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Abstract
In ecological systems, predator-prey contact is seen as something that happens naturally. How does the density of
prey populations effect predators ? This is a naturally occurring issue in ecosystems. Even though it plays a little

role in population dynamics, predators in most ecological models lower prey numbers by direct killing. Research
on vertebrates has shown that predator aversion may impact prey population dynamics and reproductive rates.
There has been new research on mathematical models of predator-prey systems that include a range of predator

functional responses that include the fear effect. Researchers in these research failed to account for the impact of
fear on prey mortality rates. In light of the above, our study focuses on analysing a predator-prey system that

incorporates the cost of perceived fear into reproductive processes using a Holling type-IV functional response. The

scheme also includes intraspecific competition within the predators and a gestation delay to make the interactions
more realistic and natural. The increase of the predator population is constrained for high predator to prey

density ratios by this extra intraspecific competition term. These dynamic model’s fundamental aspects such

as non-negative, boundedness of solutions, and viability of equilibria are investigated, and adequate conditions
are discovered. Both the local and global stability of the system are obtained with sufficient conditions on its

functionals and parameters. This study makes a major impact in that it creates a novel technique to quantify

some important, regulating system resilience parameters, and it studies the presence of Hopf bifurcation when the
time lag parameters exceed the critical values by looking at the relating characteristic equation. Furthermore, we

addressed how time delay factors reaching thresholds causes the Hopf bifurcation. Numerous numerical examples

are used to validate all of these theoretical inferences, and simulations are given to help visualise the examples.

Keywords. Prey-predator model, Fear effect, Functional response, Time delay, Hopf bifurcation, Simulations.
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1. Introduction

In order to sustain ecological variety and build community structure, analysing the phenomenon of predator-prey
involvement is crucial. An extensive amount of papers have been written in the last few decades in order to clarify
the complex changing aspects of the predator-prey interaction by undertaking mathematical modelling. While it is
undeniable that predators have an impact on prey dynamics directly through killing, numerous recent studies [12, 15]
have demonstrated that fear effects also have a significant impact on ecology and evolutionary biology. Despite the
fact that various predators have diverse effects on target populations, fear of predation reduces population fitness
overall [1, 2].

This could potentially occur without wiping out the entire prey populace. Additionally, fear can alter the behaviour
of prey, and terrified prey decrease their ability to reproduce. Furthermore, the presence of predators may cause more
severe changes in the physiology and behaviour of prey than actual predation [9, 18]. Prey populations use a number
of anti-predator tactics, including habitat use, foraging activity, awareness, and physiological changes [11, 21–24, 28],
to escape predator attacks. For instance, mule deer reduce their food intake after a lion assault [3]. Elk’s reproductive
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physiology changes in the Greater Yellowstone Ecosystem when wolves assault them [10].In the end, antipredator
measures occasionally may be helpful for survival, but they have long-term negative effects on reproduction, which
in turn reduce population numbers [11]. The connection between prey and predator should involve additionally to
just direct predation, according to ecologists and evolutionary biologists [24].They also believe that fear should be
taken into account. However, a mathematical model combining the dread impact into predator-prey behaviours was
non-existent. Wang et al.[27] created a mathematical model that included fear in 2016, confirming the significance
of fear for the development of prey. Additionally, Wang and Zou [33] and Mondal et al.[20] have published works
that mimic the fear effect in delayed predator-prey encounters. Intraspecific rivalry among predator species is another
component of our concept. There is intraspecific rivalry among predators when there are many more predators than
prey, which reduces the fitness of the predator population because food is scarce [16, 17, 25].Blue crab populations
exhibit agonistic activity, which results in damage when available food is limited, and this is indicative of intraspecific
competition [8].Carnivorous (predator) fish eat detrivorous (prey) fish in the Sundarban mangrove habitat. Predators
may readily capture prey and display intraspecific rivalry in their search for food since there is no sanctuary for prey
[26].

In ecology, the manner in which predators ingest their prey and their interactions with one another have a sub-
stantial influence on the changing features of the whole ecosystem. The computational model relies significantly on
this interaction, known as the ”functional response”, which furnishes the pace at which the predator consumes prey per
unit of population [13, 14]. By incorporating this rate into the model, its dynamics can be examined in greater detail.
Numerous functional responses are occasionally found in ecological literature. A few of these include the Holling types
II, III, and IV, the Monod-Haldane functional response, the Beddington-DeAngelis functional response, the Crowley-
Martin functional response, and the ratio-dependent functional responses, among others [7, 19, 20, 27, 29–31].

Holling type IV was one of these and was proposed by Andrews [4], it differs from the above types in that it has
a collective defence capacity and does not respond monotonously. As the prey biomass reaches a specific level, this
group defence exercise demonstrates that the prey increases its defence in an effort to contain the predator’s escalating
rate. This phenomenon is seen in aquatic ecosystems where aquatic snails (Nucella lamellosa) defend themselves by
hardening their shells [5] in response to crab predation. Numerous studies on predator-prey interactions have been
conducted since the prey’s ability to defend itself has a significant impact on its capacity to reproduce.

According to the research efforts mentioned above, fear can reduce both prey reproduction and predator popula-
tion, and a functional reaction can control predator densities. Therefore, it makes sense to research the predator-prey
relationship while allowing for the predator’s fear component and functional reaction with gestation delay. By employ-
ing an improved Leslie-Gower framework involving Holling type IV operations, the chief objective of this investigation
is to explore the effect of dread on a predator-prey system. This study is structured by way of: We construct the
mathematical model in section 2. In the same part, topics including positivity, boundedness, equilibrium existence,
stability, and the impact of fear on prey and predator equilibrium densities are covered. In Section 3, a standard
for global stability for the non-delayed system is developed. In Section 4, the stability analysis of the delay-induced
model is investigated with Hopf bifurcation. To demonstrate our theoretical conclusions in section 5, we ran several
numerical simulations. Finally, we discuss the biological importance of our findings in section 6.

2. Mathematical Formulation

This section entails the development of a predator-prey framework that incorporates a specific obstacle: (i) Holling
type IV schemes using an enhanced Leslie-Gower system [6] (ii) Fear effect [32]. Fear has the potential to impede the
expansion of prey populations, according to recent field research. Due to this, Wang et al.[32] were inspired to include

the fear factor F (δ, v) =
α

1 + δv
in the predator-prey model, which was later applied in[18–20, 20]. We suggest the
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pair of equations below based on the aforementioned facts:

du

dt
= ru

(
1− u

k

)
+

αu

1 + δv
− βuv

u2 + a
, (2.1)

dv

dt
= sv

(
1− v

nu

)
, (2.2)

Table 1 lists the model (2.1)-(2.2)’s parameters.

The non-monotonic functional response [27] g (u) =
βu

u2 + a
,where β and a are positive constants and g (u) >

Table 1. Description of model(2.1)-(2.2) parameters.

Parameters: Description
u the densities of prey
v the densities of predator
r biotic potential of the population u
k carrying capacity of u
α maximum cost of fear
β the predator maximum consumption rate per capita
a the quantity of prey required to reach half of the maximum rate β
s intrinsic growth rate of v
n a measure of the food’s nutritional content,

which prey provides to predators for their own reproduction
δ level of fear

0, for all u > 0 characterises the occurrence of defence group formation in antipredator behaviour (APB)[12, 34].
We also take into account the intraspecific rivalry that is seen in populations of predators when their biomass is
disproportionately high. The process of producing the offspring of a predator after consuming prey is mediated in
almost every ecosystem by the time latency (τ) required for digestion and gestation. Our final model takes into account
intraspecific competition within predator species, gestation delay, and the fear impact in prey species:

du

dt
= ru

(
1− u

k

)
+

αu

1 + δv
− βuv

u2 + a
, (2.3)

dv

dt
= sv(t− τ)

(
1− v(t− τ)

nu(t− τ)

)
, (2.4)

The parameters for model (2.3)-(2.4)are the same as those for models(2.1)-(2.2).

2.1. Positivity and boundedness of solutions. In this section, we first look at the non-delayed model (2.1)-(2.2)’s
positivity and boundedness. Since they pertain to the biological assurance, these are essential. We start by proving
the positivity.

Lemma 2.1. Given any t > 0,every solution (u(t), v(t)) in system (2.1)-(2.2) having initial values (u0, v0) ∈ R2
+ are

bound to be positive.

Proof. The following equations can be used to determine whether u(t) andv(t) are positive.

u(t) = u0 exp

{∫ t

0

[
r − ru

k
+

α

1 + δv
− βv

a
+ u2(s)

]
ds

}
,

v(t) = v0 exp

{∫ t

0

[
s
(

1− v

nu

)]
ds

}
.
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with u0, v0 > 0. As u0 > 0 then u(t) > 0,∀t > 0.In a similar manner, we may demonstrate that v(t) > 0.

Lemma 2.2. All solutions of system (2.1)-(2.2)that represent in R2
+ will be included in set

B =

{
(u, v) ∈ R2

+ : u ≤ kα

r
, v ≤ nr

a

}
.

Proof. We can write the following inequality on using the Equation (2.1), �

du

dt
≤ u

(
α− r

k
u
)
, (2.5)

which implies that

lim
t→∞

supu(t) ≤ kα

r
.

We can obtain the below inequality on using the estimate of u(t) in the Equation (2.2)

dv

dt
≤ sv

(
1− vr

nkα

)
, (2.6)

which implies that

lim
t→∞

sup v(t) ≤ nkα

r
= µ.

Therefore, the scheme (2.1)-(2.2) is bounded.

2.2. Behaviour of valid steady states. Equilibrium points are the points of intersection of two curves (2.1)-(2.2)
in non-negative quadrant R2

+ = {(u(t), v(t)) : u(t) ≥ 0, v(t) ≥ 0}. System (2.1)-(2.2) has three biologically feasible
equilibria in R2

+, specifically:
1. Trivial equilibrium point:E0 = (0, 0),

2. Auxiliary equilibrium point: E1 (u, 0) =
(
k
(

1 +
α

r

)
, 0
)

, and

3. Interior equilibrium point:E (ū, v̄).
Here ū and v̄ have to be positive and meet the following equations.

r
(

1− u

k

)
+

α

1 + δv
− βv

u2 + a
= 0, (2.7)

1− v

nu
= 0, (2.8)

from Eq. (2.8), we have v̄ = nū, we obtain the following equation on using Eq. (2.8) in Eq. (2.7),

d0ū
4 + 4d1ū

3 + 6d2ū
2 + 4d3ū+ d4 = 0, (2.9)

where d0 = rnδ, d1 =
1

4
(r − rknδ), d2 =

1

6

(
arδn+ kβδn2 − kr − kα

)
d3 =

1

4
(ar + knβ − arknδ), d4 = −ka (α+ r).

Prior to examine whether Eq. (2.9) roots exist, we need I = d0d4 − 4d1d3 + 3d2
2,

J =

∣∣∣∣∣∣
d0 d1 d2

d1 d2 d3

d2 d3 d4

∣∣∣∣∣∣ ,
I3 − 27J2 = D, which represents discriminant of Eq. (2.9). The criteria for positive conditions are listed below.

Theorem 2.3. Assume that α > −r. Equation (2.9) accepts
(i) if D < 0, strictly a single positive root of ū, and
(ii) if D > 0, multiple roots of ū.
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Proof. The Equation (2.9) has more than a single positive root as well as a negative root due to d4 < 0.It takes two
real and two imaginary roots for D < 0.As a result, Equation (2.9) has precisely a single positive root in case (i) All
of Equation (2.9)’s roots can be either real or imaginary when D > 0. Since it has already been established that
Equation (2.9) allows for more than a single positive root, all of the roots in case (ii) are real. This guarantees that
there are multiple roots. Hence the theorem. �

Theorem 2.4. Assume that Theorem (2.3)s condition (i) is true.Assume also that
2βv̄ū2

(ū2 + a)
2 >

(rū
k

+
sv̄

nū

)
and

v̄ <
1

2
. Then E becomes stable.

Proof. The community matrix of the scheme (2.1)-(2.2) at E is �

J
(
E
)

=

−
rū

k
+

2βv̄ū2

(ū2 + a)
2 − αδū

(1 + δv̄)
2 −

βū

ū2 + a
sv̄2

nū2
− sv̄
nū

 . (2.10)

The characteristic equation around E is

λ2 + ρ1λ+ ρ2 = 0. (2.11)

. where ρ1 = −rū
k

+
2βv̄ū2

(ū2 + a)
2 −

sv̄

nū
, ρ2 =

rsv̄

nū
+

αsδv̄

nū (1 + δv̄)
2 +

βsv̄
[
ū2 (1− 2v̄) + a

]
n (ū2 + a)

2 .

Now, ρ1 > 0 and ρ2 > 0 if
2βv̄ū2

(ū2 + a)
2 >

(rū
k

+
sv̄

nū

)
and v̄ <

1

2
. In that case, Equation (2.11) has two roots with

nonpositive real parts. As a result, the Theorem (2.4) assumption causes E to develop into a stable one.

2.3. Local stability. For the purpose of analysing the local permanency properties near the equilibrium points E0

and E1, the notion of linear stability studies is employed. We examine the local stability around the coexistence
steady state E by looking at the signs of the trace and determinant of the appropriate variational matrix because the
components of the point E are not explicitly expressed. With the aid of a graphical method, local stability can be
visualised more effectively. The variational matrix, J(u, v) of system (2.1)-(2.2) at any point (u, v) is given by

J (u, v) =


−ru
k

+
2βvu2

(u2 + a)
2 − αδu

(1 + δv)2
− βu

u2 + a

sv2

nu2
− sv
nu

 (2.12)

Theorem 2.5. At all times, the point of trivial equilibrium E0 is an instability saddle.

The variational matrix J (E1) at E1 =
(
k
(

1 +
α

r

)
, 0
)

has been provided by

J (E1) =


− (r + α) −k

(
1 +

α

r

)[
αδ +

βr2

k2 (r + α)
2

+ ar2

]

0 s

 (2.13)

The latent values of J (E1) given by − (r + α) and s. Hence the predator-free equilibrium point is always saddle since
r + α < 0 and s > 0.

Theorem 2.6. The auxiliary equilibrium point E1 is a saddle point if r + α < 0 and s > 0.
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2.4. The effect of fear factor. Next, we will examine how the presence of fear influences the concentrations at a
steady state. Initially, we shall illustrate the impact of δ on ū and v̄. It was previously mentioned that the coordinates
of E must meet the requirements

r
(

1− ū

k

)
+

α

1 + δv̄
− βv̄

ū2 + a
= 0, (2.14)

1− v̄

nū
= 0, (2.15)

From Eq. (2.15), v̄ = nū. Differentiating it with respect to δ, we have

dv̄

dδ
= n

dū

dδ
. (2.16)

Differentiating (2.14) with respect to δ, we have

− r
k

dū

dδ
− α

(1 + δv̄)
2

{
v̄ + δ

dv̄

dδ

}
− β

{(
ū2 + a

) dv̄
dδ
− v̄(2ū)

dū

dδ

}
(ū2 + a)

2 = 0. (2.17)

Using (2.16) in (2.17)

dū

dδ

{
r

k
+

αδn

(1 + δv̄)
2 +

βn

(ū2 + a)
− 2βūv̄

(ū2 + a)
2

}
= − αv̄

(1 + δv̄)
2 . (2.18)

Here we consider two cases.

Case 1: If
r

k
+

αδn

(1 + δv̄)
2 +

βn

(ū2 + a)
>

2βūv̄

(ū2 + a)
2 then

dū

dδ
< 0 which also denotes that

dv̄

dδ
< 0.

Case 2: If
r

k
+

αδn

(1 + δv̄)
2 +

βn

(ū2 + a)
<

2βūv̄

(ū2 + a)
2 then

dū

dδ
> 0 which also denotes that

dv̄

dδ
> 0.

The initial instance demonstrates that as fear levels rise, the density of both predator and prey species decreases;
conversely, the second instance reveals the opposite to be true. The circumstance of the second instance imply that
the stable positive equilibrium point does not exist.

3. Global Stability analysis

Next, we’ll use the Lyapunov function to examine the coexistence equilibrium pointE’s global stability.

Theorem 3.1. Let the assumption of Theorem (2.5) be satisfied. Further assume that

4

[
r

k
− 2βµkα

r (ū2 + a)

]
s

nū
>

[
αδ

(1 + δv̄)
+
sµ

nū
+

β

ū2 + a

]2

.

Then E is globally asymptotically stable.

Proof. Consider a function ∧ : R2
+ → R+ defined by

∧ (u, v) =
(
u− ū− ūlnu

ū

)
+
(
v − v̄ − v̄lnv

v̄

)
. (3.1)

Differentiating ∧ with respect to time, we have

d∧
dt

= (u− ū)
u̇

u
+ (v − v̄)

v̇

v

= (u− ū)

{
r
(

1− u

k

)
+

α

1 + δv
− βv

u2 + a

}
+ (v − v̄)

(
s− sv

nu

)
≤ − (u− ū)

2

[
r

k
− 2βµkα

r (ū2 + a)

]
+ |u− ū||v − v̄|

[
αδ

(1 + δv̄)
+
sµ

nū
+

β

ū2 + a

]
− s

nū
(v − v̄)

2
,
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d∧
dt

= −XTBX, (3.2)

where X = {|u− ū|, |v − v̄|} and B = [bij ]2×2.The components of the matrix B are

b11 =
r

k
− 2βµkα

r (ū2 + a)
, b12 = b21 = −1

2

[
αδ

(1 + δv̄)
+
sµ

nū
+

β

ū2 + a

]
, b22 =

s

nū
.

Hence B is positive definite if 4

[
r

k
− 2βµkα

r (ū2 + a)

]
s

nū
>

[
αδ

(1 + δv̄)
+
sµ

nū
+

β

ū2 + a

]2

, which gives
d∧
dt

< 0.

Hence E is globally asymptotically stable. �

4. Delayed model and Hopf-bifurcation

When studying biological processes, our major objective is to identify the specific characteristics that contribute
to the durability of the system about the coexistence steady state E (ū, v̄). This stability is crucial for maintaining
ecological diversity. This section aims to investigate the local stability of the cohabitation steady state in the delay-
induced framework (2.3) and (2.4). We already know that at least one co-existence steady state exists if r + α > 0.
The following describes the community matrix for the delayed framework (2.3)-(2.4):

J (u, v) =


−ru
k

+
2βvu2

(u2 + a)
2 − αδu

(1 + δv)2
− βu

u2 + a

sv2

nu2
e−λτ s

(
1− 2v

nu

)
e−λτ

 , (4.1)

The latent equation is given by λ2 + Tλ+D = 0.
We write it as

λ2 + L1λ+ e−λτ (L2λ+ L3) = 0, (4.2)

where L1 =
ru

k
− 2βvu2

(u2 + a)
2 , L2 = −s

(
1− 2v

nu

)
and

L3 = s

(
1− 2v

nu

){
−ru
k

+
2βvu2

(u2 + a)
2

}
+
sv2

nu2

{
αδu

(1 + δv)2
+

βu

u2 + a

}
.

In the absence of any delay (τ = 0), the latent equation associated with the condition is

λ2 + (L1 + L2)λ+ L3 = 0. (4.3)

The following requirements must be met in order for cohabitation to be stable.

L1 + L2 > 0, and L3 > 0. (4.4)

In the delay-induced scheme (2.3)-(2.4), the coexistence steady state E (ū, v̄) resilience is determined by the sign of
the real components of the roots of the latent Equation (4.1) associated with it. Local asymptotically stable E is
denoted by all nonpositive real components; otherwise, it lacks stability. We begin by presuming that E is locally
asymptotically stable for unaltered system. Next, we examine the specific conditions under which E remains steady
despite any delays. The Equation (4.1) will only have solutions with positive real parts if and only if it possesses
entirely fictitious roots, as indicated by the continuity requirement of the delay factor τ . Since Equation (4.1) contains
roots with a nonpositive real portion and the coexistence equilibrium state E is asymptotically stable, we can infer
the parametric circumstances under which these two phenomena occur.

Consider λ(τ) = φ(τ) + iγ(τ) be the root of Equation (4.1). Since E is stable for non delayed system, we have
φ(0) < 0. By the continuity of τ , we can say that φ(τ < 0) any small enough τ > 0 and E stay steady. We aim
to identify a critical value of τ , denoted as τ?, at which λ(τ) turns entirely fictitious, meaning that φ(τ?) = 0 and
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γ(τ?) 6= 0. Under these circumstances, the state of cohabitation experiences a lack of stability. The steady state E
will remain constant regardless of any τ ,though, if such a τ? does not exist for which λ(τ?) is totally fictitious. When
λ = φ+ iγ is replaced Equation (3.2),we get

(φ+ iγ)
2

+ L1 (φ+ iγ) + e−(φ+iγ)τ [L2 (φ+ iγ) + L3] = 0. (4.5)

The aforementioned equation becomes φ = 0 for roots that are entirely imaginary,

−γ2 + iL1γ + e−iγτ (iL2γ + L3) = 0. (4.6)

The following equations can be obtained on equating the real and imaginary portions to zero,

L3cosγτ + L2γsinγτ = γ2, (4.7)

L2γcosγτ − L3sinγτ = −L1γ. (4.8)

By taking the square of each equation and combining them together, we obtain a bi-quadratic equation for γ:

γ4 +
(
L2

1 − L2
2

)
γ2 − L2

3 = 0. (4.9)

Taking γ2 = ξ, A1 = L2
1 − L2

2 and A2 = −L2
3, (4.9) reduces to

ξ2 +A1ξ +A2 = 0. (4.10)

Through basic algebraic procedure, we deduce that

A1 = L2
1 − L2

2 = u2

{
r

k
− 2βvu

(u2 + a)
2

}2

− s2

(
1− 2v

nu

)2

is always positive. Now, if τ < 0, there is only one real root,

lets assume ξ?, in equation (4.10). As a result, the two real roots of equation (4.9) are γ? = ±
√
ξ?. It suggests that

we may determine a threshold value of τ , namely τ?, from (4.7) and (4.8) that gives us φ (τ?) = 0 and γ (τ?) = γ?,
in other words, the solutions to the latent Equation (4.2) have become entirely fictitious (±iγ?). Equations (4.7) and
(4.8) are utilised to determine the threshold quantity τ as

τ?j =
1

γ?
cos−1

[
γ?2 (L3 − L2L1)

L2
3 + L2γ?

]
+

2πj

γ?
, j = 0, 1, 2, .... (4.11)

and τ? = minjτ
?
j .We also inspect to see if the transversality criterion,

[
d

dτ
Re(λ)

]
τ=τ?

=

[
dφ

dτ

]
τ=τ?

> 0,is met or not.

The desired result of differentiating (4.2) with regard to τ is[
dλ

dτ

]−1

= − 2λ+ L1

λ3 + L1λ2
− τ

λ
+

L2

L2λ2 + L3λ
. (4.12)

At τ = τ?,[
dτ

dλ

]
τ=τ?

=

[
dφ

dτ

]
τ=τ?

= Re

[
− 2iγ + L1

(iγ)
3

+ L1 (iγ)
2 −

τ

iγ
+

L2

L2 (iγ)
2

+ L3iγ

]
=

L2
2γ

4 + L2
3

(
L2

1 + 2γ2
)

γ2 (L2
1 + γ2) (L2

2γ
2 + L2

3)
> 0.

Since the transversality criterion is met as a result, φ (τ) assumes a positive value for τ > τ? and is continuous.
In this instance, as the latency value τ approaches the critical level τ?, the system’s cohabitation state of equilibrium
(2.3)-(2.4) undergoes a Hopf bifurcation.



CMDE Vol. *, No. *, *, pp. 1-13 9

5. Numerical Simulations

In this section, we illustrate our results through numerical simulations. The purpose of such investigations is to
determine the impact of varying the parameters values and justify our analytical results. The particular coefficients
chosen do not necessarily have biological meaning or apply to specific population. Numerical simulations are carried
out with the help of MATLAB R2024a software package for a hypothetical set of data. We shall first show the effect
of delay and fear factor. For numerical experiment, we fix the parameters as follows:

Example 5.1. We take the following parameter values as r = 0.098, k = 0.068, α = 0.7, δ = 0.00999568, s =
0.0658, n = 0.68795, a = 0.069, β = 0.598 with initial conditions u0 = 0.5, v0 = 0.10. We build the Hopf-bifurcation
diagrams (Figures 1, 2,and 3) by choosing the proper parameter values, if τ is increased continually, a threshold τ0
can be established. The system is stable if τ < τ0, otherwise the system deviates from stability, leading to a Hopf-
bifurcation at τ = τ0. These results demonstrate the critical function that latency performs within the system.
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Figure 1. The paths and phase diagrams of the framework (2.3)-(2.4) with τ = 0.2 < τ0 = 0.32.
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Figure 2. The paths and phase diagrams of the framework (2.3)-(2.4) with τ = 0.35 > τ0 = 0.32.
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Figure 3. The paths and phase diagrams of the framework (2.3)-(2.4) with τ = 0.5 > τ0 = 0.32.

Example 5.2. We consider the following parameters for the various fear effects on population growth r = 0.0972, k =
0.072, α = 0.0954, s = 0.0549, n = 0.8721, a = 0.0989, β = 0.549 with initial conditions u0 = 0.5, v0 = 0.10.The fear
effect trajectories (Figures 4, and 5) show how fear has a significant impact on how many predator-prey species there
are. The trajectory is more skewed the lower the fear cost provided by the simulation model in Equations (2.1)-(2.2).
This implies that expansion will result in continual stability as the cost of anxiety decreases. On the other side, more
erratic growth will result in stability the higher the cost of worry. The model’s stability is still taken into account by
the estimated parameter coefficients. It also appears that the cost of dread has certain manifestations that restrain
population expansion. Low fear of prey reduces fluctuations in the expansion of the predator population. This is a
practical thing to think about under ecological circumstances. In the meantime, the population of prey is moving.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

x
(t

),
y
(t

)

 

 

Prey Predator

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

x
(t

),
y
(t

)

 

 

Prey

Predator

Figure 4. The trajectories of fear level δ = 0.002 and δ = 0.954.
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Figure 5. The trajectories of fear level δ = 1.891 and δ = 2.0972.

6. Conclusions and Discussion

In this study, we explore the behaviour of a predator-prey model that takes into account the influence of fear on the
reproductive and mortality rates of prey species. In order to enhance the accuracy of the dynamics, the model involves
both a gestation latency and intraspecific rivalry among predator species. We look at the framework’s positivity and
boundedness in the first stage, where positivity denotes that species persist and boundedness can be understood like a
usual constraint towards enlargement because of restricted resources. The impact of delay on the model’s stability is
further investigated by varying the delay value , which allows us to find the circumstances under which the framework
is resilient.
We build the Hopf-bifurcation diagrams (Figures 1, 2,and 3 ) by choosing the proper parameter values; if τ is increased
continually, a threshold τ0 can be established. The system is stable if τ < τ0, otherwise the system deviates from
stability, leading to a Hopf-bifurcation at τ = τ0. These results demonstrate the critical function that latency performs
within the system. It has come to our attention, via numerical simulations (Figures 4, 5), that fear could potentially
lead to a reduction in species diversity and even the extinction of certain species. Fear therefore exerts a substantial
influence on the intricacies of predator-prey schemes. Future improvements to the scheme can accommodate a two-prey,
one-predator mechanism, resulting in may be crucial for maintaining the biodiversity and creating group structure.
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