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Abstract
In this study, the Lie symmetry analysis and exact solutions are investigated to the fractional Black–Scholes(B-
S) equations of the Caputo–type modeling the pricing options under the absence of arbitrage and self-financing

portfolio assumptions. A class of exact invariant and solitary solutions are given to B-S equations. Some examples
are presented in which we use the obtained reductions to find their exact solutions.
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1. Introduction

Differential equations with the fractional order describe the phenomena for which the memory and hereditary
properties play crucial roles. Many systems modeled with the help of fractional calculus display rich fractional
dynamical behavior, such as viscoelastic systems, colored noise, boundary layer effects in ducts, electromagnetic
waves, fractional kinetics, and electrode-electrolyte polarization, etc. (see, e.g.,[9, 15, 19] and references cited therein).
Due to these applications, many researchers have generalized the existing methods of solving integer-order differential
equations into fractional ones. However, the non–local nature of fractional derivatives causes these generalizations
not to be a straightforward task. Several definitions have been proposed for the fractional derivatives. The Caputo
derivative and the Riemann-Liouville ones are mostly used. From a practical point of view, the Caputo derivative is
more important because of the initial value of fractional differential equation with the Caputo derivative is the same
as that of integer-order differential equation. However, the Riemann–Liouville approach needs initial conditions with
the limit values of the same fractional derivatives at t = 0.
Over the past few years, FDEs have been studied extensively, from theoretical and numerical points of view. To obtain
exact solutions for differential equations, the Lie symmetry analysis is an effective method that has been applied to
many equations [20, 21, 31, 36, 41]. This method has been employed to FDEs of the Riemann–Liouville type by
researchers. In [5, 14, 30, 34, 39, 40] the authors applied the classical Lie symmetry analysis for differential equations
involving fractional Riemann–Liouville derivatives. One of the possible extensions of the Lie symmetry method is the
nonclassical method, which has been applied to the Riemann–Liouville FDEs in [3, 23–27].
To derive exact solutions and conservation laws for FDEs of the Caputo-type, we also can use the Lie symmetry
analysis. In [12], the authors have given the prolongation formula in the case of 0 < α < 1. We consider the Black-
Sholes(B-S) equation, which models the pricing of the European call, put and double barrier options. Based on the
specific forms of the payoffs and rebates, double barrier options can have many different forms. If the price change of
the option in the financial market is considered as a fractal transmission system, we obtain the fractional B-S equation
with the Caputo-type derivative[7, 18]. In the current study, we apply the results above to obtain invariants, exact
solutions of the fractional B-S with the Caputo-type. There are some methods applied to the fractional B-S equations,
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which give the analytical solutions of them in the form of a convolution of some special functions or an infinite series
with an integral. These representations make them difficult to use. We infer to spline collocation methods [1, 33, 37],
homotopy analysis methods [10, 35], Touchard wavelet technique [28], or via the method of separation of variables [7].
Methods based on the classical and non-classical Lie group analysis have been used to find the exact solutions of
the fractional (B-S) equation with the Riemann-Liouville type by the authors in [6, 8]. The main means to apply
this method is using the exact prolongation formula for fractional operators of the Riemann-Liouville type, which has
been given by the authors in [12]. Other researchers have generalized and applied this finding to multiple classes of
FDEs [5, 14, 30, 34, 39, 40]. Lie symmetry analysis has not been applied to the fractional (B-S) equation with the
Caputo-type yet. Using the results obtained here, we derive invariants of the (B-S) equation, which leads us to have
a class of exact solutions. Also we obtain the solitary wave solutions of the time–fractional (B–S) equation [2, 17, 32].
The structure of the present study is as follows. In section 2 we first, give a brief background on the Lie symmetry
analysis. In section 3, we arrive at the invariants of the B-S equation with fractional order. Utilizing the results of
this section, we derive some exact solutions for B-S equation in section 4. We present and classify the conservation
laws of the (B-S) equation in section 5.

2. Preliminaries

We first give a brief review of the fractional calculus and the Lie symmetry analysis, which will be needed in the
sequel.

Definition 2.1. [9] Let m ∈ N and m − 1 < α < m. The Riemann-Liouville and Caputo fractional derivatives of
order α of a function f are defined by

Dα
t f(t) =

1

Γ(m− α)
Dm
t

∫ t

0

(t− s)m−α−1f(s)ds,

CDα
t f(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−α−1Dm
s f(s)ds,

respectively, provided the right-hand sides integrals are finite for t ∈ (0, T ) where Dm
t f(t) = dmf

dtm .

Proposition 2.2. [9](Leibniz’s formula for Riemann-Liouville fractional derivative). Let α > 0 and assume that f
and g are analytic on (−h, h) with some h > 0. Then,

Dα
t (fg)(t) =

∞∑
k=0

(
α

k

)
Dk
t f(t)Dα−k

t g(t),

for 0 < t < h/2.

Proposition 2.3. Let f be analytic in (−h, h) for some h > 0, and m− 1 < α < m, then

CDα
t f(t) =

∞∑
k=m

(
α−m
k −m

)
tk−α

Γ(k + 1− α)
Dk
t f(t),

for 0 < x < h/2.

Proof. The proof is similar to the case of the Riemann-Liouville fractional derivative given in [9]. Recalling Definition
2.1

CDα
t f(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−α−1Dm
s f(s)ds,

we employ the Taylor’s expansion of Dm
s f(s) with respect to s around s = t, and substitute the result into the formula

above, and compute the integral, thus we deduce

CDα
t f(t) =

∞∑
k=0

(−1)ktm+k−α

k!(m+ k − α)Γ(m− α)
Dm+k
t f(t).
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Since (−1)k

k!(m+k−α)Γ(m−α) =
(
α−m
k

)
1

Γ(k+m+1−α) , then it implies the desired result. �

Proposition 2.4. [9] Let m ≥ 1 and m− 1 < α < m. Assume that f is such that both Dα
t f and CDα

t f exist. Then

CDα
t f(t) = Dα

t f(t)−
m−1∑
k=0

tk−α

Γ(k − α+ 1)
Dk
t f(t)|t=0.

Proposition 2.5. Let m ≥ 1 and m − 1 < α < m. Let u = u(x, t), and f = f(x, t, u) be analytic functions, and
CDαt f denote the total derivative of f , then we have

CDαt f = CDα
t f + fu

CDα
t u− u CDα

t fu +

∞∑
k=1

(
α

k

)
Dk
t fuD

α−k
t u

+

m−1∑
k=0

tk−α

Γ(k + 1− α)

[
fuD

k
t u
∣∣
t=0
−Dk

t (ufu)
∣∣
t=0

]
+ ν,

with fu = ∂f
∂u and Dm

t = ∂m

∂tm , where

ν =

∞∑
n=m

n∑
j=2

j∑
k=2

k−1∑
r=0

(
α−m
n−m

)(
n

j

)(
k

r

)
tn−α

Γ(n+1−α)

1

k!
(−u)rDj

tu
k−rDn−j

t

(
Dk
uf
)
.

Proof. Using Proposition 2.3, and the definition of the total derivative Dnt f , we have

CDαt f(x, t, u(x, t)) =

∞∑
n=m

(
α−m
n−m

)
tn−α

Γ(n+ 1− α)
Dnt f(x, t, u(x, t))

=

∞∑
n=m

(
α−m
n−m

)
tn−α

Γ(n+ 1− α)

n∑
j=0

j∑
k=0

k∑
r=0

(
n

j

)(
k

r

)
1

k!
(−u)rDj

tu
k−rDn−j

t

(
Dk
uf
)
.

By rearranging the indexes, recalling Proposition 2.3, and some technical calculations we deduce

= CDα
t f − u

∞∑
n=m

(
α−m
n−m

)
tn−α

Γ(n+ 1− α)
Dn
t fu

+

∞∑
n=m

(
α−m
n−m

)
tn−α

Γ(n+ 1− α)

n∑
j=0

(
n

j

)
Dj
tuD

n−j
t (fu) + ν,

where ν is as in the Proposition. Now using the classical Leibniz’s formula, we conclude

= CDα
t f−u

∞∑
n=m

(
α−m
n−m

)
tn−α

Γ(n+1−α)
Dn
t fu+

∞∑
n=m

(
α−m
n−m

)
tn−α

Γ(n+1−α)
Dn
t (ufu)+ν

= CDα
t f − u CDα

t fu + CDα
t (ufu) + ν,

where for the practical use, in view of Proposition 2.4, we obtain

= CDα
t f − u CDα

t fu +Dα
t (ufu)−

m−1∑
k=0

tk−α

Γ(k − α+ 1)
Dk
t (ufu)|t=0 + ν.

By employing the Leibniz’s formula for the Riemann-Liouville fractional derivative, we have

= CDα
t f − u CDα

t fu + fuD
α
t u+

∞∑
k=1

(
α

k

)
Dk
t fuD

α−k
t u

−
m−1∑
k=0

tk−α

Γ(k − α+ 1)
Dk
t (ufu)|t=0 + ν.
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Recalling Proposition 2.4 yields

= CDα
t f − u CDα

t fu + fu
CDα

t u+ fu

m−1∑
k=0

tk−α

Γ(k − α+ 1)
Dk
t u|t=0

+

∞∑
k=1

(
α

k

)
Dk
t fuD

α−k
t u−

m−1∑
k=0

tk−α

Γ(k − α+ 1)
Dk
t (ufu)|t=0 + ν,

which is our desired result. �

We now consider the one-parameter Lie group of transformations on an open subset M ⊂ R2 × R

x̄ = x+ εξ(x, t, u) +O(ε2), t̄ = t+ ετ(x, t, u) +O(ε2),

ū = u+ εϕ(x, t, u) +O(ε2), (2.1)

with the infinitesimal generator

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂u
, (2.2)

where ε is the group parameter. The one-parameter Lie group of transformations is prolonged to the Caputo fractional
derivative CDα

t u(x, t) for 0 < α < 1 with respect to t as follows[12]:

CDα
t̄ ū(x̄, t̄) = CDα

t u(x, t) + εϕ
(α,t)
C +O(ε2), (2.3)

where

ϕ
(α,t)
C = CDαt ϕ− CDαt (ξux) + ξ CDα

t ux −Dαt (τut) + τDα
t ut.

It is worth noticing that in Definition 2.1, the lower limit of the integral is fixed, then it should be invariant concerning
the group of transformation (2.1); i.e.

τ(x, 0, u(x, 0)) = 0, x ∈ R. (2.4)

3. Lie symmetry analysis to the fractional Black-Scholes equation of Caputo-type derivative

In this section, we present a complete classification of Lie symmetries for the time-fractional B-S equation described
in [7]. Let C(S, τ) denote the price of an option with S the underlying asset and τ the current time. Then by the
(B-S) model, the option C should verify the following equation

∂αC(S, τ)

∂τα
+

1

2
σ2S2 ∂

2C(S, τ)

∂S2
+ (r − δ)S ∂C(S, τ)

∂S
− rC(S, τ) = 0,

0 < α ≤ 1, 0 ≤ τ < T, x ∈ R+, (3.1)

where T is the maturity, r is the risk-free rate, σ is the volatility, and δ is the dividend yield. The fractional derivative
in this equation is a modified right Riemann–Liouville derivative defined as

∂αC(S, τ)

∂τα
=

1

Γ(1−α)

d

dτ

∫ T

τ

(z−τ)−α [C(S, z)−C(S, T )] dz, 0 < α < 1.

To help the solution process, using a change of the variables t = T − τ , x = lnS and displaying u(x, t) = C(ex, T − t),
Eq. (3.1) is reduced to the following equation:

∂αu(x, t)

∂tα
=

1

2
σ2 ∂

2u(x, t)

∂x2
+

(
r − δ − 1

2
σ2

)
∂u(x, t)

∂x
− ru(x, t), (3.2)

where ∂αu
∂tα is the modified Riemann–Liouville derivative defined as

∂αu

∂tα
=

1

Γ(1− α)

d

dt

∫ t

0

(t− z)−α [u(x, z)− u(x, 0)] dz, 0 < α < 1.
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It can be shown that for 0 < α < 1 the fractional derivative appearing in (3.2) is the Caputo-type fractional derivative,
see [7], thus we deduce

B − S : CDα
t u(x, t)− 1

2
σ2 ∂

2u(x, t)

∂x2
−
(
r−δ− 1

2
σ2

)
∂u(x, t)

∂x
+ru(x, t)=0. (3.3)

The one-parameter group G of transformations (2.1) with infinitesimal generator (2.2) is called a group admitted by
(3.3) if and only if

CPr(α,t)V (B − S)|B−S=0 = 0,

where

CPr(α,t)V = V + ϕx
∂

∂ux
+ ϕxx

∂

∂uxx
+ ϕ

(α,t)
C

∂

∂ (CDα
t u)

,

with ϕ
(α,t)
C as in (2.3) and

ϕx = Dxϕ−Dx(ξ)ux −Dx(τ)ut,

ϕxx = Dx(ϕx)−Dx(ξ)uxx −Dx(τ)uxt.

Applying CPr(α,t) to (3.3), we find infinitesimal criterion

ϕ
(α,t)
C − 1

2
σ2ϕxx −

(
r − δ − 1

2
σ2

)
ϕx + rϕ

∣∣
B−S=0

= 0. (3.4)

Substituting ϕ
(α,t)
C , ϕxx, ϕx into Eq. (3.4), then replacing CDα

t u by 1
2σ

2uxx + (r − δ − 1
2σ

2)ux − ru, simplifying and
collecting coefficients of the various monomials in the partial derivatives of u, we find the determining equations for
the symmetry group of the fractional B-S equation as follows:

CDα
t ϕ− ruϕu − u CDα

t ϕu + rαuτt +
t−α

Γ(1− α)

[
ϕu(x, t, u)

− ϕu(x, 0, u)
]
u(x, 0)− 1

2
σ2ϕxx −

(
r − δ − 1

2
σ2

)
ϕx + rϕ = 0,(

r − δ − 1

2
σ2

)
(ατt − ξx) +

1

2
σ2(2ϕxu − ξxx) = 0,

1

2
σ2ξuu = 0,

1

2
σ2(ϕuu − 2ξxu)−

(
r − δ − 1

2
σ2

)
ξu = 0,

1

2
σ2ατt − σ2ξx = 0,

1

2
(α− 1)σ2τu = 0, (α− 1)

(
r − δ − 1

2
σ2

)
τu − σ2τxu = 0,

1

2
σ2τxx +

(
r − δ − 1

2
σ2

)
τx + αruτu = 0,

1

2
σ2τuu = 0, σ2τx = 0,

3

2
σ2ξu = 0, σ2τu = 0, ξ CDαt ux − CDαt (ξux) = 0,(
α

k

)
Dk
t ϕu −

(
α

k + 1

)
Dk+1
t τ = 0, k ∈ N,

an over-determined system of equations for the unknowns ξ, τ ,and ϕ. By solving the system above, infinitesimal
generators for the fractional B-S equation (3.3) are stated as follows:

• if σ, r and δ are arbitrary constants,

V1 =
∂

∂x
, V2 = u

∂

∂u
, V3 = K(x, t)

∂

∂u
,

where K is an arbitrary function and satisfies the fractional Black-Scholes equation (3.3).
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• if 2σ2r + (r − δ − 1
2σ

2)2 = 0

V4 = 4t
∂

∂t
+ 2αx

∂

∂x
+
σ2 − 2(r − δ)

σ2
αxu

∂

∂u
.

At this stage, we suppose C(S, τ) be the price of a double barrier option such that the price change of the option in
the financial market is considered as a fractal transmission system. Then C(S, τ) should satisfy the following system

∂αC(S, τ)

∂τα
+

1

2
σ2S2 ∂

2C(S, τ)

∂S2
+(r−δ)S ∂C(S, τ)

∂S
−rC(S, τ) = 0,

C(S1, τ) = p(τ),

C(S2, τ) = q(τ),

C(S, T ) = A(S),

where 0 < α < 1, 0 ≤ τ < T and S1 < S < S2. Here p(τ), q(τ) are the rebates paid when the corresponding barrier,
S = S1, S = S2, is hit, and A(S) is the payoff function. In the following examples, we intend to obtain the exact
solution of the similar problems using the infinitesimal generators of the Eq. (3.3).

Example 3.1. We consider the pricing of double barrier option above with the given σ, δ, r, S1 = 1, S2 =∞, p(τ) = 0,

q(τ) =∞, and A(S) = Sk − 1 with k = − 2(r−δ)
σ2 + 1. The change of variables yields that u(x, t) = C(ex, T − t) verifies

the following initial and boundary value problem:

CDα
t u(x, t)− 1

2
σ2 ∂

2u(x, t)

∂x2
−
(
r−δ− 1

2
σ2

)
∂u(x, t)

∂x
+ru(x, t)=0, x > 0, (3.5)

u(x, 0) = ekx − 1,

u(0, t) = 0, lim
x→∞

u(x, t) =∞.

Because of the initial value, we use the one-parameter group generated by V = V1 + kV2 with the invariant solution
u1(x, t) = ekxf(t), and also the group generated by V1 with the invariant solution u2(x, t) = f(t). Setting

u(x, t) = u1(x, t) + u2(x, t) =
(
ekx − 1

)
f(t),

and substituting this solution into Eq. (3.5), we get the reduced fractional ordinary differential equation

CDα
t f(t) + rf(t) = 0.

The solution of this equation can be written in terms of the Mittag–Leffler functions

f(t) = Eα(−rtα),

thus

u(x, t) =
(
ekx − 1

)
Eα(−rtα),

is the invariant solution of the problem (3.5). For example, for different values of σ, r, δ, we obtain the exact solution
of the problem (3.5);

• if σ = 0.4, r = 0.03 and δ = 0.07

u(x, t) =
(
e1.5x − 1

)
Eα(−0.03tα),

• if σ = 0.1, r = 0.06 and δ = 0

u(x, t) =
(
e−11x − 1

)
Eα(−0.06tα),

• if σ = 0.25, r = 0.05 and δ = 0

u(x, t) =
(
e−0.6x − 1

)
Eα(−0.05tα).

Notice that for α = 1, u(x, t) =
(
ekx − 1

)
e−rt is the exact solution of corresponding B-S equation with the integer-

order.
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Example 3.2. We consider the pricing of double barrier option

CDα
t u(x, t)− 1

2
σ2 ∂

2u(x, t)

∂x2
−
(
r−δ− 1

2
σ2

)
∂u(x, t)

∂x
+ru(x, t)=0, x ∈ R, (3.6)

u(x, 0) = ekx,

lim
x→−∞

u(x, t) = 0, lim
x→+∞

u(x, t) =∞,

where k > 0. Because of the initial value, we use the one-parameter group generated by V = V1 + kV2 with the
invariant solution u(x, t) = ekxf(t), and substitute this solution into (3.6), to get the reduced fractional ordinary
differential equation

CDα
t f(t)− βf(t) = 0,

where β = 1
2σ

2k2 +
(
r − δ − 1

2σ
2
)
k − r. The solution of this equation can be written in terms of Mittag–Leffler

functions

f(t) = Eα(βtα),

thus

u(x, t) = ekxEα(βtα),

is the invariant solution for (3.6). We note that for α = 1, u(x, t) = ekx+βt is the exact solution of the corresponding
B-S equation with integer-order. The change of variables leads to the option price C(S, τ) = SkEα (β(T − τ)α). Here
an invariant solution is a solution of the differential equation which is also an invariant surface of a group admitted
by the differential equation; that means it is mapped to itself by the group of transformation.

4. Exact and solitary wave solutions of the time–fractional Black–Scholes equation

4.1. Exact and general solutions extracted from invariant surfaces. In this subsection, using some of the
invariance obtained from the Lie symmetries, we represent more exact and general solutions of the fractional B-S
equation. This idea has been employed to find the new exact solutions of some FDEs in [25]. If there exists a class of
solutions g(x, t, u) = c to (3.3) admitting the group generated by V3 with K(x, t) = θ(x), then g(x̄, t̄, ū) = c̄ defines a
solution too and by Theorem 2.2.7-3 in [4], we have V3g(x, t, u) = 1. Thus we can write θ(x)gu = 1, so by solving this
equation and according to the definition of g, we obtain

u(x, t) = cθ(x)− φ(x, t),

where φ(x, t) is an arbitrary function. For example if φ(x, t) = h(x)f(t), then

u(x, t) = cθ(x)− h(x)f(t),

substituting this solution into (3.3) and setting

1

2
σ2h′′ +

(
r − δ − 1

2
σ2

)
h′ − (r + γ)h = 0, (4.1)

the reduced fractional ordinary differential equation becomes

CDα
t f(t)− γf(t) = 0.

Then the invariant solution of (3.3) is

u(x, t) = cθ(x)− h(x)Eα(γtα),

where θ(x) satisfies the following equation

1

2
σ2θ′′ +

(
r − δ − 1

2
σ2

)
θ′ − rθ = 0. (4.2)
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After solving second order equations with constant coefficients (4.1) and (4.2), we obtain the new exact solution of
the fractional B-S equation.

4.2. Solitary wave solutions. In this subsection, applying the fractional complex transformation, we obtain the
solitary wave solutions of the fractional B-S equation. The fractional wave transformation, which reduces the fractional
partial differential equations into ordinary differential equations (ODEs), is in the form

u(x, t) = u(η), η = kx+
wtα

Γ(α+ 1)
, (4.3)

where k and w are nonzero arbitrary constants. By applying the transformation (4.3), Eq. (3.3) is transformed into
the following ordinary differential equation

1

2
σ2k2u′′ +

(
rk − δk − 1

2
σ2k − w

)
u′ − ru = 0, (4.4)

where the prime denotes the derivation with respect to η. By assuming ∆ =
(
rk − δk − 1

2σ
2k − w

)2
+ 2σ2k2r, we

obtain the solutions of Eq. (4.4) in the following cases:

• If ∆ > 0, then by assuming mi =
−(rk−δk− 1

2σ
2k−w)±

√
∆

σ2k2 , i = 1, 2, we have

u(η) = c1e
m1η + c2e

m2η.

• If ∆ = 0, then by assuming m =
−(rk−δk− 1

2σ
2k−w)

σ2k2 ,, we have

u(η) = c1e
mη + c2ηe

mη.

• If ∆ < 0, then by assuming p± qi =
−(rk−δk− 1

2σ
2k−w)±

√
∆

σ2k2 , we have

u(η) = epη (c1 cos qη + c2 sin qη) .

where c1 and c2 are arbitrary smooth functions. Inserting η = kx + wtα

Γ(α+1) , we obtain the solitary wave solutions of

Eq. (3.3) as follows

• If ∆ > 0

u(x, t) = c1e
m1(kx+ wtα

Γ(α+1) ) + c2e
m2(kx+ wtα

Γ(α+1) ).

• If ∆ = 0

u(x, t) = c1e
m(kx+ wtα

Γ(α+1) ) + c2

(
kx+

wtα

Γ(α+ 1)

)
em(kx+ wtα

Γ(α+1) ).

• If ∆ < 0

u(x, t) = ep(kx+ wtα

Γ(α+1) )
[
c1 cos q

(
kx+

wtα

Γ(α+1)

)
+c2 sin q

(
kx+

wtα

Γ(α+1)

)]
.

5. Conservation laws for the fractional B-S equation of the Caputo-type

In the current section, we construct the conservation laws of Eq. (3.3). A vector F = (F x, F t) is called a conserved
vector for Eq. (3.3), if it fulfils the conservation equation

Dx(F x) +Dt(F t)
∣∣
B−S=0

= 0, (5.1)

where F t = F t(t, x, u, ...) and F x = F x(t, x, u, ...). Equation (5.1) is called a conservation law for Eq.(3.3). The new
conservation theorem proposed by Ibragimov [16] provides a method to construct conservation laws for differential
equations. Based on this theorem, the Lagrangian formal for Eq. (3.3) can be introduced as

L = v(x, t)

[
CDα

t u−
1

2
σ2uxx −

(
r − δ − 1

2
σ2

)
ux + ru

]
,
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(a) For the time t = 5. (b) For 0 < x < 10, 0 < t < 10.

Figure 1. The plot of u(x, t) obtained by Example 3.2 for different values of α with parameters
k = 2, σ = 0.15, r = 0.025, δ = 0.13

(a) For the time t = 5. (b) for 0 < x < 10, 0 < t < 6.

Figure 2. The plot of solitary wave solutions for different values of α with parameters k = 10, w = 1,
σ = 0.2, r = 0.04, δ = 0.02.

where v(x, t) is a new dependent variable. The Euler-Lagrange operator is presented as follows:

δ

δu
=
∂

∂u
+(Dαt )∗

∂

∂ (CDα
t u)
−Dx

∂

∂ux
+

∞∑
k=2

(−1)kDi1Di2 . . .Dik
∂

∂ui1,i2,...,ik
,

where (Dαt )∗ is the adjoint operator of CDα
t u and is defined by

(Dαt )∗f(t)= tDαT f(t)=
(−1)m

Γ(m−α)
Dm
t

∫ T

t

(s−t)m−α−1f(s)ds, m−1 < α < m,
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(a) For the time t = 5. (b) For 0 < x < 6, 0 < t < 3.

Figure 3. The plot of solitary wave solutions for different values of α with parameters k = 5, w =
−0.5, σ = 0.2, r = −0.04, δ = 0.04.

(see [22] for more details). The adjoint equation to Eq. (3.3) is given by

δL
δu

= 0, (5.2)

or, in the equivalent form

(Dαt )∗v − 1

2
σ2vxx +

(
r − δ − 1

2
σ2

)
vx + rv = 0. (5.3)

We also have fundamental identity [11, 16, 22]

CPr(α,t)V +Dt(τ)I +Dx(ξ)I = W
δ

δu
+Dt(N t) +Dx(Nx), (5.4)

where I is the identity operator, N t and Nx represent Noether’s operators and W = ϕ − τut − ξux. For the time–
fractional Caputo-type derivative, the operator N t is written in the form [22]

N t = τI +

m−1∑
k=0

Dkt (W ) tDα−1−k
T

∂

∂ (CDα
t u)
− J

(
Dmt (W ),

∂

∂ (CDα
t u)

)
, (5.5)

where the integral operator J is defined by

J(f, g) =
1

Γ(m− α)

∫ t

0

∫ T

t

(s− ν)m−α−1f(ν)g(s)dsdν.

For Eq. (3.3), the operator Nx can be constructed by the following formula

Nx = ξI +W

(
∂

∂ux
−Dx

∂

∂uxx

)
+Dx(W )

∂

∂uxx
. (5.6)

For any infinitesimal generator V admitted by Eq. (3.3) and its solution, we conclude

CPr(α,t)V L+Dt(τ)L+Dx(ξ)L
∣∣
B−S=0

= 0.

Therefore, in view of (5.2), Eq. (5.4) leads to the conservation law

Dt(N tL) +Dx(NxL)
∣∣
B−S=0

= 0.
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Now, we present the components of conserved vectors for Eq. (3.3). Using Eqs. (5.5) and (5.6), we have

F t = N tL = τL+Wi tDα−1
T

∂L
∂ (CDα

t u)
− J

(
Dt(Wi),

∂L
∂ (CDα

t u)

)
= Wi tDα−1

T v − J (Dt(Wi), v) ,

and

F x = NxL =ξL+Wi

(
∂L
∂ux

−Dx
∂L
∂uxx

)
+Dx(Wi)

∂L
∂uxx

=Wi

[
1

2
σ2vx −

(
r − δ − 1

2
σ2

)
v

]
− 1

2
σ2Dx(Wi)v,

where v(x, t) is an arbitrary nontrivial solution of Eq. (5.3) and for different infinitesimal generator Vi, i = 1, . . . , 11,
of Eq. (3.3), Wi are defined as follows:

W1 = −ux, W2 = u, W3 = K(x, t),

W4 =
σ2 − 2(r − δ)

σ2
αxu− 4tut − 2αxux.

6. Conclusion

The fractional differential equations of the Caputo type arise in a number of applications such as regularized long
wave (RLW) equations, which describe the nature of ion-acoustic waves in plasma and shallow water waves in oceans;
and the Caputo fractional Korteweg–de Vries equations that have applications in wide areas including crystal lattice
with acoustic waves, waves in a density-stratified ocean having long internal shallow-water waves with weakly non-
linear restoring forces [13, 29, 38]. The fractional operators are non-local, therefore technical difficulties are found in
applying the Lie symmetry analysis to obtain the exact solutions of these equations. The authors in [12] obtained
the exact prolongation formula for fractional operators of the Caputo type for 0 < α < 1. We applied the Lie
symmetry analysis to the Caputo-type B-S equation arising from the double barrier option pricing. We constructed
the symmetries of this equation, and showed that the symmetry analysis of this equation gives rise to some interesting
solutions in various forms. From a theoretical point of view, we have given a class of invariance to (3.3), which
can be used in the literature. In particular, we concentrated on a fractional B–S model governing a double barrier
option with arbitrary parameters, and we arrived at the option pricing C(S, τ) at the underlying asset S and the
time τ , in example 3.2. The explicit expression of the C were given, and graphically depicted for various values of
the fractional parameters α = 0.25, 0.5, 0.75, 1 in Fig. 1(b). In Fig. 1(a), we represented the values of the options
graphically, when we fixed the time T − τ = 5. We notice that the order α has an effect in the option pricing. We can
observe that the decay in the cost of the option are seen, when the order of fractional derivative increases. At last, we
derived an adjoint equation of the Caputo-type fractional B-S equation, and utilizing it many conservation laws of the
equation were exhibited. Using the methods based on the Lie symmetry analysis to fractional differential equations,
we arrive at a wide class of exact solutions of a given equation. In addition to this advantage of these methods, there
are some disadvantages as well. For the given B-S equation, we directly, using a particular reduction, derived the
solitary solutions, Fig. 2 and 3. However we could not obtain the solitary solutions by employing the Lie symmetry
analysis. In fact according to (4.3) the corresponding infinitesimal generator, which leads to these solutions is in the
form V = wtα−1 ∂

∂x − kΓ (α) ∂∂t , where w, k are constants. Recalling the infinitesimal generator (2.2), that means the

ξ = wtα−1 and is dependent on the variable t. Regarding the complicated calculations in the given procedure to obtain
the invariance of a given equation, we imposed the constraint ξ = ξ(x). Due to this constraint we did not obtain the
solitary solutions as invariant solution of the B-S equation.
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