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Abstract

In this paper, the existence and nonexistence of multiple solutions for a class of Kirchhoff-double phase systems

depending on one parameter in bounded domains are considered. Our main tools are essentially based on variational
techniques. To our best knowledge, there seem to be few results on Kirchhoff-double phase type systems in the

existing literature.
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1. Introduction

A significant attention in recent years has been focused on addressing problems including double phase operator,
since they are basically due to applications as models in the field of mathematical physics and engineering, such as
strongly anisotropic materials and elasticity theory, see [7, 24, 25] and the references are cited there. In this paper,
we deal with the following Kirchhoff-double phase systems of the form

−M1

[∫
Ω

( |∇u1|p1
p1

+ w1(x)
|∇u1|q1
q1

)
dx

]
(∆p1u1 + ∆w1

q1 u1) = λFu1
(x, u1, u2), in Ω,

−M2

[∫
Ω

( |∇u2|p2
p2

+ w2(x)
|∇u2|q2
q2

)
dx

]
(∆p2u2 + ∆w2

q2 u2) = λFu2
(x, u1, u2), in Ω,

u1 = u2 = 0, on ∂Ω,

(1.1)

where Ω ⊆ RN (N ≥ 2) represents a bounded domain with Lipschitz boundary ∂Ω, 1 < pi < qi < N , qi
pi
< 1 + 1

N

for i = 1, 2, wi : Ω→ [0,∞) is supposed to be Lipschitz continuous and λ denotes a parameter. Here, ∆piui + ∆wi
qi ui

represents the double phase operator given by

∆piui + ∆wi
qi ui = div

(
|∇ui|pi−2∇ui + wi(x)|∇ui|qi−2∇ui

)
, i = 1, 2,

where (Fu1 , Fu2) = ∇F means the gradient of F and two Kirchhoff functions M1,M2 : R+
0 → R+

0 are supposed to be
continuous with some additional conditions.

Let us recall some prior results that propel us to the present investigation. In [18], Liu and Dai considered the
following the double-phase problem{

−div
(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
= f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)
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where Ω is a bounded domain with Lipschitz boundary in RN , N ≥ 2 and 1 < p < q < N , qp < 1+ 1
N , a : Ω→ [0,+∞)

is a Lipschitz continuous function, and f : Ω × R → R is a Carathéodory function. Using variational methods, the
authors studied the existence and multiplicity of solutions to problem (1.2) in the case when f is q-superlinear at
infinity. After that, there are many papers working on this topic, we refer to [6, 12, 13, 15, 21].

In [6], Cao et al. established existence and nonexistence of solutions for the double-phase problem depending on two
parameters via critical point theorems due to Ricceri. Based on variational and topological tools such as truncation
arguments and genus theory, the existence of solutions to critical double phase problems was considered by Farkas et
al. in [12]. Marino and Winkert considered in [21] a class of double phase problems involving convection terms and
obtained some existence and uniqueness results by applying the theory of pseudomonotone operators. In [13], Feng et
al. considered a class of double-phase systems with convex nonlinearities of the form


−∆pu− div(η(x)|∇u|q−2∇u) = (t1 + 1)|u|t1−1u|v|t2+1, x ∈ Ω,

−∆pv − div(η(x)|∇v|q−2∇v) = (t2 + 1)|u|t1+1|v|t2−1v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(1.3)

There, using the Nehari manifold argument, the authors prove the existence of nontrivial solutions to the problem
(1.3). In [15], Guarnotta et al. considered a class of variable-exponent double-phase systems with nonlinear boundary
conditions and obtained some existence results by using the sub-supersolution method.

Notice that problem (1.1) contains integrals over Ω, so the first two equations here are no longer pointwise identities.
For this reason, it is often called a nonlocal problem. Problems of this type model several physical and biological
systems, where the unknown function u describes a process which depends on the average of itself, such as the
population density, see [8]. Moreover, problem (1.1) is related to the stationarity of the Kirchhoff equation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0, (1.4)

presented by Kirchhoff in 1883, see [17]. Equation (1.4) is an extension of the classical d’Alembert’s wave equation by
considering the effects of the changes in the length of the string during the vibrations. Problems involving Kirchhoff
type operators have been studied by many authors in recent years, we refer to [9–11, 16, 19, 20].

Together with Kirchhoff-type problems involving p-Laplace operators and p(x)-Laplace operators, we can find some
results on Kirchhoff-double phase problems, see [1, 3, 14]. In [1, 14], the authors studied Kirchhoff-double phase
problems with superlinear terms and obtained some existence and multiplicity results. Arora et al. considered in
[3] double phase Kirchhoff problems with singular nonlinearity by using the fibering method in form of the Nehari
manifold.

Motivated by the papers mentioned above, our goal is to obtain some existence and nonexistence results for
Kirchhoff-double phase system (1.1) with sublinear terms. It should be noticed that the results introduced here
are also extensions from the study of boundary-value problems involving p-Laplace equations of gradient form (see
[4, 22]). As far as we know, there are relatively few results even on Kirchhoff-double phase problems and our obtained
results have not been investigated in existing literature.

The rest of this paper is constructed in such a way: Section 2 presents the fundamental properties of our working
space. Nonexistence result and existence of at least two distinct, nonnegative, nontrivial solutions are presented in
section 3, whereas the proofs of these results are provided in sections 4 and 5, respectively. Eventually, section 6 sums
up the main conclusions.

In this paper, there exist some notations:

(•) ⇀ and → stand for weak and strong convergence, respectively.
(•) Lr(Ω), with r ∈ [1,∞) denotes a Lebesgue space, and the norm of Lr(Ω) is denoted by ‖.‖r.
(•) C,C ′, C̃, Ĉ denote various positive constants.
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2. Preliminaries

In order to study double phase systems, we need to introduce our working space and recalling some facts about it.
Define the functions Hi : Ω× [0,∞)→ [0,∞) by

Hi(x, t) = tpi + wi(x)tqi ,

where 1 < pi < qi < N, qi
pi
< 1 + 1

N and wi : Ω → [0,∞) is Lipschitz continuous for i = 1, 2. Consider ρHi(u) :=∫
Ω
Hi(x, |u|)dx. The Musielak-Orlicz Lebesgue space is described as

LHi(Ω) =
{
u|u : Ω→ R is measurable, ρHi(u) < +∞

}
,

including the norm

‖u‖Hi
:= inf

{
σ > 0 : ρHi

(
u

σ
) ≤ 1

}
.

By [5, Proposition 2.13] we arrive at the following relation between ‖u‖Hi
and ρHi

.

Lemma 2.1. If u ∈ LHi(Ω), then for i = 1, 2, we have

min
{
‖u‖piHi

, ‖u‖qiHi

}
≤ ρHi

(u) ≤ max
{
‖u‖piHi

, ‖u‖qiHi

}
.

The Musielak-Orlicz Sobolev space is described as

W 1,Hi(Ω) :=
{
u ∈ LHi(Ω) : |∇u| ∈ LHi(Ω)

}
,

including the norm

‖u‖1,Hi := ‖∇u‖Hi + ‖u‖Hi ,

where ‖∇u‖Hi
= ‖|∇u|‖Hi

and i = 1, 2. We characterize Wi = W 1,Hi

0 (Ω) as the complement of C∞0 (Ω) concerning
the norm

‖u‖Wi
:= ‖∇u‖Hi

.

Our working space W is described as

W = W1 ×W2,

with

‖(u1, u2)‖W = ‖u1‖W1
+ ‖u2‖W2

,

which displays a separable and reflexive Banach space (see [5, Proposition 2.12]). Similar to proposition 2.16 in [5],
we arrive at the following embedding lemma.

Lemma 2.2. For any ri ∈ [1, p∗i ] (i = 1, 2), the embedding Wi ↪→ Lri(Ω) is continuous; the embedding is compact if

ri ∈ [1, p∗i ), where p∗i = Npi
N−pi is the critical exponent.

From now on, we denote by Cri the best constant for which one has

‖ui‖ri ≤ Cri‖ui‖Wi , ∀ui ∈Wi, (2.1)

and for any ri, rj (i, j = 1, 2), we denote

Cri,rj = max{Criri , C
rj
rj }. (2.2)

Lemma 2.3 (see [21]). Let A : W1 ×W2 →W ∗1 ×W ∗2 be the operator defined by

〈A(u1, u2), (ϕ1, ϕ2)〉 =

∫
Ω

(|∇u1|p1−2∇u1 + w1(x)|∇u1|q1−2∇u1)∇ϕ1dx

+

∫
Ω

(|∇u2|p2−2∇u2 + w2(x)|∇u2|q2−2∇u2)∇ϕ2dx,

for all ui, ϕi ∈Wi, i = 1, 2, where 〈., .〉 denotes the duality pairing among Wi and its dual space W ∗i .
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Then, A is of type (S)+, namely, if (u
(k)
1 , u

(k)
2 ) ⇀ (u1, u2) in W and

limk→∞〈A(u
(k)
1 , u

(k)
2 ), (u

(k)
1 , u

(k)
2 )− (u1, u2)〉 ≤ 0

it follows that (u
(k)
1 , u

(k)
2 )→ (u1, u2) strongly in W .

3. Statement of main results

In order to describe our main results, we make the following:

(M) For i = 1, 2, the function Mi : R+
0 → R+

0 is continuous and there are numbers mi,m
′
i > 0 obeying the following

relationship

mi ≤Mi(t) ≤ m′i, ∀i = 1, 2,

for all t ≥ 0.
(F0) F (x, 0, 0) = 0 for a.e.x ∈ Ω, F (x, t, s) = F (x, 0, s) for all t ≤ 0, s ∈ R and a.e.x ∈ Ω, F (x, t, s) = F (x, t, 0) for

all t ∈ R, s ≤ 0 and a.e. x ∈ Ω.
(F1) There exists C > 0 such that the following two conditions are fulfilled:

|Ft(x, t, s)| ≤ C
[

min{|t|p1−1, |t|q1−1}+ min{|s|
q2
q′1 , |s|

q2
p′1 , |s|

p2
q′1 , |s|

p2
p′1 }
]
,

|Fs(x, t, s)| ≤ C
[

min{|t|
q1
q′2 , |s|

p1
q′2 , |t|

q1
p′2 , |t|

p1
p′2 }+ min{|s|q2−1, |s|p2−1}

]
,

where p′i and q′i are the conjugate variables to pi and qi, respectively, that is, 1
pi

+ 1
p′i

= 1
qi

+ 1
q′i

= 1 for i = 1, 2.

We say that a function h complies the property (∗)p if

h(t, s) ≤ C̃(|t|p1 + |s|p2),

and h complies the property (∗)q if

h(t, s) ≤ Ĉ(|t|q1 + |s|q2),

where C̃, Ĉ > 0 are independent of h.
Let K1 and K2 denote two functions verifying property (∗)p and (∗)q, respectively. We suppose the following

assumptions on the treatment of F at infinity and at origin:

(F2) lim|(t,s)|→∞
F (x,t,s)
K1(t,s) ≤ 0, uniformly for x ∈ Ω;

(F3) lim|(t,s)|→0
F (x,t,s)
K2(t,s) ≤ 0, uniformly for x ∈ Ω;

(F4) There exist C1, C2 > 0 with F (x, t, s) > 0 for a.e. x ∈ Ω and (t, s) ∈ (0, C1]× (0, C2].

We point out that the condition (F2) means that the nonlinear term F considered in this work is sublinear at
infinity.

Definition 3.1. By a weak solution of system (1.1) we mean (u1, u2) ∈W obeying the following relationship

M1

[∫
Ω

( |∇u1|p1
p1

+ w1(x)
|∇u1|q1
q1

)
dx

] ∫
Ω

(|∇u1|p1−2∇u1 + w1(x)|∇u1|q1−2∇u1)∇ϕ1dx

+M2

[∫
Ω

( |∇u2|p2
p2

+ w2(x)
|∇u2|q2
q2

)
dx

] ∫
Ω

(|∇u2|p2−2∇u2 + w2(x)|∇u2|q2−2∇u2)∇ϕ2dx

= λ

∫
Ω

[
Fu1(x, u1, u2)ϕ1 + Fu2(x, u1, u2)ϕ2

]
dx,

for all (ϕ1, ϕ2) ∈W .

Now, we state the main results of this paper.

Theorem 3.2 (Nonexistence result). Assume that

(M)′ Mi(t) ≥ mi, ∀i = 1, 2.
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(F1)′ There exists C > 0 such that the subsequent two conditions are obeyed:

|Ft(x, t, s)| ≤ C
[

min{|t|p1−1, |t|q1−1}+ min{|s|
q2
q′1 , |s|

q2
p′1 , |s|

p2
q′1 , |s|

p2
p′1 }
]
,

|Fs(x, t, s)| ≤ C
[

min{|t|
q1
q′2 , |s|

p1
q′2 , |t|

q1
p′2 , |t|

p1
p′2 }+ min{|s|q2−1, |s|p2−1}

]
,

for all t, s ∈ R and a.e. x ∈ Ω.

Then, there is λ∗ > 0 such that for every λ < λ∗, system (1.1) does not have any nontrivial weak solution in W .

Theorem 3.3 (Multiplicity result). Assume that (M), (F0)− (F4) are complied. Then, there exists λ∗ > 0 such that
for every λ ≥ λ∗, system (1.1) has at least two distinct nontrivial nonnegative weak solutions in W .

4. Proof of Theorem 3.2

Assume that (u1, u2) is a weak solution to system (1.1), then we need to consider the following four cases.
Case 1. If ‖(u1, u2)‖W < 1, then, we have ‖u1‖W1

< 1, ‖u2‖W2
< 1. By (M)′ and Lemma 2.1, we infer that

min{m1,m2}
(
‖u1‖q1W1

+ ‖u2‖q2W2

)
≤M1

[∫
Ω

( |∇u1|p1
p1

+ w1(x)
|∇u1|q1
q1

)
dx

]
ρH1(u1)

+M2

[∫
Ω

( |∇u2|p2
p2

+ w2(x)
|∇u2|q2
q2

)
dx

]
ρH2

(u2)

= M1

[∫
Ω

( |∇u1|p1
p1

+ w1(x)
|∇u1|q1
q1

)
dx

]
×
∫

Ω

(|∇u1|p1 + w1(x)|∇u1|q1)dx

+M2

[∫
Ω

( |∇u2|p2
p2

+ w2(x)
|∇u2|q2
q2

)
dx

]
×
∫

Ω

(|∇u2|p2 + w2(x)|∇u2|p2)dx

= λ

∫
Ω

(
Fu1(x, u1, u2)u1 + Fu2(x, u1, u2)u2

)
dx. (4.1)

Using (F1)′ and Young’s inequality, we have∫
Ω

(
Fu1

(x, u1, u2)u1 + Fu2
(x, u1, u2)u2

)
dx ≤ C

∫
Ω

(|u1|q1−1 + |u2|
q2
q′1 )|u1|dx+ C

∫
Ω

(|u1|
q1
q′2 + |u2|q2−1)|u2|dx

≤ C
∫

Ω

(|u1|q1 + |u2|q2)dx+ C

∫
Ω

( |u1|q1
q1

+
|u2|q2
q′1

)
dx

+ C

∫
Ω

( |u1|q1
q′2

+
|u2|q2
q2

)
dx

≤ C ′
∫

Ω

(|u1|q1 + |u2|q2)dx. (4.2)

Combining (4.1) and (4.2), we get

min{m1,m2}
(
‖u1‖q1W1

+ ‖u2‖q2W2

)
≤ λC ′

∫
Ω

(|u1|q1 + |u2|q2)dx. (4.3)

On the other hand, since 1 < pi < qi < N and qi
pi

< 1 + 1
N , we deduce that Nqi − pi < Npi and hence

Nqi − piqi < Nqi − pi < Npi. Thus qi <
Npi
N−pi , that is, qi < p∗i for i = 1, 2. So, in view of Lemma 2.2, we obtain

‖u1‖q1q1 ≤ C
q1
q1 ‖u1‖q1W1

, ‖u2‖q2q2 ≤ C
q2
q2 ‖u2‖q2W2

. (4.4)

Let Cq1,q2 be the same constant specified by (2.2), we arrive at

‖u1‖q1q1 + ‖u2‖q2q2
‖u1‖q1W1

+ ‖u2‖q2W2

≤ Cq1,q2 .
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So, by (4.3), we deduce that

λ ≥ min{m1,m2}
C ′Cq1,q2

.

Now, by choosing λ1
∗ = min{m1,m2}

C′Cq1,q2
in this case, we obtain the desired result.

Case 2. If ‖u1‖W1 ≥ 1 and ‖u2‖W2 < 1. Following the same methods in the proof of case 1 (by replacing q1 by p1)

and by choosing λ2
∗ = min{m1,m2}

C′Cp1,q2
, we obtain the result.

Case 3. If ‖u1‖W1 < 1 and ‖u2‖W2 ≥ 1, similar to the above proof process and by choosing λ3
∗ = min{m1,m2}

C′Cq1,p2
, we

obtain the result.
Case 4. If ‖u1‖W1 , ‖u2‖W2 ≥ 1, by choosing λ4

∗ = min{m1,m2}
C′Cp1,p2

, we obtain the result.

Now, taking λ∗ = min1≤i≤4 λ
i
∗, system (1.1) does not have any nontrivial weak solution in W for λ < λ∗ and we

complete the proof of Theorem 3.2.

5. Proof of Theorem 3.3

We are going to apply the mountain pass theorem to prove Theorem 3.3 (see [2, 23]). For each λ ∈ R, we introduce
the Euler functional Φλ : W → R, which is associated with system (1.1) defined as

Φλ(u1, u2) = I(u1, u2)− λJ(u1, u2),

where

I(u1, u2) = M̂1(L1(u1)) + M̂2(L2(u2)),

with M̂i(t) =
∫ t

0
Mi(τ)dτ for i = 1, 2 and

Li(ui) =

∫
Ω

( |∇ui|pi
pi

+ wi(x)
|∇ui|qi
qi

)
dx,

and

J(u1, u2) =

∫
Ω

F (x, u1, u2)dx,

for every (u1, u2) ∈ W . By (F1), the functional Φλ is of class C1, and the Gâteaux derivative of Φλ is characterized
by

〈Φ′λ(u1, u2), (ϕ1, ϕ2)〉 = M1(L1(u1))〈L′1(u1), ϕ1〉+M2(L2(u2))〈L′2(u2), ϕ2〉

− λ
∫

Ω

(
Fu1(x, u1, u2)ϕ1 + Fu2(x, u1, u2)ϕ2

)
dx, (5.1)

for every (ϕ1, ϕ2) ∈W with

〈L′1(ui), ϕi〉 =

∫
Ω

(|∇ui|pi−2 + wi(x)|∇u1|qi−2)∇ui∇ϕidx,

for every ϕi ∈Wi.

Lemma 5.1. For every λ ∈ R, Φλ is sequentially weakly lower semicontinuous functional on W .

Proof. Let {(u(k)
1 , u

(k)
2 )} ⊆ W be a sequence that converges weakly to (u1, u2) ∈ W . By the results can be found in

[6], we get

lim inf
k→∞

Li(u
(k)
i ) ≥ Li(ui), ∀i = 1, 2.
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On the other hand, the function t→ M̂i(t) for i = 1, 2 is continuous and monotone. So, we arrive at

lim inf
k→∞

I(u
(k)
1 , u

(k)
2 ) = lim inf

k→∞

[
M̂1(L1(u

(k)
1 )) + M̂2(L2(u

(k)
2 ))

]
≥ lim inf

k→∞
M̂1(L1(u

(k)
1 )) + lim inf

k→∞
M̂2(L2(u

(k)
2 ))

≥ M̂1

(
lim inf
k→∞

L1(u
(k)
1 )
)

+ M̂2

(
lim inf
k→∞

L2(u
(k)
2 )
)

≥ M̂1(L1(u1)) + M̂2(L2(u2)) = I(u1, u2).

So, I is sequentially weakly lower semicontinuous on W . Next, using Hölder’s inequality and (F1), we infer that

|J(u
(k)
1 , u

(k)
2 )− J(u1, u2)| =

∣∣∣∣∫
Ω

[F (x, u
(k)
1 , u

(k)
2 )− F (x, u1, u2)]dx

∣∣∣∣
≤
∫

Ω

∣∣∣ ∂F
∂u1

(x, u1 + δ1,k(u
(k)
1 − u1), u2 + δ2,k(u

(k)
2 − u2)

∣∣∣ |u(k)
1 − u1|dx

+

∫
Ω

∣∣∣ ∂F
∂u2

(x, u1 + δ1,k(u
(k)
1 − u1), u2 + δ2,k(u

(k)
2 − u2)

∣∣∣ |u(k)
2 − u2|dx

≤ C
∫

Ω

(
1 + |u1 + δ1,k(u

(k)
1 − u1)|q1−1 + |u2 + δ2,k(u

(k)
2 − u2)|

q2
q′1

)
|u(k)

1 − u1|dx

+ C

∫
Ω

(
1 + |u1 + δ1,k(u

(k)
1 − u1)|

q1
q′2 + |u2 + δ2,k(u

(k)
2 − u2)|q2−1

)
|u(k)

2 − u2|dx

≤ C
(
|Ω|

1
q′1 + ‖u1 + δ1,k(u

(k)
1 − u1)‖q1−1

q1 + ‖u2 + δ2,k(u
(k)
2 − u2)‖

q2
q′1
q2

)
‖u(k)

1 − u1‖q1

+ C

(
|Ω|

1
q′2 + ‖u1 + δ1,k(u

(k)
1 − u1)‖

q1
q′2
q1 + ‖u2 + δ2,k(u

(k)
2 − u2)‖q2−1

q2

)
‖u(k)

2 − u2‖q2 , (5.2)

where δk = (δ1,k, δ2,k) with 0 ≤ δ1,k(x), δ2,k(x)) ≤ 1 for each x ∈ Ω.

Moreover, by Lemma 2.2, the embedding W ↪→ Lq1(Ω) × Lq2(Ω) is compact, so (u
(k)
1 , (u

(k)
2 ) → (u1, u2) in W , i.e,

u
(k)
1 → u1 in Lq1(Ω) and u

(k)
2 → u2 in Lq2(Ω). Besides, by the boundedness of two sequences ‖u1 + δ1,k(u

(k)
1 − u1)‖q1

and ‖u2 + δ2,k(u
(k)
2 − u2)‖q2 , we arrive at

J(u
(k)
1 , u

(k)
2 )→ J(u1, u2) as k →∞,

which means that J is sequentially weakly continuous on W . Thus, Φλ is sequentially weakly lower semicontinuous
on W and we obtained the desired result. �

Lemma 5.2. Φλ denotes a coercive functional on W , that is to say, lim‖(u,v)‖→+∞ Φλ(u, v) = +∞.

Proof. In view of (F1) and (F2), there exists Cλ = C(λ) > 0 such that for a.e. x ∈ Ω and for every (s, t) ∈ R2 we
have

λF (x, t, s) ≤ min{m1,m2}
2 max{q1, q2}C̃Cp1,p2

K1(t, s) + Cλ,
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where C̃ is the same constant specified by (?)p. Invoking Lemma 2.1, Lemma 2.2 and condition (M), for every
(u1, u2) ∈W with ‖(u1, u2)‖W ≥ 1 , we obtain

Φλ(u1, u2) ≥ m1

q1
ρH1

(u1) +
m2

q2
ρH2

(u2)−
∫

Ω

(
min{m1,m2}

2 max{q1, q2}C̃Cp1,p2
K1(u1, u2) + Cλ

)
dx

≥ m1

q1
‖u1‖p1W1

+
m2

q2
‖u2‖p2W2

− m1

2q1C
p1
p1

∫
Ω

|u1|p1dx−
m2

2q2C
p2
p2

∫
Ω

|u2|p2dx− Cλ|Ω|

≥
(
m1

q1
‖u1‖p1W1

− m1

2q1
‖u1‖p1W1

)
+

(
m2

q2
‖u2‖p2W2

− m2

2q2
‖u2‖p2W2

)
− Cλ|Ω|

=
m1

2q1
‖u1‖p1W1

+
m2

2q2
‖u2‖p2W2

− Cλ|Ω|,

which implies that Φλ(u1, u2)→∞ as ‖(u1, u2)‖W → +∞. �

Lemma 5.3. If (u1, u2) ∈W is a weak solution of system (1.1), then u1 ≥ 0 and u2 ≥ 0 in Ω.

Proof. In view of (F0), if t̄ < 0 then F (x, t, s) = F (x, t̄, s) = F (x, 0, s) for all t < 0, all s ∈ R, x ∈ Ω and thus,

Ft(x, t̄, s) = lim
t→t̄

F (x, t, s)− F (x, t̄, s)

t− t̄
= 0, for x ∈ Ω.

Similarly, if s̄ < 0 then Fs(x, t, s̄) = 0 for x ∈ Ω and all t ∈ R.
Now, if (u1, u2) is a weak solution of system (1.1), invoking Lemma 2.1 and (M), we deduce that

0 = 〈Φ′λ(u1, u2), (u1, u2)−〉
= M1(L1(u1))〈L′1(u1), ū1〉+M2(L2(u2))〈L′2(u2), ū2〉

− λ
∫

Ω

[
Fu1

(x, u1, u2)ū1 + Fu2
(x, u1, u2)ū2

]
dx

≥ m1

∫
Ω

(
|∇ū1|p1 + w1(x)|∇ū1|q1

)
dx+m2

∫
Ω

(
|∇ū2|p2 + w2(x)|∇ū2|q2

)
dx

= m1ρH1
(u1) +m2ρH2

(u2)

≥ m1 min{‖ū1‖p1W1
, ‖ū1‖q1W1

}+m2 min{‖ū2‖p2W2
, ‖ū2‖q2W2

},

where ūi = min{ui(x), 0}. So, for i = 1, 2, we have ui(x) ≥ 0 for a.e. x ∈ Ω. �

Via Lemmas 5.1–5.3 and the direct method in the calculus of variations (see [23]), Φλ admits a global minimizer
(u∗1, u

∗
2) ∈W , which is a least energy of system (1.1). The subsequent lemma implies that (u∗1, u

∗
2) is nontrivial.

Lemma 5.4. There is λ∗ > 0 so that infW Φλ < 0 for each λ ≥ λ∗ and hence (u∗1, u
∗
2) 6≡ 0.

Proof. Let C1, C2 be as in (F4) and (u1, u2) ∈ C1(Ω) × C1(Ω) with ui(x) > 0 for all x ∈ Ω and i = 1, 2. Then
(u1, u2) ∈W and

∫
Ω
F (x, u1, u2)dx > 0. Taking into account (M), we conclude that

Φλ(u1, u2) ≤ m′1
p1
ρH1

(u1) +
m′2
p2
ρH2

(u2)− λ
∫

Ω

F (x, u1, u2)dx

≤ m′1
p1

max{‖u1‖p1W1
, ‖u1‖q1W1

}+
m′2
p2

max{‖u2‖p2W2
, ‖u2‖q2W2

} − λ
∫

Ω

F (x, u1, u2)dx.

Thus, by choosing

λ∗ = 2

m′
1

p1
max{‖u1‖p1W1

, ‖u1‖q1W1
}+

m′
2

p2
max{‖u2‖p2W2

, ‖u2‖q2W2
}∫

Ω
F (x, u1, u2)dx

,

we have Φλ(u1, u2) < 0 for each λ ≥ λ∗ and hence (u∗1, u
∗
2) 6≡ 0. �

Our next goal is to attain the second weak solution by using the mountain pass theorem (see [2]).
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Lemma 5.5. There exist two positive constants α, β > 0 with ‖(u∗1, u∗2)‖W > α such that Φλ(u1, u2) ≥ β for any
(u1, u2) ∈W with ‖(u1, u2)‖W = α.

Proof. In virtue of (F1) and (F3), we get

λF (x, t, s) ≤ min{m1,m2}
2 max{q1, q2}ĈCq1,q2

k2(t, s) + Cλ(|t|σ1 + |t|σ2), ∀(t, s) ∈ R2, x ∈ Ω,

where pi < qi < σi < p∗i , for i = 1, 2 and Ĉ is the same constant specified by (?)q.
In view of Lemma 2.1, Lemma 2.2 and (M), for every (u1, u2) ∈W , we obtain

Φλ(u1, u2) ≥ m1

q1
ρH1(u1) +

m2

q2
ρH2(u2)−

∫
Ω

min{m1,m2}
2 max{q1, q2}ĈCq1,q2

k2(u1, u2)dx− Cλ
∫

Ω

(|u1|σ1 + |u2|σ2)dx

≥ m1

q1
‖u1‖q1W1

− m1

2q1C
q1
q1

∫
Ω

|u1|q1dx− Cλ
∫

Ω

|u1|σ1dx

+
m2

q2
‖u2‖q2W2

− m2

2q2C
q2
q2

∫
Ω

|u2|q2dx− Cλ
∫

Ω

|u2|σ2dx

≥
(
m1

q1
‖u1‖q1W1

− m1

2q1
‖u1‖q1W1

− CλCσ1
σ1
‖u1‖σ1

W1

)
+

(
m2

q2
‖u2‖q1W2

− m2

2q2
‖u2‖q2W2

− CλCσ2
σ2
‖u2‖σ2

W2

)
=

(
m1

2q1
‖u1‖q1W1

− CλCσ1
σ1
‖u1‖σ1

W1

)
+

(
m2

2q2
‖u2‖q1W2

− CλCσ2
σ2
‖u2‖σ2

W2

)
.

Since qi < σi < p∗i , there are constants α, β > 0 such that Φλ(u1, u2) ≥ β for each (u1, u2) ∈ W with ‖(u1, u2)‖W =
α. �

Lemma 5.6. If (M) and (F1) hold. Then Φλ satisfies the (PS) condition for all λ > 0, namely, any sequence

{(u(k)
1 , u

(k)
2 )} verifying∣∣∣Φλ(u

(k)
1 , u

(k)
2 )
∣∣∣ ≤ C, Φ′λ(u

(k)
1 , u

(k)
2 )→ 0 in W ∗ as n→∞, (5.3)

admits a convergent subsequence in W , where W ∗ denotes the dual space of W .

Proof. Let {(u(k)
1 , u

(k)
2 )} be a sequence verifying (5.3). In view of Lemma 5.2, {(u(k)

1 , u
(k)
2 )} is bounded. In virtue of

the reflexivity of W , for a subsequence, still denoted by {(u(k)
1 , u

(k)
2 )}, we have (u

(k)
1 , u

(k)
2 ) ⇀ (u1, u2) weakly. So, we

get

lim
n→∞

〈Φ′λ(u
(k)
1 , u

(k)
2 ), (u

(k)
1 , u

(k)
2 )− (u1, u2)〉 = 0. (5.4)

Using (F1) and Hölder’s inequality, we infer that∫
Ω

|Fu1
(x, u

(k)
1 , u

(k)
2 )||u(k)

1 − u1|dx ≤ C
∫

Ω

(
1 + |u(k)

1 |q1−1 + |u(k)
2 |

q2
q′1 |
)
|u(k)

1 − u1|dx

≤ C
(
|Ω|

1
q′1 + ‖u(k)

1 ‖q1−1
q1 + ‖u(k)

2 ‖
q2
q′1
q2

)
‖u(k)

1 − u1‖q1 , (5.5)

and ∫
Ω

|Fu2
(x, u

(k)
1 , u

(k)
2 )||u(k)

2 − u2|dx ≤ C
∫

Ω

(
1 + |u(k)

1 |
q1
q′2 + |u(k)

2 |q2−1

)
|u(k)

2 − u2|dx

≤ C
(
|Ω|

1
q′2 + ‖u(k)

1 ‖
q1
q′2
q1 + ‖u(k)

2 ‖q2−1
q2

)
‖u(k)

2 − u2‖q2 . (5.6)
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Since the embedding W ↪→ Lq1(Ω)× Lq2(Ω) is compact, invoking (5.5) and (5.6), we get

lim
k→∞

〈J ′(u(k)
1 , u

(k)
2 ), (u

(k)
1 , u

(k)
2 )− (u1, u2)〉 = 0. (5.7)

Combining (5.4) and (5.7) and using (M), we arrive at

lim
k→∞

[∫
Ω

(|∇u(k)
1 |p1−2 + w1(x)|∇u(k)

1 |q1−2)∇u(k)
1 (∇u(k)

1 −∇u1)dx

+

∫
Ω

(|∇u(k)
2 |p2−2 + w2(x)|∇u(k)

2 |q2−2)∇u(k)
2 (∇u(k)

2 −∇u2)dx

]
= 0.

In view of Lemma 2.3, (u
(k)
1 , u

(k)
2 )→ (u1, u2) strongly in W and we obtain the desired result. �

Now, we demonstrate the proof of Theorem 3.3.

Proof of Theorem 3.3. In terms of Lemmas 5.1–5.6 and the mountain pass theorem, there is a second weak solution
(û1, û2) ∈ W of system (1.1) with Φλ(û1, û2) > 0. Besides, (û1, û2) is nontrivial and (û1, û2) 6= (u∗1, u

∗
2) because

Φλ(û1, û2) > 0 > Φλ(u∗1, u
∗
2). This concludes the proof.

6. Conclusions

We consider a class of Kirchhoff-double phase systems in bounded domains. The essential contribution of this paper
is the study of the existence and nonexistence of solutions to the problem by using variational techniques. To our best
knowledge, there seems to be few results on Kirchhoff-double phase type systems in the existing literature.
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