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Abstract

This paper aims at finding high-order convergent numerical approach to solve fourth-order linear boundary value
problems (BVPs). By employing the good property of reproducing kernel functions (RKFs), a new collocation

technique is proposed. The present approach can give highly accurate numerical solutions to fourth-order BVPs.

Some numerical experiments are performed and compared with other approaches to indicate the validity of the
proposed technique.
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1. Introduction

We are concerned with the fourth-order BVPs as follows:{
v′′′′(x) + a3(x)v′′′(x) + a2(x)v′′(x) + a1(x)v′(x) + a0v(x) = g(x), 0 < x < 1,

v(0) = α1, v(1) = α2, v
′′(0) = β1, v

′′(1) = β2,
(1.1)

where a0(x), a1(x), a2(x), a3(x), and g(x) ∈ C[0, 1].
By employing suitable function transformation, the solution of the above equation can be easily reduced to the

solution of the following BVPs with homogeneous boundary conditions{
y′′′′(x) + a3(x)y′′′(x) + a2(x)y′′(x) + a1(x)y′(x) + a0y(x) = f(x), 0 < x < 1,

y(0) = y(1) = 0, y′′(0) = y′′(1) = 0.
(1.2)

Fourth-order BVPs have extensive applications in biology, physics, and engineering. The existence, uniqueness,
and solvability were discussed in [6, 7, 26]. Due to their significant applications, it is required to develop effective
numerical techniques for such problems. Based on Quasi-Newton’s method and the kernel technique, Xu, Lin, and
Wang [27] proposed a new numerical approach for fourth-order BVPs. Zha, Li, and Yi [29] developed an effective
finite element technique for fourth-order BVPs. Costabile and Napoli [9] introduced a general collocation technique for
high even-order differential equations. The Variational iteration technique, the B-Spline approach and other numerical
approaches were presented for fourth-order BVPs in [10, 19–21, 24].

The reproducing kernel Hilbert spaces (RKHSs) theory has superiority in function approximation and numerical so-
lutions of operator equations (see, e.g., [1–5, 8, 10–18, 22, 23, 25, 28, 30]). In [10], Geng proposed an orthogonalization-
based reproducing kernel approach for nonlinear fourth-order BVPs. However, its convergence order is low. In the
work, based on the reproducing kernel functions (RKFs) in RKHS W 4[0, 1], a novel numerical technique will be
proposed for linear fourth-order BVPs. It has a higher convergence order and its convergence order can reach O(h8).
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2. Numerical approach

As the foundation of our numerical approach, the related theory on RKHS shall be introduced.

Definition 2.1. A Hilbert space H defined on E is called RKHS if there exists a function K : E × E → R with the
following properties:

(1) K(·, s) ∈ H, for all s ∈ E,
(2) v(s) = (v(·), K(·, s)), for all s ∈ E and all v ∈ H.

The function K(x, y) is called the RKF of space H. The space W 4[0, 1] = {Real value function y(x) ∈ C3[0, 1] :
y(4) ∈ L2[0, 1], y′′′ is absolutely continuous, and y(0) = y′′(0) = y(1) = y′′(1) = 0}. The inner product of the space is
given by

(y1(x), y2(x)))4 =

1∑
i=0

y
(i)
1 (0)y

(i)
2 (0) +

1∑
i=0

y
(i)
1 (1)y

(i)
2 (1) +

∫ 1

0

y
(4)
1 y

(4)
2 dx. (2.1)

Theorem 2.2. Space W 4[0, 1] is an RKHS, and its RKF is

K(x, s) =

{
η(x, s), s ≤ x,
η(s, x), s > x,

(2.2)

where

η(x, s) =
1

55099714320
s(723s6(−6x7 + 21x6 − 21x5 + 7x3 + 15120x− 15121) + 7s5x(2169x6 − 15152x5

+ 30273x4 − 40333x2 + 23043) + 21s4x(−723x6 + 10091x5 − 25212x4 + 3682807x2 − 10932483x

+ 7265520) + 7s2x(723x6 − 40333x5 + 11048421x4 − 54662415x3 + 72693364x2 − 29039760)

+ 5040x(2169x6 − 15152x5 + 30273x4 − 40333x2 + 23043)).

Proof. If u ∈W 4[0, 1], then

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0, (2.3)

and therefore

(u(y),K(x, y))4 = u′(0)[
∂K(x, y)

∂y
|y=0 −

∂6K(x, y)

∂y6
|y=0] + u′(1)[

∂K(x, y)

∂y
|y=1 +

∂6K(x, y)

∂y6
|y=1]

+ u′′′(1)
∂4K(x, y)

∂y4
|y=1 − u′′′(0)

∂4K(x, y)

∂y4
|y=0 +

∫ 1

0

u(y)
∂8K(x, y)

∂y8
dy. (2.4)

In addition,

K(x, 0) = K(x, 1) = 0,
∂2K(x, y)

∂y2
|y=0 = 0,

∂2K(x, y)

∂y2
|y=1 = 0. (2.5)

Let
∂K(x,y)
∂y |y=0 − ∂6K(x,y)

∂y6 |y=0 = 0, ∂K(x,y)
∂y |y=1 + ∂6K(x,y)

∂y6 |y=1 = 0,
∂4K(x,y)
∂y4 |y=1 = 0, ∂

4K(x,y)
∂y4 |y=0 = 0.

(2.6)

Then (2.4) is reduced to

(u(y),K(x, y))4 =

∫ 1

0

u(y)
∂8K(x, y)

∂y8
dy. (2.7)

Due to the reproducing property of K(x, y), it is required that

∂8K(x, y)

∂y8
= δ(y − x), (2.8)
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where δ(·) is the Dirac delta function. Therefore,

K(x, y) =

{
α1 + α2y + α3y

2 + α4y
3 + α5y

4 + α6y
5 + α7y

6 + α8y
7, y ≤ x,

β1 + β2y + β3y
2 + β4y

3 + β5y
4 + β6y

5 + β7y
6 + β8y

7, y > x.
(2.9)

From (2.8), we have

K(x, x+ 0) = K(x, x− 0),
∂K(x, y)

∂y
|x+0 =

∂K(x, y)

∂y
|x+0,

∂2K(x, y)

∂y2
|x−0 =

∂2K(x, y)

∂y2
|x+0,

∂3K(x, y)

∂y3
|x−0 =

∂3K(x, y)

∂y3
|x+0,

∂4K(x, y)

∂y4
|x−0 =

∂4K(x, y)

∂y4
|x+0,

∂5K(x, y)

∂y5
|x−0 =

∂5K(x, y)

∂y5
|x+0,

∂6K(x, y)

∂y6
|x−0 =

∂6K(x, y)

∂y6
|x+0,

∂7K(x, y)

∂y7
|x+0 −

∂7K(x, y)

∂y7
|x−0 = 1. (2.10)

Then the unknown constants αi, βi, i = 1, 2, . . . , 8 in (2.9) can be solved by the linear system (2.5), (2.6), and (2.10). �

It is known that RKF K(x, s) ∈ C6[0, 1] for a fixed s ∈ [0, 1], and it is piecewise polynomials of degree seven, that
is, it is a spline of degree seven.

By using the basis functions yielded via the kernel function K(x, s) and choosing suitable collocation nodes, a new
highly accurate collocation technique will be proposed. Let TN : 0 = x1 < x2 < . . . < xN = 1 be a partition of
[0, 1], σl = (xl, xl+1), hl = xl+1 − xl, and h = max

l
hl. Denote by πn(x) the space of polynomials of degree ≤ n. By

employing the RKF K(x, s), we establish the following basis functions:

ψl(x) =


K(x, xl+1), 1 ≤ l ≤ N − 2,
∂K(x,s)
∂s |s=xi−N+2

, N − 1 ≤ l ≤ 2(N − 1),
∂2K(x,s)
∂s2 |s=xi−2N+3

, 2N − 1 ≤ l ≤ 3N − 4,
∂3K(x,s)
∂s3 |s=xi−3N+4

, 3N − 3 ≤ l ≤ 4(N − 1).

Put SN = Span{ψj(x), j = 1, 2, · · ·, 4N − 4}. Obviously,

SN = {v(x) ∈ C3[0, 1] | v |σi
∈ π7, i = 1, 2, · · ·, N − 1}.

4N − 4 collocation nodes are needed, because the dimension of SN is 4N − 4.
The detailed collocation nodes are as follows

Z4N−4 = {zli = xl + µihl | i = 1, 2, , 3, 4, 1 ≤ l ≤ N − 1},

where

µ1 =
1

2

(
1−

√
1

35

(
15 + 2

√
30
))

, µ2 =
1

2

(
1−

√
1

35

(
15− 2

√
30
))

,

µ3 =
1

2

(
1 +

√
1

35

(
15− 2

√
30
))

, µ4 =
1

2

(
1 +

√
1

35

(
15 + 2

√
30
))

,

are Gauss-Legendre nodes on [0, 1].
Find the approximate solution of (1.2) in space SN . Its representation is

yN (x) =

4N−4∑
l=1

clψl(x). (2.11)

Define linear operator as

Ly(x) = y′′′′(x) + a3(x)y′′′(x) + a2(x)y′′(x) + a1(x)y′(x) + a0y(x).
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Let yN (x) satisfy (1.2) at points in Z4N−4. This gives

LyN (s) =

4N−4∑
l=1

clLψl(s) = f(s), s ∈ Z4N−4. (2.12)

{cl} can be obtained by the above linear system.
Consequently, the approximate solution yN (x) to (1.2) is determined. The steps of solving (1.2) are given as follows:

(1) Select proper RKF K(x, y) and nodes xi, 1 ≤ i ≤ N .
(2) Construct basis functions ψl(x), 1 ≤ l ≤ 4N − 4.

(3) Represent the approximate solution by basis functions ψl(x), yN (x) =
4N−4∑
l=1

clψl(x).

(4) Select proper collocation nodes zli, 1 ≤ l ≤ N, 1 ≤ i ≤ 4.
(5) Let yN (x) satisfy (1.2) at points zli.
(6) Obtain the undetermined coefficients {cl} in yN (x).

3. Analysis of convergence order

In this section, the convergence order of our numerical approach will be introduced.

Theorem 3.1. Assume that f(x) ∈ C8[0, 1]. We have

‖ yN − y ‖∞≤ c h8,

where ‖ f ‖∞= max
x∈[0,1]

|f(x)|.

Proof. (1.2) can be rewrited as

y(x) =

∫ 1

0

G(x, t)f(t)dt,

where G(x, s) is the Green’s function. Observe that

yN (x)− y(x) =

∫ 1

0

G(x, s)[LyN (s)− Ly(s)]ds =

∫ 1

0

G(x, s)[LyN (s)− f(s)]ds. (3.1)

Denoting LyN (s) by fN (s), (3.1) is simplified to

yN (x)− y(x) =

∫ 1

0

G(x, s)[fN (s)− f(s)]ds.

From the fact that there are four collocation points zl1, zl2, zl3, and zl4 on subinterval [xl, xl+1], we have LyN (zli) =
f(zli), i = 1, 2, 3, 4, that is, fN (zli) = f(zli), i = 1, 2, 3, 4. Then

fN (s)− f(s) =
f ′′′′N (τ)− f ′′′′(τ)

4!

4∏
i=1

(s− zli) = F ′′′′l (τ)

4∏
i=1

(s− zli), (3.2)

where τ ∈ [xl, xl+1]. Put Hl(x, s) = G(x, s)F ′′′′l (τ). Hence,∫ xl+1

xl

G(x, s)[fN (s)− f(s)]ds =

∫ xl+1

xl

Hl(x, s)

4∏
i=1

(s− zli)ds.

The Taylor’s expansion of Hl(x, s) at zl1 is

Hl(x, s) = Hl(x, zl1) +
∂Hl

∂s
(x, zl1)(s− zl1) +

1

2

∂2Hl

∂s2
(x, τ)(s− zl1)2

+
1

3!

∂3Hl

∂s3
(x, τ)(s− zl1)3 +

1

4!

∂4Hl

∂s4
(x, τ)(s− zl1)4.
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Since zli, i = 1, 2, 3, 4, are the Gauss nodes in [xl, xl+1], for any polynomials of degree seven q(s), the Gaussian

quadrature rule
4∑
i=1

ωig(zli) satisfies ∫ xl+1

xl

q(s)ds =

4∑
i=1

ωiq(zli).

Furthermore, we have∫ xl+1

xl

Hl(x, s)

4∏
i=1

(s− zli)ds =
1

4!

∫ xl+1

xl

∂4Hl

∂s4
(x, τ)(s− zl1)5(s− zl2)(s− zl3)(s− zl4)ds. (3.3)

Putting s = thl + xl, it follows that∫ xl+1

xl

∂4Hl

∂s4
(x, τ)(s− zl1)5(s− zl2)(s− zl3)(s− zl4)ds = h9l

∫ 1

0

∂4Hl

∂s4
((x, τ))$(t)dt, (3.4)

where $(t) = (t− µ1)5(t− µ2)(t− µ3)(t− µ4).

It follows from f ∈ C8[0, 1] that
∫ 1

0
[∂

4Hl

∂s4 (x, τ)]2ds is bounded, that is,∫ 1

0

[
∂4Hl

∂s4
(x, τ)]2ds ≤ β.

The use of Schwarz’s inequality gives

|
∫ 1

0

∂4Hl

∂s4
((x, τ))(t− µ1)5(t− µ2)(t− µ3)(t− µ4)dt|2 ≤

∫ 1

0

[
∂4Hl

∂s4
(x, τ)]2dt

∫ 1

0

[$(t)]2dt ≤ 1

44100
β. (3.5)

Then

|
∫ xl+1

xl

Hl(x, τ)

4∏
i=1

(s− zli)ds| ≤
1

4!

√
1

44100
β h9. (3.6)

Therefore,

‖ yN − y ‖∞ ≤
N−1∑
l=1

|
∫ xl+1

xl

Hl(x, τ)

4∏
i=1

(s− zli)ds| ≤
N − 1

4!

√
1

44100
β h9 ≤ c h8, (3.7)

with a positive constant c. �

4. Numerical tests

Three numerical examples are performed to illustrate the accuracy and convergence order of the present approach.
The software package Mathematica 12.0 is used. In the following experiments, we select xl = l−1

N−1 for l = 1, 2, . . . , N .

Test 4.1. Consider the fourth-order BVP used in [9, 20]
v′′′′(x)− v′′(x)− 2v(x) = f(x),

v(0) = 1, v(1) = 0,

v′′(0) = −1, v′′(1) = −2e,

(4.1)

where f(x) = (x − 3)ex. Its exact solution is v(x) = (1 − x)ex. Tables 1 and 2 show the numerical results of our
technique and techniques in [9, 20]. The convergence order is also listed in Table 2. The absolute errors of the obtained
approximate solution and its derivatives are depicted in Figures 1 and 2.
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Table 1. Results of absolute errors for Test 4.1.

x Method in [20] Method in [9] PM(N=11)

0.1 2.00×10−10 6.33×10−09 1.11×10−16

0.2 7.00×10−10 7.50×10−09 2.22×10−16

0.3 1.35×10−09 3.12×10−10 1.11×10−16

0.4 2.00×10−09 3.91×10−09 1.11×10−16

0.5 2.50×10−09 9.89×10−10 1.11×10−16

0.6 2.72×10−09 1.75×10−09 1.11×10−16

0.7 2.21×10−09 2.91×10−09 0
0.8 1.80×10−09 1.01×10−08 1.11×10−16

0.9 7.25×10−10 7.80×10−09 2.77×10−17

Table 2. Maximum absolute errors of the numerical solution and its derivative for Test 4.1.

N EN E′N Convergence order

3 6.00×10−09 4.80×10−08 –
5 2.80×10−11 4.40×10−10 7.74
9 1.18×10−13 3.50×10−12 7.89
17 5.60×10−16 2.90×10−14 7.72

Figure 1. Absolute errors |v21(x)− v(x)| (left) and |v′21(x)− v′(x)| (right) for Test 4.1.

Figure 2. Absolute errors |v′′21(x)− v′′(x)| (left) and |v′′′21(x)− v′′′(x)| (right) for Test 4.1.
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Figure 3. Absolute errors |v21(x)− v(x)| (left) and |v′21(x)− v′(x)| (right) for Test 4.2.

Test 4.2. Consider the fourth-order BVP used in [24]
v′′′′(x)− v(x) = f(x),

v(0) = 1, v(1) = 0,

v′′(0) = 0, v′′(1) = −2 sin 1− 4 cos 1,

(4.2)

where f(x) = −4(3 sinx + 2x cosx). Its exact solution is v(x) = (x2 − 1) sinx. Tables 3 and 4 show the numerical
results of our technique and techniques in [24]. The convergence order is also listed in Table 2. The absolute errors of
the obtained approximate solution and its derivatives are depicted in Figures 3 and 4.

Table 3. Results of absolute errors for Test 4.2.

x Method in [24] PM(N=11)

0.1 1.52×10−06 2.35×10−16

0.2 2.91×10−06 4.72×10−16

0.3 4.05×10−06 6.66×10−16

0.4 4.92×10−06 7.77×10−16

0.5 5.00×10−06 8.88×10−16

0.6 4.50×10−06 8.32×10−16

0.7 3.75×10−06 8.32×10−16

0.8 2.62×10−06 6.10×10−16

0.9 1.31×10−06 4.72×10−16

Table 4. Maximum absolute errors of the numerical solution and its derivative for Test 4.2.

N EN E′N Convergence order

3 1.85×10−08 1.40×10−07 –
5 7.80×10−11 1.15×10−09 7.89
9 3.20×10−13 9.50×10−12 7.93
17 1.25×10−15 7.50×10−14 8.00

Test 4.3. Our approach can deal with fourth-order BVPs with other boundary conditions. Consider a special fourth-
order BVP in [10, 19] 

v′′′′(x)− (1 + µ)v′(x) + µv(x) = 0.5µx2 − 1,

v(0) = 1, v(1) = 1.5 + sinh 1,

v′(0) = 1, v′(1) = 1 + cosh 1,

(4.3)
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Figure 4. Absolute errors |v′′21(x)− v′′(x)| (left) and |v′′′21(x)− v′′′(x)| (right) for Test 4.2.

Figure 5. Absolute errors |v21(x)− v(x)| (left) and |v′21(x)− v′(x)| (right) with µ = 106 for Test 4.3.

where parameter µ is an arbitrary constant. Its exact solution is v(x) = 1+sinhx+0.5x2, which is independent of the
parameter µ. Table 5 shows the numerical results of our technique and the approach in [10]. The absolute errors of
the obtained approximate solution and its derivatives are depicted in Figures 5 and 6. The maximum absolute errors
of the numerical solution and its derivative for µ = 106 are listed in Table 6. In [10], the problem was solved in RKHS
W 5, while our approach is performed in the simpler RKHS W 4, And our method has higher accuracy.

Table 5. Absolute errors of different approaches with µ = 106 for Test 4.3.

x DTM in [19] Method in [10] PM(N=11)

0.1 1.50×10−10 2.70×10−09 2.88×10−15

0.2 3.70×10−08 2.40×10−09 5.55×10−15

0.3 9.00×10−07 1.90×10−09 7.54×10−15

0.4 8.50×10−06 9.60×10−09 8.88×10−15

0.5 4.80×10−05 1.70×10−08 8.65×10−15

0.6 1.90×10−04 2.40×10−08 8.65×10−15

0.7 6.40×10−04 2.70×10−08 7.99×10−15

0.8 1.70×10−03 2.40×10−08 5.32×10−15

0.9 4.20×10−03 1.20×10−08 2.66×10−15
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Figure 6. Absolute errors |v21(x)− v(x)| (left) and |v′21(x)− v′(x)| (right) with µ = 107 for Test 4.3.

Table 6. Maximum absolute errors of the numerical solution and its derivative for Test 4.3.

N EN E′N Convergence order

3 1.43×10−08 ×10−07 –
5 3.50×10−12 9.44×10−11 11.99
9 2.37×10−13 1.46×10−11 7.25
17 2.70×10−15 1.98×10−13 6.46

5. Conclusion

By employing RKFs, spline basis functions are constructed, and then an effective collocation approach is proposed
for fourth-order BVPs. Numerical results illustrate that our approach has a higher accuracy. Compared with the
method in [10], the present approach uses RKHS with lower regularity and has higher convergence order.
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