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Abstract
In this paper, by using the techniques of measures of non-compactness and the Petryshyn fixed point theorem,
we investigate the existence of solutions of a Caputo fractional functional integro-differential equation and obtain
some new results. These existing results involve particular results gained from earlier studies under weaker
conditions.
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1. INTRODUCTION

Kuratowski [22] introduced the concept of a measure of noncompactness (MNC). Recently, there have been several
successful attempt to apply the concept of MNC in the study of the existence of solutions of nonlinear integral equations
and integro-differential equations [5-8, 11, 12, 17, 18, 23-25, 31, 34, 35, 37]. The study integro-differential equations is
linked to the wide applications of calculus in mathematical sciences. Therefore, they have received much attention. In
recent years, many researchers have focused on the development of techniques for discussing the solutions of fractional
differential equations and fractional integro-differential equations [3, 4, 9, 10, 14, 19, 26, 36].

Susahab et al. [33] investigated the existence of solutions for fractional integro-differential equations of the type

9
DY (x(®)) = g(9) + / k(0,0 x(0))de, 9 € [0,d],
x(0) = i, i=0.1,....n—1.

(1.1)
Karthikeyan et al. [16], studied the existence existence of solutions for fractional integro-differential equations of the
type
D) = Flrx() + [ Krsx(s)ds, 7 fo.al (1.2
0

Recently, in [9], Dadsetadi and et al. established the existence and uniqueness of the solution of the following nonlinear
fractional Volterra integro-differential equations with the help of Darbo’s fixed point theorem,

9
“DY (x(9) + p(9. x(9))) = A0, x(9)) +q<197x(19),/0 p(ﬁyf)H(X(f)))M), U €[0,d],

X(i)(o):Xiv i1=0,1,...,n— 1.

In 2021, Samei et al. studied the following singular fractional integro-differential equation involving Caputo fractional
g-derivative, for 0 < s < 1,

CDIx(s) = g(s,x<s>, V(6 i [ B dr), (1.4)

(1.3)
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with conditions x(0) = 0 and x(1) = “DIx(7), where x € C([0,1]), o € [1,2), ¢,n,7 € (0,1) [30]. Relevant results
have been presented in other studies [1, 2, 15, 20, 28].

In the research, motivated by the above-mentioned achievements, we discuss new existing results for Caputo frac-
tional Volterra integro-differential equation (FVIDE) of the form

1 /ﬁk(ﬁf,x(u(f)))
L) Jo (@=0Ot

“D? (x(¥) + g(9, x(9))) = (9. x(a(9))) + F(ﬂ,x(ﬂ(ﬂ)%

with the initial conditions
X(l)(o) = Xi» i:O717'7n_17 (16)

presented and proved. Here ¢ D7 is the Caputo’s fractional derivative and x : J, — R is an unknown function and
other functions are known. Also g:J, xR =R, f:Ju xR =R, k:J? xR — R,a,B,u: J, — J, are continuous
functions and x;, i = 0,1,...,n—1, are constants. The main goal of this article is to investigate the new results on the
existence of the solution of Eq. (1.5). For this, we use a fixed point theorem due to Petryshyn that has been presented
as a generalization of Darbo’s fixed point theorem.

The paper is arranged as follows: In section 2, we recall some auxiliary facts and notations of the idea of MNC.
Section 3 is involved in proving the main theorem for Eq. (1.5). In section 4, some examples are given to demonstrate
the applicability of our results. Finally, section 5 concludes our work.

de), 9 € J, =10,d, (1.5)

2. PRELIMINARIES

Definition 2.1 ([21]). The Riemann-Liouville fractional integral of order o > 0 of a function Y, is defined as
1 9
IX0) = oy [ 0= w7 N du 9> (2.1)
(o) Jo

Definition 2.2 ([21]). The Caputo derivative of fractional order non negative o > 0 for a function Y, is defined by

1 19
Cnryo _ n—o—1,,(n) _
D = — — = 1. 2.2
(D) 0) = gy | 0= A =]+ (22)
Lemma 2.3 ([21]). Let 0 > 0 and n = [o] + 1. If x(¥) € C™[0,al, then
n—1 (i) 0
; o o X i
(i) (17°D7x) (7) = x(r) - 3 0t
=0
(ii) (“D7I7x) () = x().
Throughout this paper, assume that E = C(]0,a]) is a Banach space with the standard norm ||-||]. Denote by

Bs = {2z € E :|| z ||< 4} the closed ball centered at the origin 0 of radius §. The symbol 0B; = {z € E : ||z|| = §}
represents a sphere in F and around 0 with radius §.

Definition 2.4 ([22]). Let P C E, so a(P) which is called Kuratowski MNC is
o(P) = inf {cr >0:P=|JP, diam(P,) <o,i=1,2,... n} (2.3)
i=1
Definition 2.5 ([13]). Let P C E and
A(P) = inf {O’ >0 : P has a finite o-net in E} (2.4)
This quantity is called the Hausdorff MNC.

Theorem 2.6 ([29]). Let P,Q C E, then

(i) A(PUQ) = max{A(P), A(Q)},
(ii) A(P+Q) < A(P) +A(Q),
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(i) A(tP)=|t| A(P), t € R,
(iv) A(P) < A(Q) for P C Q,
v) A(éoP) = A(P),
(vi) A(P) is zero if and only if P be precompact.

Theorem 2.7 ([13]). For all bounded sets P from space C(J,)

A(P) = lim supw’*(y, o), (2.5)
o—0 yeP

where w”/s(y, o) is the modulus of continuity of function y on J,.

Definition 2.8 ([27]). Let U : E — E be a continuous mapping so that VP C E with P bounded, U(P) is bounded
and A(UP) < AA(P), A € (0,1). If

A(UP) < A(P), YA(P) >0, (2.6)
then U is called condensing mapping.

Theorem 2.9 ([29], see also [32]). Let U: Bs — E be a condensing mapping so that:
(P) if O(z) = Az, for some x in OBs then A < 1.
Then U has at least one fized point in Bs.

3. MAIN RESULTS

In this section, fixed point theorems are used to check the existence of the solution to FVIDE (1.5). Applying
Lemma 2.3, we get

n—1 @) (7) )
i) = 3 R g(0.3(0)
17 fe x(a0)) 1 [P F(x(B(L), (Hx)())
i e R e (3.1)
where
1 TR, x (L))
(Hxxﬂy_r@)A g de (3.2)

The Eq. (1.5) is equivalent to the above fractional integral equation. So, every solution of (3.1) is a solution of (1.5)
and vice versa. In what follows, we consider Eq. (3.1) under the following conditions:

(L1) g€ C(Jy xR,R), f €C(Ju x R,R),F € C(J, x R, R),k € C(J? x R,R), and
a, B, u: J, — J, are continuous;
(L2) There exist non negative constants ki, ks, ¢1, ¢, and ¢z so that k; < 1 and

lg(¥,w1) — g(9,@1)| < k1lwr — @1,
|F (9, w1, ws) — F(¥, w1, w2)| < e1lwr —wi| + calws — wal; (3.3)

(L3) 3 09 > 0 such that

Mla" MQ(LU
L+A 5
Sw{**1u+@+ru+@}—“
[ [w]
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n—1 . :
Z x@(0) + g(0, xo) 9

il

VI e Ja},

19(0,w1)| V0 € Ja, wi € [—50,50}},

{
M, = sup{\f(ﬁ,wl)\ VY e J,, wi € [—50,50]}7

9B
F(ﬁ,wl,wg)\ VﬂGJa,w1,|w2|_ F(1+§)}

B= sup{\k(ﬂ,e,wl)\ V0,0 E T, w € [—50,50}}. (3.5)

Theorem 3.1. With the conditions (L1)-(L3), Eq. (1.5) with the initial conditions (1.6), has at least one solution in
E=C(J,).

Proof. First, U : Bs, — E is define as follows

L .
3 D+ 570 i g0, x(0))
=0
1 e 1 [P F(6x(B(0), (HX)(0))
/ 19 € 1 - 4t F(g)/o (9 —0)1-o de, (3.6)

then it is checked that U is continuous on Bs,. Considering € > 0 and for arbitrary values x,n € Bs, such that
| x —nl|<e, when ¥ € J, we will have

[(Bx)(9) — (B ()] < |g(0, x(9)) — g(I,n(¥))]
17 F( x(al)) — ( ;n(a(f)))]
+ 5 / ar

; 0D
L7 EX(B(0), (D)) — F(En(B(0), (Hn)(0))
F(cr)/o (0 D1 a
<kl x—nl +mw(faw(%5))
L7 P (B0), (X)) — F(En(B(0), (Hx)(©)]
* r<a>/o (0 D1 a
L7 R (BO), (H)(©) — F(n(B), (Hn)(®)]
r(a)/ (0 01— a
B (00 . Ay PUpy . LA )
I'(1+o0) I'(1+o0) I'(140)T(1+5)

where
w(f.w(a,2) = sup {|F(6:) = F(Em)] : €€ Jooxam € [=do0,80), Ix =l < wlae) },
wiae) =sup {|a(0r) = a(tr)] + 1,62 € Jus s — (a] < e},
w(k,2) = sup { k(9. €,x) = k(0 &,m)] 5 9,0 € Juy X, € (00,00l I =] < e} (3.7)

Now, because the functions f = f(¢,x) and k = k(1J,¢, x) are uniformly continuous on J, x R and J2 x R, respectively,

we conclude w(f,w(a,€)) — 0 and w(k,e) — 0 as ¢ — 0. Hence, the continuity of U on Bj, results. Now, it is shown
an
BE
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U satisfies densifying condition. Let € be an arbitrary positive constant. For x € P C E let 91,15 € J, while ¥; < 95

and o — Y1 < e. Therefore we obtain

)(0 Xo)ﬁz

(192,)((192))

[(Gx)(P2) — (Bx)(91)]

_|_

L (7 f(tx(a(0)) a4+ /192 (6, x(B(D), (HX)(©)) 4,
0

Fw>o (02— 0= " T(o) (02— )17
- Z 00 g(’) = XO)W + g(V1, x(¥))
1 ”lﬂ&x<w») 1 MR x(B), (Hx) (1))
Fw>o 0 - ¢ F@»A (0 — )17 d4
DO+ 50030 (g, g

+ |g(191 X(V1)) — g(¥1, x(92))] + [g(I1, x(V2)) —
)

g(02, x(92))

1|7 fex(a0) Y2 f(lx(a “féxaw>

G e = m—wa“ / 0y — 01—~ ‘

1| EUBO). EWO) L, [P FExB0), (H) ()
*rw>A (92— )1 d”*ﬁl CEn
<_/“z«axww»me<»d4

0 (W —€)1=e
< kix(¥1) = x(92)] + wy(Ja, €)

1) () 1 £l x(0(0))
+N®A (0 — )0 <meU‘“+<>/ 0y - |
+1/% FEXB0). (HO©) _ FEX(B0). (HOO)|

) Jo (02— )1 (0, — )1~

1 [P Fx(B(0), x(s(8), (HX)(£))

*rwyﬂl (05— )1~ ‘dﬂ

For simplicity, we use the following notation:

wgl(Jar2) = sup {g(0,w1)

Then we have

—g(@,w)| |9 =D < e, 9E Ju, wr € [—50,50}}.

[(Bx)(P2) — (Ox)(V1)] < kiw(x, €) + wy(Ja, €)
M1 a' o o Ml o
M o o o M. a
+ m‘“% — 05 + (92 = V1)7} + F(l—io—) (U2 — 1)
< kiw(x,€) +wg(Ja, ) + F?)(El i{lf) r3(€1 yj)

This yields the following estimate

W(UX7€) < klw(Xag)v X € P.

(=)=
E)NE

(3.8)
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Thus, taking the supremum in P, then the limit as e — 0, we obtain A(UP) < k1 A(P). Hence U is a condensing
map. It remains to verify condition (P) of Theorem 2.9. Let x € 0Bs,. If Ux = Ax then we have Ady = A x|| = [|Ox]|,
and with the condition (L3) we get

) + 90,
Bx S0y, (1)
Sl 1 /19 F(&,x(B(0), (HX)(0))
< A1
/ e 61 ) d€+r(g) TR A <, Ve, (3.11)
and hence ||Ux| < 60, this means A < 1. O

The following equation which is the main results of Dadsetadi and et al. [9], would be obtained from Theorem 3.1.

9
Dy (z(9) + g(0,z(9)) = f(9,z(9)) + F(ﬁ,x(ﬁ),/ q(9, 0)H (z(0)) df), ¥ e J, =10,a], (3.12)
0
with the initial conditions
2D(0) =z, i=0,1,---,n—1, (3.13)
Remark 3.2. By employing Riemann-Liouville fractional integrating and Lemma 2.3, Eq. (3.12) changes into
@ (@)
T + g (0,20)
o) = 3 TOHITOT0) iy a))
=0 ’
1 / [, z(6)) / (e )(4))
+ ds + de. (3.14)
F(U ) Jo ( )1
where (yx) (9 fo x(£))dl.

Corollary 3.3. Consider Eq. (3.14) under the following conditions

(M1) There exist non negative constants k1, ks, c1,c2, and c3 so that k1 <1 and

lg(¥,w1) — g(¥,@1)| < kifwr — w1

|F(19,W1,0J2) - F(’l?, thUg)l < cl|w1 — w1| + CQ|OJ2 — ZUQ‘7 (315)
(M1) 3 69 > 0 such that
M a® Mga"

L+ A < 6 3.16

SUP{ + +F(1+0)+F(1+0)}_ 0 (3.16)
where
(Z) @0 .
= sup X ? ( ’XO)W VY9 e Ja},
7l
A—

sup{\gﬂwl VY E Jy, wy € [— 50,50}},
Mlzsup{\fﬁwl VY€ Jywr € [— 50,50}},
{Ir

My = sup § |F (9, wy,ws)| : VI € Ju, wy € [—d0, d0], |wa| < aB},

B = sup {\q(ﬂ,é) (@(0)| : V9,0 € Jo, x € [750,50}}. (3.17)
Then Eq. (3.12) has at least a solution in J,.

Proof. Tt is clear that Eq. (3.12) is a particular case of Eq. (1.5). Here a(9) = (¢) = u(¥) = d,¢ = 1, and
k9,4, x(pn(0))) = q(9,€)H(x(£)). The proof is done similarly to Theorem 3.1. O



574 M. KAZEMI

4. EXAMPLES

Example 4.1. Consider
92 (1 + 219) In (1 + ‘X(\/@)D _19 N ﬂsin(X(l _ ?9))
e

3 +02) 7 3

) Vo 1 /19 19@—5( + fo sin(x(¢?)) + %arctan(l_i_f((z ) dC)
4+ 49T (1/2) (W —0)/ .

¢ps (X(ﬂ) + %e—ﬁ sin(x(ﬂ))) =

for ¥ € J,, with
xP(0) =xi, i=0,1.
Here, Eq. (4.1) is a particular case of Eq. (1.5) with o = %, n=2a=1, and

g(0,w1) = %e‘ﬁ sin(w1),

9, x(a(9))) = 3(119“92) L (+20) 1n(;+ VDD -0
~ Usin(wy) Vo
F(ﬁ,wl,wg) = 3 4+4\/1§W27
_ 1 k(9,4,x(u(6)))
T F(é)/o @-or

(9,6 X(0(0) = 9 (5 + x(0(0),

) = [ e (sin (€2 + gavetan (26250 ) ac.

It is clear that (L1) holds. Also, conditions (L2) and (L3) are satisfied. we have
1
l9(9,w1) = g0, @1)| < 3lwr — oo,
and
1 1
|[F(0, w1, w2) — F(9, @1, @2)| < §|w1 — @+ ez — wal.

Here ky = = < l,¢1 = %,02 = i. Also, suppose that ||x|| < dg,dp > 0 and xo = 0, x1 = 1, then we have

L@ () ,
|X(79)‘ _ Z X (0) +!JZ! (0, xo, )19@ _ <:136_19 Sin(X(ﬂ)))
=0
17l x(e(0) 1 7 F(6X(B0), X(s(0), (HX)(©)
rrm o Y T, 0= O 4 ‘

5 1 1 3 1 1 1[4 &
N . — =6 - -4+2 0 e J,.
3T TEBY D <3+70>+F(5/3+1) <3+4F(1.5) <3+2>)’ e

So, condition (L3) holds if

e (3 3) e 3 (4 5)) <

(4.5)

This shows that dy = 3.7974 is a solution of the above inequality. In view of Theorem 3.1, every problem (4.1) and

(4.2) has at least one solution defined on [0, 1].

(=)=
E)NE
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Example 4.2. Consider
os 1+ VIF+0 Ol +x(@)\ 1, 4  sin@)x(V) (V)]
D (X“M i T ) S TS0 0 T s )

P SR / (e? + 9 cos(@)) (Jy “342 + 91+ 5x(¢*))de)
T +9)" TCM) Jo (=07

de, (4.6)

for ¥ € [0, 1], with
x(0) = xo =0. (4.7)
In view of Eq. (1.5), we have 0 = 0.5, n =a =1, and

_L+VIHD | 91+ x(9))

9(9,x(9)) 1 2 ’
F@, x(a(¥))) = %1967192 SW’
|| 1

6_190.)2,

F(t =
R e N )

1 T ERO ()
=T / oo
B, 6, X(u(0))) = (= + 09 cos(9))x(u(0)),
¢ .
) = [ 2 (14 50 e

Observe that (L1) holds. We show that conditions (L2) and (L3) are satisfied. So,

w2

1
|g(19,0~)1) _9(197w1)| S §|WI - 'CU1|, (48)
and
1 1
|F(19,W1,0J2) — F(ﬁ,wl,w2)| < 6|w1 — w1| + ?|LU2 — ’lUgl. (49)

Here k; = % <l,¢1 = %, cy = % Also, suppose that ||x|| < dp, dp > 0 and xo = 0, then we have

ftx(a®)
(-0

1 9
Ix(9)| = ’X(o) +9(0,x0) = 9(9,x(9)) + & () /0 90/
17 F(x(B0), x(s(9), (HX)(0))
+ o, UEDIE g
5 1 1 1 1 1 1 2 5 1
< <4+250) e (2+650) s <6+71“(1~75) <4+660)> < do, (4.10)

for ¥ € J,. This shows §p = 8.2528 is a solution of the above inequality. In view of Theorem 3.1, every problem (4.6)-
(4.7) has at least one solution defined on [0, 1].

5. CONCLUSION

This article handles the existence of solutions of a Caputo fractional functional integro-differential Equation (1.5) in
the Banach space. With the assistance of the appropriate measure of noncompactness and the Petryshyn fixed point
theorem hypothesis, we demonstrated our current results of the studied problem in Banach algebra. We presented
some examples to illustrate the efficiency of our results.

(&)
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