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Abstract
The problem of minimizing a function of three criteria maximum earliness, total of square completion times

and total lateness in a hierarchical (lexicographical) method is proposed in this article. On one machine, n
independently tasks (jobs) must planned. It is always available starting at time zero and can only do mono task

(job) at time period. Processing for task (job) j(j = 1, 2, ..., nj) is necessary meantime the allotted positively

implementation time ptj . For the problem of three criteria maximization earliness, total of square completion
times, and total lateness in a hierarchy instance, the access of limitation that which is desired sequence is hold out.

The Generalized Least Deviation Method (GLDM), a robust technique for analyzing historical data to project

future trends is analyzed.
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1. Introduction

In real-world situations, making decisions is often complicated by competing standards. Making decisions grows in-
creasingly challenging as the number of constraints rises. Modeling and developing sequence techniques has always
been a challenge for operations researchers. Several techniques and formulations have been developed for various kinds
of problems [1]. Each duty, sometimes referred to as a task, consists of a basic sequencing challenge, an execution time
on one of the machines capable of carrying it out, Of course, it should be done in a way that guarantees the result at
the end. referred to as a sequencing, is ideal, satisfies all side constraints, or minimizes the given objective function
[2]. Sequencing theory was developed to overcome problems with, for instance, nurse sequencing [3].
The one machine example is taken into consideration in this work because it provides a useful laboratory for the
development of concepts for heuristics and interactive methods that may be useful in more broader models.
There are two methods for handling multi-criteria problems: the hierarchical approach and the simultaneous approach.
the method based on hierarchy. One of the two criteria is the major criterion, while the other is the secondary crite-
rion. The secret must be to minimize the first performance measurement while using the lowest second performance
measurement value to defeat similarity in preference sequencing. The simultaneous approach considers two standards
at the same time. This method usually generates all possible sequencings and selects the optimal one according to the
values of the assembly goal function for both criteria. Most problems using multiple criteria sequencing are NP-hard [4].
Evolutionary algorithms (EAs) have emerged as a strength optimizing toolset to tackle sequencing issues [5, 6]. Erne
[7] offered an integer programming model heuristic method for minimizing the weighted sum of total completion time,
maximum tardiness, and maximum earliness for a sequencing problem with many criteria and sequencing-dependent
setup time. Nelson et al. [8] provided many sequences for the three-criteria problems, flow time g, maximum tar-
diness Tmax, and number of tardy jobs nT, using mean algorithms. Hoogeveen [9] offered a technique for reducing
the growing measure of R regularity functions. For the multi-criteria problem 1/F (Cj ,

∑
Tj , Lmax) [10] provided an
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efficient approach for discovering the set of all efficient sequences. Research on multi-criteria decision-making prob-
lems is extensively covered in [11]. Approximate techniques and mathematical programming are employed to handle
multi-criteria decision making problems [12]. Using a hierarchical approach, [13] presented a multi-criteria problem.
The multi-criteria problem in is solved using a modified branch and bound technique in [14].
A sequencing σ establishes the completion time Ctj(σ) for each job j so that the jobs do not execute concurrently. The
penalty function gj calculates the freckle set back accomplish j at period Ctj . The totally square completing period∑
C2

tj and maximization costing gmax, where maximization costing means gj(Ctj), is minimized hierarchically (Ctj),
is the multi criteria problem in this article , where gj stands for a cost function, either regular or irregular, routine
implies that gj(Ctj) does not disappear as Ctj rises, adapt Ttmax,

∑
Ltj ,

∑
C2

tj . If not, a measure said to as not
regulator, like Etmax.
The fundamental planning issue can be portrayed as finding for each of the assignments, which are too called occupa-
tions, an execution interim on one of the machines that are able to execute it, such that all side limitations are met;
obviously, this ought to be wiped out such a way that the resulting solution, which is called a plan, is best conceivable,
that’s , it minimizes the given objective work. Planning hypothesis has been created to illuminate issues happening
in for occurrence nurture planning.
There are two approaches for the multicriteria issues; the various leveled and the concurrent approach. Within the
various leveled approach, one of the two criteria is considered as the essential basis and the other one as the auxiliary
criterion. The problem is to play down the essential basis whereas breaking ties in favor of the schedule that has the
least auxiliary measure esteem. Within the synchronous approach, two criteria are considered at the same time. This
approach regularly produces all effective plans and chooses the one that yields the finest composite objective work
esteem of the two criteria. Most multicriteria planning issues are NP-hard in nature. In later a long time, as a effective
optimization device, developmental calculations (EAs) have been presented to illuminate the arrange planning issues.
Within the generation division, planning can be in a more extensive point of view characterized as a prepare of organiz-
ing, controlling, and optimizing work or workloads With respect to finding the ideal plan for a particular structure and
generation framework conditions, the planning is considered as a complex combinatorial optimization issue, generally
demonstrated of NP-hard sort. Correct optimization strategies are primarily utilized as it were for the frameworks
which have a particular topology where exceptionally solid disentangling presumptions must be utilized, so they are not
as well pertinent in a real-world situation for more complex frameworks. In that case, surmised optimization strategies
and metaheuristics based on stochastic nearby look approach, machine learning procedures, particularly manufactured
neural systems (ANN), fluffy rationale strategies, and master frameworks, are at the center of investigate intrigued to
discover ideal or near-optimal arrangements rather than correct scientific optimization models.
In differentiate to other strategies, dispatching rules (we moreover utilize the term need rules all through the taking
after content) speak to the profitable viable and overwhelming approach of the shop floor control within the complex
industry environment, such as, e.g., in semiconductor fabricating for fathoming complex planning issues in real-time.
Need rules are well known since they are characterized by the effortlessness of usage, palatable execution, and a
significantly diminished computational prerequisite. By the by, the choice of appropriate dispatching rules isn’t a
unimportant assignment and depends on the significant key execution pointers.
The impacts created by the chosen need run the show are for the most part troublesome to clarify by expository strate-
gies, in this way the recreation is utilized exceptionally frequently to assess the plan effectiveness within the complex
planning issue. As an outline, within the recreation consider, Vinod and Sridharan [17] assessed the execution mea-
sures based on stream time and lateness of occupations for the distinctive combinations of due-date task strategies and
seven planning choice rules connected in a dynamic job shop framework. Xanthopoulos et al. [18] compared seventeen
dispatching rules within the consider centered on stochastic energetic planning issues with sequence-dependent setups.
Execution measures were cruel work-in-progress, cruel cycle time, cruel lateness, and a division of late employments.
Authors of [19] explained the generalized fifth-order KdV like equation with prime number p = 3 via a generalized
bilinear differential operator. N-lump was invstigated to the variable-coefficient CaudreyDoddGibbonKoteraSawada
equation [20]. Applications of tan(φ/2)-expansion method for the BiswasMilovic equation [21], the GerdjikovIvanov
model [22], the KunduEckhaus equation [23] and the fifth-order integrable equations [24] were studied. Lump solu-
tions were analyzed to the fractional generalized CBS-BK equation [25] and the (3+1)-D Burger system [26]. The
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approximations of one-dimensional hyperbolic equation with non-local integral conditions were constructed by reduced
differential transform method [27]. The generalized Hirota bilinear strategy by the number prime was used to the
(2+1)-dimensional generalized fifth-order KdV like equation [28]. The traveling wave solutions and analytical treat-
ment of the simplified MCH equation and the combined KdVmKdV equations were studied [29].
The structure of this paper is given as under:This paper is formed because the section 2 contains the exponent taking
fundamental ideas and related results which are thoroughly crucial to know the novelty of this paper. In section 3,
we investigate 1//Lex(Etmax,

∑n
j=1(Ctj )2,

∑n
j=1 Ltj) problem. Generalized Least Deviation Method Description is

discussed in section 4. In addition, soft computing results is provided in section 5. Finally, we approach some kind of
results and conclusion in sixth section.

2. Exponent taking fundamental ideas

Tasks (jobs) j(j = 1, 2, ..., n) have been performed on a one machine in this study using the notation.

Nj : tasks collection.

n: the number of tasks (jobs) in given sequencing.

Ptj : operationally time for task (job) j.

Dtj : the period where the task (job) j has to perfectly completing.

Dtj : baseline for task (job) j.

Ctj : the completing period of task (job) j.

C2tj : the square completing period of task (job) j.

Ct1 = pt1

Ctj = Ct(j−1) + ptj , j = 2, , n.

sj = Dtj − ptj : the slacked period of task (job) j.

Ltj = Ctj −Dtj : the lately of task (job) j.

Etj = max0, Dtj − Ctj : the earliness (premature) of task (job) j.∑
C2tj : totally completing period.

Etmax = maxjEtj : maximization earliness (premature).∑
Ltj : totally lately tasks.

SPTO= Sequencing the tasks (jobs) in non-decreasing order of processing time, the Rule of the least processing time
is used. EDDO= The earliest due date order rule is applied by sequencing the jobs in non-decreasing order of their
due dates.

Theorem 2.1. [15] The following minimizes the 1/gmax problem: If there are any unassigned jobs, allocate the one
with the lowest cost to the final unassigned spot on the timetable.
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Theorem 2.2. [16] The 1/Etmax problem is resolved by executing the jobs in a non-decreasing order of Dtj − ptj in
accordance with the minimum slack time (MSTO) criteria.

Definition 2.3. [9] Minimization in a hierarchy: The order of relevance for the performance criteria g1, g2, ..., gk is
indexed in decreasing order. First, g1 is reduced, next, g2 is reduced. provided that the sequencing has a minimum g1
value, if required, g1 and g2 must have values that are equal to those found in the previous stage in order for g3 to be
minimized.

3. The 1/Lex(Etmax,
∑n

j=1(Ctj )2,
∑n

j=1 Ltj) problem

This problem (issue) can be defined as follows:
Min

∑n
j=1 Ltj ,

S.t.,
Etmax = Et∗, Et∗ = Etmax(MSTO),∑n

j=1(Ctj )2 ≤ Ct∗, Ct∗ ∈ [
∑n

j=1(Ctj )2(SPTO),
∑n

j=1(Ctj )2(MSTO)].

(3.1)

Given that Etmax is the most crucial function in this problem (3.1) and should be at its best, next way EtCtLt
algorithm provides desired solution (outcome).

Algorithm (EtCtLt)
Move 1: Solving Etmax problem for finding Et∗.
Move 2: Ascertain Dtj = Dtj + Et∗∀j ∈ Nj , Nj = 1, 2, , n.
Move 3: Letting h =

∑n
j=1 ptj .

Move 4: Finding the task (job) j∗ ∈ Nj verifies Dtj∗ ≤ h (choose the task with the minimum processing time if there
is a tie, and if there is still a tie, select the task with the earliest baseline).
Move 5: Set h = h− ptj∗ , r = r + 1, Nj = Nj − j∗, sequencing σ = (σ, σ(r)), if Nj = ϕ go to move6, otherwise go to
move 4.
Move 6: In sequencing σ computing Etmax,

∑n
j=1(Ctj)

2,
∑n

j=1 Ltj .

Example 3.1. Considering the problem (3.1) with the following inputs.

j 1 2 3 4 5
Ptj 6 3 7 10 10
Dtj 7 15 17 11 10

E∗ = 0, h = 36.

Dt1 = 7, Dt2 = 15, Dt3 = 17, Dt4 = 11, Dt5 = 10

r h t∗

r1 36 2j
r2 33 1j
r3 27 3j
r4 20 5j
r5 10 4j

Sequencing (2j, 1j, 3j, 5j, 4j) getting (Etmax,
∑n

j=1(Ctj)
2,
∑n

j=1 Ltj) = (12, 2318, 31) based on an algorithm (EtCtLt).
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4. Generalized Least Deviation Method Description

A time series forecasting model employing the Generalized Least Deviation Method (GLDM) is considered. The
time series dataset is characterized as follows:

{yt}Tt=1 ⊂ R, (4.1)

where yt denotes a real-valued observation at time index t.

The GLDM Estimator is utilized to determine an optimal set of coefficients {aj}n(m)
j=1 , which minimize the objective

function F (a), defined as the sum of the arctangents of absolute deviations:

F (a) =

T∑
t=1

arctan

∣∣∣∣∣∣yt −
n(m)∑
j=1

ajgj({yt−k}mk=1)

∣∣∣∣∣∣ , (4.2)

with each function gj representing a unique combination of preceding values up to the m-th order.
Within the quasi-linear model framework, the functions gj capture the influence of historical data. These functions

are defined as follows:

gj({yt−k}mk=1) = yt−j +

m∑
p=1
p 6=j

yt−j · yt−p +

m∑
p=1

y2t−p, (4.3)

where yt−j signifies the lagged value of the series at time t − j. The first summation models the interaction effects
between different lagged values, while the second summation encapsulates the non-linear effects through squared terms
of the lagged values. These elements allow for the modeling of complex dynamics within time series data.

The total count of coefficients for anm-th order model, which includes linear, interaction, and quadratic components,
is described by the following expression:

n(m) = m+

(
m

2

)
+m =

m(m+ 3)

2
. (4.4)

The structure and roles of these coefficients in the modeling process are detailed as follows:

• The term m refers to the linear coefficients, correlating each historical value with the subsequent predicted
value.

• The term
(
m
2

)
represents the interaction coefficients, denoting the pairwise combinations between historical

values, facilitating the detection of dependencies and interactions at different time lags.
• The final term m denotes the quadratic coefficients, accommodating non-linear trends by reflecting the self-

interactions of the historical values.

4.1. Second-Order Time Series Forecasting Model. A time series forecasting model that incorporates interaction
and non-linear terms up to the second order is considered. For a model where m = 2, it is determined that the
total number of coefficients is five. These coefficients comprise the linear terms, their squares, and the interaction
term between them, which are critical for modeling the linear tendencies and capturing the potential synergistic and
quadratic effects within the time series data.

For a second-order model (m = 2), the coefficients and their corresponding terms are enumerated as follows:

• Linear terms: yt−1, yt−2,
• Squared terms: y2t−1, y2t−2,
• Interaction term: yt−1 · yt−2.

The generalized function gj for this model is explicitly defined in the following manner:

gj({yt−k}mk=1) =


yt−j for j = 1, 2,

yt−1 · yt−2 for j = 3,

y2t−j+2 for j = 4, 5.

(4.5)
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In this configuration, g1 and g2 are assigned to the first and second linear terms, respectively, g3 to the interaction
term, and g4 and g5 to the squared terms of the first and second variables, respectively. This structural arrangement
effectively accounts for both the direct influences and the interactions between the past two values, as well as their
individual non-linear influences on the present value.

4.2. Third-Order Time Series Forecasting Model. Interactions between past values in a time series are essential
for capturing the dynamics and dependencies inherent within the data. In a third-order model, denoted by m = 3,
linear, squared, and interaction terms are included, facilitating the modeling of complex non-linear behaviors. This
comprehensive approach enables the effective capture of intricacies and interdependencies among historical values.

For a third-order model (m = 3), the coefficients and their corresponding terms are outlined as follows:

• Linear terms: yt−1, yt−2, yt−3,
• Squared terms: y2t−1, y2t−2, y2t−3,
• Interaction terms: yt−1 · yt−2, yt−1 · yt−3, yt−2 · yt−3.

The functions gj representing these terms in the third-order model are systematically defined as follows:

gj({yt−k}mk=1) =



yt−j for j = 1, 2, 3,

y2t−j+3 for j = 4, 5, 6,

yt−1 · yt−2 for j = 7,

yt−1 · yt−3 for j = 8,

yt−2 · yt−3 for j = 9.

(4.6)

This model structure, incorporating linear, squared, and interaction terms, ensures a robust representation of the
time series dynamics. The inclusion of these terms aids in modeling more complex nonlinear relationships that linear
terms alone may not capture.

The complete mathematical model of the time series, utilizing the coefficients defined above, is given by the following
equation:

yt =

9∑
j=1

ajgj({yt−k}mk=1) + εt, t = 1, 2, . . . , T (4.7)

Here, εt denotes the error term at time t, representing the unpredictable component not explained by the model.

4.3. Fourth-Order Time Series Forecasting Model. A time series forecasting model that leverages the intricacies
of linear, interaction, and non-linear dynamics up to the fourth order is considered. In a fourth-order model, denoted
by m = 4, the total count of coefficients is identified as 14. This ensemble encompasses the linear terms for the four
preceding observations, their squared counterparts, and the six unique interaction terms between these observations,
thereby encapsulating a comprehensive dynamic range within the time series.

For a fourth-order model (m = 4), the coefficients and their corresponding terms are explicitly associated as follows:

• Linear terms: yt−1, yt−2, yt−3, yt−4
• Squared terms: y2t−1, y2t−2, y2t−3, y2t−4
• Interaction terms: All distinct pairwise combinations of the four variables

With 4 linear and 4 squared terms, and
(
4
2

)
= 6 interaction terms, the model integrates a total of 14 coefficients.
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The specific formulation of the function gj within the model, which embraces both linear and interaction terms, is
systematically defined as follows:

gj({yt−k}mk=1) =



yt−j for j = 1, 2, 3, 4,

yt−1 · yt−2 for j = 5,

yt−1 · yt−3 for j = 6,

yt−1 · yt−4 for j = 7,

yt−2 · yt−3 for j = 8,

yt−2 · yt−4 for j = 9,

yt−3 · yt−4 for j = 10,

y2t−j+6 for j = 11, 12, 13, 14.

(4.8)

In this model, g1 through g4 correspond to the linear terms, g5 through g10 to the interaction terms, and g11
through g14 to the squared terms. This elaborate model configuration facilitates an extensive incorporation of both
the progressive and the interactive effects of the past observations, along with their individual non-linear influences,
thus significantly augmenting the predictive capabilities of the time series model.

4.4. Fifth-Order Time Series Forecasting Model. A comprehensive time series forecasting model that integrates
both linear and nonlinear dynamics up to the fifth order is considered. Within a fifth-order framework, symbolized
by m = 5, a constellation of 20 coefficients is identified. These coefficients comprise the linear terms for the five
antecedent observations, their individual squared terms, and the interaction terms among these observations, thereby
capturing a multidimensional dynamic within the time series.

For a fifth-order model (m = 5), the assortment of coefficients is meticulously associated with their respective terms
as cataloged below:

• Linear terms: yt−1, yt−2, yt−3, yt−4, yt−5,
• Squared terms: y2t−1, y2t−2, y2t−3, y2t−4, y2t−5,
• Interaction terms: All distinct pairwise combinations of the five variables.

Accounting for 5 linear terms, 5 squared terms, and
(
5
2

)
= 10 interaction terms, the model features an aggregate of

20 coefficients.
The formalized expression of the function gj within the model, encapsulating both the linear and interaction terms,

is articulated as follows:

gj({yt−k}mk=1) =



yt−j for j = 1, . . . , 5,

yt−1 · yt−2 for j = 6,

yt−1 · yt−3 for j = 7,
...

yt−4 · yt−5 for j = 14,

y2t−j+9 for j = 15, . . . , 20.

(4.9)

In this delineation, g1 to g5 are assigned to the linear terms, g6 to g14 to the interaction terms, and g15 to g20 to the
squared terms. This expansive framework not only contemplates the sequential impact of the prior observations but
also scrutinizes the combinative and quadratic interactions, thereby substantively refining the forecasting strength of
the time series analysis.

5. Soft computing Results

Table 1 summarizes the number of coefficients required for time series forecasting models of varying orders, from
first to fifth. Specifically, the table enumerates the coefficients as 2, 5, 9, 14, and 20 for the first through fifth orders,

respectively. This progression is governed by the formula n(m) = 2m +
(
m
2

)
= m(m+3)

2 , which calculates the total
count of coefficients including linear, interaction, and quadratic terms as the model order increases. The structured
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increase in coefficients highlights the model’s growing complexity and capacity to encapsulate more intricate dynamics
within the time series data.

Table 1. Number of Coefficients by Order.

Order First Second Third Fourth Fifth
Coefficients 2 5 9 14 20

n(m) = 2m+
(
m
2

)
= m(m+3)

2

The datasets employed in our analysis are summarized in Table 2, which details their respective lengths. The
datasets include NDVI with 15 data points, Temperature with 9,939 data points, Wind Speed recorded with 50,530
data points, and COVID-19 death cases in the Russian Federation, which consist of 882 data points. This variation
in dataset sizes reflects the diverse scope and scale of environmental and epidemiological data considered in our time
series forecasting models. The extensive data length, particularly for Temperature and Wind Speed, provides a robust
basis for statistical analysis and model validation.

Table 2. List of used datasets and their lengths.

Dataset Length
NDVI 15

Temperature 9,939
Wind Speed 50,530

COVID-19 deaths Cases in the Russian Federation 882

The tables from 3 to 7 present the coefficients for the Generalized Least Deviation Method (GLDM) applied to the
Normalized Difference Vegetation Index (NDVI) data across different model orders, from first through fifth. Each table,
corresponding to the model order, lists the coefficients derived from fitting the GLDM model to the NDVI dataset.
Table 3 starts with the simplest model, featuring only two coefficients, a1 and a2. As the model complexity increases,
more coefficients are introduced to capture additional dynamics of the data, evident in Table 4 for the second order
and further expanded in Tables 5, 6, and 7 for higher orders. These coefficients are crucial for understanding the NDVI
time series’ behavior and improving prediction accuracy. Notably, as the order increases, the number of coefficients
grows, reflecting the model’s enhanced capability to incorporate more historical data points and interactions within
the NDVI time series.

Table 3. GLDM
First Order Coeffi-
cients for NDVI.

Coefficient Value
a1 1.7073
a2 -1.0511

Table 4. GLDM
Second Order Co-
efficients for
NDVI.

Coefficient Value
a1 3.4694
a2 -2.1864
a3 -5.5924
a4 -2.5635
a5 7.7299

Table 5. GLDM
Third Order Coef-
ficients for NDVI.

Coefficient Value
a1 -9.6495
a2 -16.2326
a3 29.1697
a4 76.3993
a5 122.9467
a6 -71.5312
a7 -229.9915
a8 98.9790
a9 0.0000
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Table 6. GLDM Fourth Order Coefficients for NDVI.

a1 a2 a3 a4 a5 a6 a7
52.4809 30.7212 -48.3575 -132.0577 -177.0665 4.7422 -2.5713
a8 a9 a10 a11 a12 a13 a14

273.2420 -66.8229 -21.8417 83.1160 0.0000 0.0000 0.0000

Table 7. GLDM Fifth Order Coefficients for NDVI.

a1 a2 a3 a4 a5
0.0000 -29.0004 64.0513 -44.3069 10.2588
a6 a7 a8 a9 a10

1.7283 -23.5562 -90.7331 30.3171 -6.6379
a11 a12 a13 a14 a15

-2.0578 90.0347 0.0000 0.0000 0.0000
a16 a17 a18 a19 a20

0.0000 0.0000 0.0000 0.0000 0.0000

The coefficients derived from applying the Generalized Least Deviation Method (GLDM) for the temperature
data set are systematically presented in Tables 8 through 12. These tables enumerate the coefficients for models of
increasing order from first to fifth. Table 8 lists the coefficients for the first order model, indicating the foundational
linear influences in the temperature data. Progressing to higher model orders, Table 9 and Table 10 introduce
additional coefficients, capturing more complex dynamics and interactions within the data. This trend continues with
Table 11, where the fourth order model incorporates even more coefficients, enhancing the model’s ability to forecast
with greater precision. Finally, Table 12 presents the coefficients for the fifth order model, which encompasses the most
comprehensive dynamic range, utilizing twenty coefficients to capture nuanced patterns and potential non-linearities
in the temperature series. Each table reflects the incremental complexity and enhanced predictive capability as the
order of the model increases.

Table 8. GLDM
First Order Coeffi-
cients for Temper-
ature.

Coefficient Value
a1 1.0159
a2 -0.0009

Table 9. GLDM
Second Order Co-
efficients for Tem-
perature.

Coefficient Value
a1 1.0498
a2 -0.0302
a3 0.0229
a4 0.0098
a5 -0.0340

Table
10. GLDM Third
Order Coefficients
for Temperature.

Coefficient Value
Coefficient Value

a1 -0.1658
a2 0.0395
a3 1.1547
a4 0.0362
a5 0.0298
a6 0.0175
a7 -0.0489
a8 -0.0365
a9 0.0000

Tables 13 and 14 detail the coefficients for first and second order models applied to wind speed data using a
specific modeling technique. Table 13 displays the coefficients for the first order model, capturing the most immediate
past influence with coefficients a1 and a2. Moving to a more complex model, Table 14 lists the coefficients for the
second order model, which considers additional past values to better capture the dynamics and potential patterns in
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Table 11. GLDM Fourth Order Coefficients for Temperature.

a1 a2 a3 a4 a5 a6 a7
1.1661 -0.3931 1.6191 -1.2894 -0.0031 0.1141 -0.1237
a8 a9 a10 a11 a12 a13 a14

-0.0320 -0.0594 0.1424 -0.0881 -0.2193 0.1068 0.1502

Table 12. GLDM Fifth Order Coefficients for Temperature.

a1 a2 a3 a4 a5
0.0000 1.0667 -0.4329 1.4878 -0.7536
a6 a7 a8 a9 a10

-0.2734 0.0154 0.0804 0.0679 0.0827
a11 a12 a13 a14 a15

0.0083 -0.0745 -0.0029 0.0609 -0.0092
a16 a17 a18 a19 a20

-0.1386 0.0510 0.0560 -0.1933 0.0442

wind speed variations. This model includes more coefficients (a1 to a5), thereby providing a richer, more nuanced
understanding of the influence of past wind speeds on future predictions. The expansion in the number of coefficients
from the first to the second order model reflects an increase in model complexity and potential predictive power.

Table 13. First Order Coefficients
for Wind Speed.

Coefficient Value
a1 1.0092
a2 -0.0011

Table 14. Second Order Coeffi-
cients for Wind Speed.

Coefficient Value
a1 0.9300
a2 0.0764
a3 0.0248
a4 0.0241
a5 -0.0499

Tables 15, 16, and 17 illustrate the coefficients determined by the Generalized Least Deviation Method (GLDM)
for analyzing death cases in Russia across three different model orders. Table 15 lists the coefficients for the first
order model, suggesting a simplistic model where the primary coefficient a1 is 1.0000, indicating a direct influence
of the immediate past value on the future value with minimal adjustment (a2 is 0.0000). As the model complexity
increases, Table 16 provides five coefficients for a second order model, incorporating more nuanced interactions and
trends in the data. The third order model, shown in Table 17, further expands this complexity by including nine
coefficients, thus offering a more detailed and intricate depiction of the dynamics influencing the death rates. These
tables collectively represent a progression in model sophistication and predictive potential, adapting to the increasing
complexity required to accurately model the temporal dynamics of death cases.

6. Conclusion

For the problem (issue) of multi-criteria sequencing
1/(Etmax,

∑n
j=1(Ctj )2,

∑n
j=1 Ltj), for the hierarchical (lexicographical) scenario, an approach to find the best solution

(outcome) is put forth. It is hoped that this paper’s contribution would encourage more study in the zone of multi-
measuring ruling take on, particularly three hierarchically ranked criteria. Experimentation with the following machine
sequencing problem will be a future research topic:
1/Lex(Etmax,

∑n
j=1 Ltj ,

∑n
j=1 Ctj ). In addition, we have rigorously analyzed time series data from various domains,
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Table 15. First
Order GLDM
Model Coefficients
for Death Cases in
Russia.

Coefficient Value
a1 1.0000
a2 0.0000

Table
16. Second Order
GLDM Model
Coefficients for
Death Cases in
Russia.

Coefficient Value
a1 0.7265
a2 0.2610
a3 0.0020
a4 0.0016
a5 -0.0036

Table 17. Third
Order GLDM
Model Coefficients
for Death Cases in
Russia.

Coefficient Value
a1 0.5970
a2 -0.3694
a3 0.7396
a4 0.0083
a5 0.0101
a6 -0.0009
a7 -0.0185
a8 0.0010
a9 0.0000

including environmental and epidemiological fields, employing the Generalized Least Deviation Method to identify the
optimal model order for forecasting. Our results demonstrate that the complexity required for a predictive model is
highly contingent on the dataset’s characteristics, such as the nature of the data, its underlying dynamics, and the
presence of non-linear patterns, rather than solely on the quantity of data available.
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