] The data used were initial conditions of the population states in Ghana. The proportions of the population
states and some parameter values were estimated. [4]. Some predicted values of the parameters depending on their
base values as used in [19] were used.

Table 2. Initial conditions of states and their proportions.

State Description Initial Population Population at risk Proportion

S(0) Initial susceptible individuals 31,072,940 31,072,940 0.995889
E(0) Initial exposed individuals 64,630 64,630 0.002071
I(0) Initial infected individuals 5,358 5,358 0.000172
Q(0) Initial quarantined individuals 0 920 0.000029
R(0) Initial recovered individuals 0 56955 0.001825
F (0) Initial removed individuals 0 398 0.000013

Table 3. Table containing parameter values.

Symbols Description Initial

α New birth rate 0.00007162
β Transmission rate from infected persons 0.5500
γ Rate at which exposed persons move into the infectious class 0.0714
σ Rate at which exposed persons get self isolation 0.9900
ψ Rate at which detected infected persons are quarantined 0.0002
ε Recovery rate of being quarantined 0.2000
κ Recovery rate without being quarantined 0.9944
δ Disease induced death rate from infectious class 0.0500
ω Disease induced death rate from quarantined class 0.0056
µ Natural death rate 0.00007868
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