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Abstract
The problem of minimizing a function of three criteria maximum earliness, total of square completion times, and
total lateness in a hierarchical (lexicographical) method is proposed in this article. On one machine, n independent

tasks (jobs) must planned. It is always available starting at time zero and can only do the mono task (job) at a time

period. Processing for the task (job) j(j = 1, 2, ..., nj) is necessary meantime the allotted positive implementation
time ptj . For the problem of three criteria maximization earliness, a total of square completion times, and total

lateness in a hierarchy instance, the access of limitation that which is the desired sequence is held out. The

Generalized Least Deviation Method (GLDM) and a robust technique for analyzing historical data to project
future trends are analyzed.
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1. Introduction

In real-world situations, making decisions is often complicated by competing standards. Making decisions grows
increasingly challenging as the number of constraints rises. Modeling and developing sequence techniques has always
been a challenge for operations researchers. Several techniques and formulations have been developed for various kinds
of problems [25]. Each duty, sometimes referred to as a task, consists of a basic sequencing challenge, and an execution
time on one of the machines capable of carrying it out, Of course, it should be done in a way that guarantees the
result at the end. Referred to as sequencing, is ideal, satisfies all side constraints, or minimizes the given objective
function [13]. Sequencing theory was developed to overcome problems with, for instance, nurse sequencing [15].

The one machine example is taken into consideration in this work because it provides a useful laboratory for the
development of concepts for heuristics and interactive methods that may be useful in broader models.

There are two methods for handling multi-criteria problems: the hierarchical approach and the simultaneous ap-
proach. The method based on hierarchy. One of the two criteria is the major criterion, while the other is the secondary
criterion. The secret must be to minimize the first performance measurement while using the lowest second perfor-
mance measurement value to defeat similarity in preference sequencing. The simultaneous approach considers two
standards at the same time. This method usually generates all possible sequencings and selects the optimal one ac-
cording to the values of the assembly goal function for both criteria. Most problems using multiple criteria sequencing
are NP-hard [1]. Evolutionary algorithms (EAs) have emerged as a strength optimizing toolset to tackle sequencing
issues [7, 8]. Erne [9] offered an integer programming model heuristic method for minimizing the weighted sum of
total completion time, maximum tardiness, and maximum earliness for a sequencing problem with many criteria and
sequencing-dependent setup time. Nelson et al. [24] provided many sequences for the three-criteria problems, flow
time g, maximum tardiness Tmax, and a number of tardy jobs nT, using mean algorithms.
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Hoogeveen [12] offered a technique for reducing the growing measure of R regularity functions. For the multi-criteria
problem 1/F (Cj ,

∑
Tj , Lmax) [3] provided an efficient approach for discovering the set of all efficient sequences. Re-

search on multi-criteria decision-making problems is extensively covered in [6]. Approximate techniques and math-
ematical programming are employed to handle multi-criteria decision making problems [14]. Using a hierarchical
approach, [4] presented a multi-criteria problem. The multi-criteria problem is solved using a modified branch and
bound technique in [5].

Sequencing σ establishes the completion time Ctj(σ) for each job j so that the jobs do not execute concurrently.
The penalty function gj calculates the freckle set back accomplish j at period Ctj . The totall square completing period∑
C2
tj and maximization costing gmax, where maximization costing means gj(Ctj), is minimized hierarchically (Ctj),

is the multi criteria problem in this article, where gj stands for a cost function, either regular or irregular, routine
implies that gj(Ctj) does not disappear as Ctj rises, adapt Ttmax,

∑
Ltj ,

∑
C2
tj . If not, a measure said to be not

regulator, like Etmax.
The fundamental planning issue can be portrayed as finding for each of the assignments, which are too called

occupations, an execution interim on one of the machines that are able to execute it, such that all side limitations
are met. Obviously, this ought to be wiped out such a way that the resulting solution, which is called a plan, is best
conceivable, so , it minimizes the given objective work. A planning hypothesis has been created to illuminate issues
happening in for occurrence nurture planning.

There are two approaches for the multicriteria issues; the various leveled and the concurrent approaches. Within
the various leveled approach, one of the two criteria is considered as the essential basis and the other one as the
auxiliary criterion. The problem is to play down the essential basis whereas breaking ties in favor of the schedule has
the least auxiliary measure esteem. Within the synchronous approach, two criteria are considered at the same time.
This approach regularly produces all effective plans and chooses the one that yields the finest composite objective
work esteem of the two criteria. Most multicriteria planning issues are NP-hard in nature. A long time, as an effective
optimization device, developmental calculations (EAs) have been presented to illuminate the arrange planning issues.

Within the generation division, planning can be in a more extensive point of view characterized as a preparation
of organizing, controlling, and optimizing work or workloads with respect to finding the ideal plan for a particular
structure and generation framework conditions, the planning is considered a complex combinatorial optimization issue,
generally demonstrated of NP-hard sort. Correct optimization strategies are primarily utilized as they were for the
frameworks which have a particular topology where exceptionally solid disentangling presumptions must be utilized,
so they are not as well pertinent in a real-world situation for more complex frameworks. In that case, surmised
optimization strategies and metaheuristics based on stochastic nearby look approach, machine learning procedures,
particularly manufactured neural systems (ANN), fluffy rationale strategies, and master frameworks, are at the center
of investigation intrigued to discover ideal or near-optimal arrangements rather than correct scientific optimization
models.

In differentiate to other strategies, dispatching rules (we moreover utilize the term need rules all through the taking
after content) speak to the profitable viable and overwhelming approach of the shop floor control within the complex
industry environment, such as, e.g., in semiconductor fabricating for fathoming complex planning issues in real-time.
Need rules are well known since they are characterized by the effortlessness of usage, palatable execution, and a
significantly diminished computational prerequisite. By the by, the choice of appropriate dispatching rules isn’t a
unimportant assignment and depends on the significant key execution pointers.

The impacts created by the chosen need to run the show are for the most part troublesome to clarify by exposi-
tory strategies, in this way the recreation is utilized exceptionally frequently to assess the plan effectiveness within
the complex planning issue. As an outline, within the recreation consider, Vinod and Sridharan [26] assessed the
execution measures based on stream time and lateness of occupations for the distinctive combinations of due-date
task strategies and seven planning choice rules connected in a dynamic job shop framework. Xanthopoulos et al.
[27] compared seventeen dispatching rules within the consider centered on stochastic energetic planning issues with
sequence-dependent setups. Execution measures were cruel work-in-progress, cruel cycle time, cruel lateness, and a
division of late employments.
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Authors of [22] explained the generalized fifth-order KdV like equation with prime number p = 3 via a generalized bi-
linear differential operator. N-lump was investigated to the variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada
equation [21]. Applications of tan(φ/2)-expansion method for the Biswas-Milovic equation [18], the Gerdjikov-Ivanov
model [20], the Kundu-Eckhaus equation [19] and the fifth-order integrable equations [16] were studied. Lump solu-
tions were analyzed to the fractional generalized CBS-BK equation [28] and the (3+1)-D Burger system [10]. The
approximations of one-dimensional hyperbolic equation with non-local integral conditions were constructed by re-
duced differential transform method [23]. The generalized Hirota bilinear strategy by the number prime was used
to the (2+1)-dimensional generalized fifth-order KdV like equation [22]. The traveling wave solutions and analytical
treatment of the simplified MCH equation and the combined KdV-mKdV equations were studied [2].

The structure of this paper is given as under: This paper is formed because the section 2 contains the exponent
taking fundamental ideas and related results which are thoroughly crucial to know the novelty of this paper. In section
3, we investigate 1//Lex(Etmax,

∑n
j=1(Ctj )

2,
∑n
j=1 Ltj) problem. Generalized Least Deviation Method Description is

discussed in section 4. In addition, soft computing results is provided in section 5. Finally, we approach some kind of
results and conclusion in the sixth section.

2. Exponent taking fundamental ideas

Tasks (jobs) j(j = 1, 2, ..., n) have been performed on a one machine in this study using the notation.

Nj : tasks collection.

n: the number of tasks (jobs) in given sequencing.

Ptj : operationally time for task (job) j.

Dtj : the period where the task (job) j has to perfectly completing.

Dtj : baseline for task (job) j.

Ctj : the completing period of task (job) j.

C2tj : the square completing period of task (job) j.

Ct1 = pt1

Ctj = Ct(j−1) + ptj , j = 2, · · · , n.

sj = Dtj − ptj : the slacked period of task (job) j.

Ltj = Ctj −Dtj : the lately of task (job) j.

Etj = max0, Dtj − Ctj : the earliness (premature) of task (job) j.∑
C2tj : totally completing period.

Etmax = maxjEtj : maximization earliness (premature).
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∑
Ltj : totally lately tasks.

SPTO= Sequencing the tasks (jobs) in non-decreasing order of processing time, the Rule of the least processing
time is used.
EDDO= The earliest due date order rule is applied by sequencing the jobs in non-decreasing order of their due dates.

Theorem 2.1. [17] The following minimizes the 1/gmax problem: If there are any unassigned jobs, allocate the one
with the lowest cost to the final unassigned spot on the timetable.

Theorem 2.2. [11] The 1/Etmax problem is resolved by executing the jobs in a non-decreasing order of Dtj − ptj in
accordance with the minimum slack time (MSTO) criteria.

Definition 2.3. [12] Minimization in a hierarchy: The order of relevance for the performance criteria g1, g2, ..., gk is
indexed in decreasing order. First, g1 is reduced, next, g2 is reduced. provided that the sequencing has a minimum g1
value, if required, g1 and g2 must have values that are equal to those found in the previous stage in order for g3 to be
minimized.

3. The 1/Lex(Etmax,
∑n
j=1(Ctj )

2,
∑n
j=1 Ltj) problem

This problem (issue) can be defined as follows:


Min

∑n
j=1 Ltj ,

S.t.,
Etmax = Et∗, Et∗ = Etmax(MSTO),∑n
j=1(Ctj )

2 ≤ Ct∗, Ct∗ ∈ [
∑n
j=1(Ctj )

2(SPTO),
∑n
j=1(Ctj )

2(MSTO)].

(3.1)

Given that Etmax is the most crucial function in this problem (3.1) and should be at its best, next way EtCtLt
algorithm provides desired solution (outcome).
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Algorithm 1 Algorithm (EtCtLt).

Move 1: Solving Etmax problem for finding Et∗.
Move 2: Ascertain Dtj = Dtj + Et∗ for all j ∈ Nj, where Nj = {1, 2, . . . , n}.
Move 3: Let h =

∑n
j=1 ptj.

Move 4: Find the task (job) j∗ ∈ Nj that verifies Dtj∗ ≤ h (choose the task with the minimum

processing time if there is a tie, and if there is still a tie, select the task with the earliest
baseline).
Move 5: Set h = h− ptj∗ , r = r + 1, Nj = Nj \ {j∗}, and update the sequence σ = (σ, σ(r)). If

Nj = ∅, go to Move 6; otherwise, go to Move 4.
Move 6: In the sequence σ, compute Etmax,

∑n
j=1(Ctj)

2, and
∑n

j=1 Ltj.

Example 3.1. Considering the problem (3.1) with the following inputs.

j 1 2 3 4 5
Ptj 6 3 7 10 10
Dtj 7 15 17 11 10

E∗ = 0, h = 36.

Dt1 = 7, Dt2 = 15, Dt3 = 17, Dt4 = 11, Dt5 = 10

r h t∗

r1 36 2j
r2 33 1j
r3 27 3j
r4 20 5j
r5 10 4j

Sequencing (2j, 1j, 3j, 5j, 4j) getting (Etmax,
∑n
j=1(Ctj)

2,
∑n
j=1 Ltj) = (12, 2318, 31) based on an algorithm (EtCtLt).
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4. Laplace transform

Laplace transform F (s) is given as

F (s) = L(f(x)) =

∫ ∞
0

f(x)e−sxdx, (4.1)

a function f(x) determined for 0 < x < l and at least for those s for which the integral converges. On the interval
[0, 1), f(x) be a continuous function which is of exponential order, that is, for some and x > 0

sup
|f(x)|
ecx

<∞. (4.2)

In this case the Laplace transform (4.1) exists for all s > c. The Laplace transforms of Caputo fraction derivatives for
m− 1 < α ≤ m,m ∈ N

L[Dαf(x)] =
smF (s)− sm−1F (0)− sm−2F ′(0)− ...− f (m−1)(0)

sm−α
. (4.3)

We can change FDEs into algebraic equations. Then, we can achive the unknown Laplace function F (s) by solving
this algebraic equations.

4.1. Inverse Laplace transform. The Inverse Laplace Transform of F (s) is given as:

f(x) = L−1[F (s)] =
1

2πi
lim
T→∞

∫ T+iσ

T−iσ
esxF (s)ds, (4.4)

where σ is large enough that F (s) is determined for the real part of s ≥ σ. Also, we define special functions Mittag-
Leffler functions and the generalized Mittag-Leffler functions which used in fractional calculus.

For α, β > 0 and z ∈ C

Eα(z) =

∞∑
n=0

zn

Γ(nα+ 1)
, (4.5)

Eα,β(z) =

∞∑
n=0

zn

Γ(nα+ β)
. (4.6)

Theorem 4.1. (Schouten-Van der Pol Theorem): Consider a function f(x) which has the Laplace transform F (s)
which is analytic in the half-plane Re(s) > s0. We can use this knowledge to find g(x) whose Laplace transform G(s)
equals F (ϕ(s)), where ϕ(s) is also analytic for Re(s) > s0. This means that if

G(s) = F (ϕ(s)) =

∫ ∞
0

f(τ) exp(−ϕ(s)τ)dτ = Lf(τ); s→ ϕ(s),

and

g(x) =
1

2πi

∫ c+iσ

c−iσ
esxF (ϕ(s))ds = L−1[F (ϕ(s))],

then

g(x) =

∫ ∞
0

f(τ)

(
1

2πi

∫ c+iσ

c−iσ
exp(−ϕ(s)τ)esxds

)
dτ

=

∫ ∞
0

f(τ)
(
L−1[exp(−ϕ(s)τ)]

)
dτ.
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Theorem 4.2. Let F (s) be analytic function in some half -plane. The condition F (s) = O(|s|k), k an integer more
large or equal zero, in this half-plane (with the possible exception of a circular disk centered at the origin) is necessary
and sufficient to assert that F (s) can not be represented as L-transform of some distribution T of D′0. We now present
some interesting applications of the above two theorems.

Lemma 4.3. The following relationships hold true
1-

L−1{e−t
√
4s2α−5} = L−1{e−2t

√
s2α− 5

4 } =

∫ ∞
0

e
5
4 τ

t√
πτ3

e−
t2

τ

( ∞∑
n=0

(−τ)nx−2αn−1

n!Γ(−2αn)

)
dτ

=
t√
π

∞∑
n=0

(−1)nx−2αn

n!Γ(−2αn)

∫ ∞
0

τn−
3
2 e

5
4 τ−

t2

τ dτ := F (x, t).

2-

L−1{e
−t
√
4s2α−5

s− 1
} =

∫ x

0

ex−uF (u, t)du.

3-

L−1{s
2α−2e−t

√
4s2α−5

1− s2α
} = −

∫ x

0

(x− u)E2α,2((x− u)2α)F (u, t)du.

where Eα is Mittag-Leffler function.

Proof. 1-To calculate the inverse

L−1{e−t
√
4s2α−5} = L−1{e−2t

√
s2α− 5

4 }.
We solve the following problem

L−1{e−2t
√
s− 5

4 }.
We know

L−1{e−a
√
s} =

a

2
√
πx3

e−
a2

4x },

then

L−1{e−2t
√
s} =

2t

2
√
πx3

e−
4t2

4x =
t√
πx3

e−
t2

x }.

So, by applying the shifting theorem of Laplace transforms

L−1{e−2t
√
s− 5

4 } = e
5
4x

t√
πx3

e−
t2

x .

Now we must obtain the inversion

L−1{e−t
√
4s2α−5} = L−1{e−2t

√
s2α− 5

4 }.
for this work, we can apply Theorem 4.1.

By setting

F (s) = e−2t
√
s− 5

4 , f(τ) = e
5
4 τ

t√
πτ3

e−
t2

τ .

And ϕ(s) = s2α, we get

L−1{e−t
√
4s2α−5} = L−1{e−2t

√
s2α− 5

4 } =

∫ ∞
0

e
5
4 τ

t√
πτ3

e−
t2

τ

(
L−1{e−τs

2α

}
)
dτ.
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To obtain L−1{e−τs2α}, we can apply Theorem 4.2 by considering F (s) = exp(−sα), where α > 1. Set s = reiθ with
r = |s| > 0,−π < θ < π. Then F (s) = exp(−rαeiαθ) and |F (s)| = exp(−rα cos(αθ)). Since α > 1 we can choose
0 < θ < π

2 such that cos(αθ) < 0. This shows that |F (s)| cannot be bounded by K|s|k in any half-plane Rs > a.

Therefore by Theorem 4.2, exp(−sα) is not a Laplace transform of a function. Thus for 0 < α < 1
2 , we have

L−1{e−τs
2α

} = L−1

{ ∞∑
n=0

(−τ)n

n!s−2αn

}
=

∞∑
n=0

(−τ)n

n!

[
1

s−2αn

]
=

∞∑
n=0

(−τ)nx−2αn−1

n!Γ(−2αn)
.

Therefore

L−1{e−t
√
4s2α−5} = L−1{e−2t

√
s2α− 5

4 } =

∫ ∞
0

e
5
4 τ

t√
πτ3

e−
t2

τ

( ∞∑
n=0

(−τ)nx−2αn−1

n!Γ(−2αn)

)
dτ

=
t√
π

∞∑
n=0

(−1)nx−2αn

n!Γ(−2αn)

∫ ∞
0

τn−
3
2 e

5
4 τ−

t2

τ dτ := F (x, t).

2- For obtaining

L−1{e
−t
√
4s2α−5

s− 1
},

we can use the convolution theorem in Laplace transform as

L−1

{
e−t
√
4s2α−5

s− 1

}
= L−1

{
1

s− 1
∗ L−1{e−t

√
4s2α−5}

}
= ex ∗ F (x, t) =

∫ x

0

ex−uF (u, t)du.

3- For solving

L−1

{
s2α−2e−t

√
4s2α−5

1− s2α

}
.

Since

L−1{ s
2α−2

1− s2α
} = −xE2α,2(x2α),

then, using the convolution theorem gives

L−1

{
s2α−2e−t

√
4s2α−5

1− s2α

}
= −

∫ x

0

(x− u)E2α,2((x− u)2α)F (u, t)du.

�
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5. Application of fractional Telegraph equation

In this section, the presented method in the paper is applied some linear fractional differential equations and it
gives an exact solution. Take the following fractional Telegraph equation as

∂2αu

∂x2α
=
∂2u

∂t2
+
∂u

∂t
+ u, t ≥ 0, 0 < α ≤ 1, (5.1)

u(0, t) = e−t, u(x, 0) = ex, ux(0, t) = e−t, t ≥ 0, 0 < x < 1. (5.2)

As mentioned above, taking Laplace transform of both sides of (5.1) gives,

L

[
∂2αu

∂x2α

]
= s2αu(s, t)− s2α−1ux(0, t)− s2α−2u(0, t). (5.3)

Utilizing given the initial condition Eq. (5.1) gives

L
[
D2α
xx

]
= s2αu(s, t)− s2α−1e−t − s2α−2e−t.

But

L

[
∂2u

∂t2

]
=

∂2

∂t2
[Lu(x, t)] =

∂2u(s, t)

∂t2
.

Consequently, we have

s2αu(s, t)− s2α−1e−t − s2α−2e−t =
∂2u(s, t)

∂t2
+
∂u(s, t)

∂t
+ u(s, t).

Consequently, we have:

∂2u(s, t)

∂t2
+
∂u(s, t)

∂t
+ u(s, t)− s2αu(s, t) = −s2α−1e−t − s2α−2e−t.

Hence

∂2u(s, t)

∂t2
+
∂u(s, t)

∂t
+ (1− s2α)u(s, t) = −s2α−2(1 + s)e−t.

By solving the above equation as homogenous we get to characteristic equation

M2 +M + (1− s2α) = 0.

Hence, we have Hence

M =
−1±

√
−1− 4(1− s2α)

2
=
−1±

√
−5 + 4s2α

2
,

uh = e−
1
2 t
[
A(s)et

√
4s2α−5 +B(s)e−t

√
4s2α−5

]
,

and

up =
−1

D2
t +Dt + (1− s2α)

[s2α−2(1 + s)e−t] =
−e−t

1− s2α
s2α−2(1 + s).

Since the solution must bounded consequently we have

B(s)− 1

1− s2α
s2α−2(1 + s) =

1

s− 1
,

or

B(s) =
1

1− s2α
s2α−2(1 + s) +

1

s− 1
,
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So that, we get

u(s, t) = e−
1
2 t

[
1

1− s2α
s2α−2(1 + s) +

1

s− 1

]
e−t
√
4s2α−5 − e−t

1− s2α
s2α−2(1 + s),

which includes that

u(x, t) = e−
1
2 t

(∫ x

0

ex−uF (u, t)du− 2

∫ x

0

(x− u)E2α,α(x− u)2αF (u, t)du

)
,

6. Conclusion

For the problem (issue) of multi-criteria sequencing 1/(Etmax,
∑n
j=1(Ctj )

2,
∑n
j=1 Ltj), for the hierarchical (lexi-

cographical) scenario, an approach to find the best solution (outcome) is put forth. It is hoped that this paper’s
contribution would encourage more study in the zone of multi-measuring ruling take on, particularly three hierarchi-
cally ranked criteria. Experimentation with the following machine sequencing problem will be a future research topic:
1/Lex(Etmax,

∑n
j=1 Ltj ,

∑n
j=1 Ctj ). In addition, we have rigorously analyzed time series data from various domains,

including environmental and epidemiological fields, employing the Generalized Least Deviation Method to identify the
optimal model order for forecasting. Our results demonstrate that the complexity required for a predictive model is
highly contingent on the dataset’s characteristics, such as the nature of the data, its underlying dynamics, and the
presence of non-linear patterns, rather than solely on the quantity of data available.
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