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Abstract
The cubic spline in tension method is taken into consideration to solve the singularly perturbed delay differential
equations of convection diffusion type with integral boundary condition. Simpson’s 1/3 rule is used to the non-

local boundary condition and three model problems are examined for numerical treatment and are addressed

using a variety of values for the perturbation parameter ε and the mesh size to verify the scheme’s applicability.
The computational results and rate of convergence are given in tables, and it is seen that the proposed method

is more precise and improves the methods used in the literature.
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1. Introduction

The non-local boundary conditions in boundary value problem have uncovered to be fascinating and significant
category of problems in recent years. There are several applications for these problems in the fields of science and
engineering. The presence of small perturbation parameter ε causes the solution of singularly perturbed boundary
value problems to show a multiscale trend. The solution to these problems exhibit extremely steep gradients in thin
region known as layer region and the gradients are minor elsewhere, where the region is known to be outer or regular
region. As a result, both asymptotic and numerical approaches to the problems provide significant challenges. In recent
years, asymptotic and numerical studies have been done on these topics. Also these problems arise in mathematical
modelling of a variety of realistic situations such as HIV infection models [2], control theory [11], microscale heat
transfer [30], etc.

Some authors used the hybrid difference scheme [8], fitted mesh B-spline collocation method [12] and finite difference
scheme [14, 26] to solve the boundary-value problem of singular perturbation problems with small delay while others
looked into various concepts of singularly perturbed problems(SPPs) involving delay and advanced parameters [13, 23].
The researchers in [9] studied on the existence of periodic solutions of third order delay differential equations. Many
different numerical systems including the iterative scheme [25], finite and hybrid difference approach [28] and finite
element method [22] have been developed in recent years to address the singularly perturbed delay differential equations
with large delay variable, with boundary conditions. The authors in [3] dealt with singularly perturbed delay parabolic
convection-diffusion equations arising in the modeling of neuronal variability. For the singularly perturbed delay
differential equation with non-local boundary condition, the fitted finite difference technique is taken into consideration
by Debela and Duressa [4]. Using Simpson’s rule, the non-local boundary condition is dealt by Kumar and Rao [19]
and they used central difference method to solve singularly perturbed delay differential equations (SPDDEs) with
large delay. Lalu, Phaneendra and Emineni [20] suggested a non polynomial spline method for solving this type of
problems. Sekar and Tamilselvan [24] treated the problem using finite difference method with piecewise Shishkin mesh.
Debela and Duressa [5] suggested an exponentially fitted finite difference method and the integral boundary condition
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is solved by applying the Simpsons rule. The works in [1], [7], [10], [15], [16], [18], [21], [29] also give the approximate
solution of SPDDEs with different numerical approaches.

Researchers are constantly striving to design the non-standard or non-classical numerical schemes to solve these
kind of problems for small epsilon since standard or classical numerical methods are inappropriate and deliver results
distant from the expectations for the singularly perturbed boundary value problems. There hasn’t been much research
done on the related singularly perturbed delay differential equations with integral boundary conditions. A strategy
must be developed in order to investigate the error analysis and identify the approximate solution for this type of
problem. The main goal of this study is to come up with an improved numerical technique, which is uniformly
convergent for solving SPDDEs with integral boundary conditions. In this work, we propose a second order numerical
approach for solving SPDDEs of convection diffusion type with integral boundary condition.

2. Statement of the problem

As a means of explaining the procedure, we consider the following singularly perturbed delay differential equation
of convection diffusion type with integral boundary condition:

Lz ≡ −εz′′(u) + a(u)z′(u) + b(u)z(u) + c(u)z(u − 1) = d(u), u ∈ Ω = (0, 2), (2.1)

with,

z(u) = f(u), u ∈ [−1, 0],

z(2) = k + ε
∫ 2

0
g(u)z(u)du = β,

(2.2)

where 0 < ε ≤ 1 and β is a constant.

All the related function in (2.1) and (2.2) are taken to be smooth and bounded and ε independent. Also a(u), b(u), c(u)
are such that a(u) ≥ a∗ > 0, b(u) ≥ b∗ > 0, c(u) ≤ c∗ < 0, b(u) + c(u) ≥ δ > 0, where a∗+ b∗+ c∗ > 0 and b∗− c∗ ≥ 0.
For ε near to 0, the solution of (2.1) and (2.2) has an interior layer and boundary layer. (2.1) and (2.2) can be written
as:

Lz ≡ h(u), u ∈ Ω, (2.3)

where,

Lz =

{
L1z(u) = −εz′′(u) + a(u)z′(u) + b(u)z(u), u ∈ Ω1,
L2z(u) = −εz′′(u) + a(u)z′(u) + b(u)z(u) + c(u)z(u− 1), u ∈ Ω2,

h(u) =

{
d(u)− c(u)f(u− 1), u ∈ Ω1,

d(u), u ∈ Ω2,

with z(1−) = z(1+), z′(1−) = z′(1+), z(2) = β. Also let Kz(2) = z(2) − ε
∫ 2

0
g(u)z(u)du = k, Ω∗ = Ω1 ∪ Ω2 and

U = C0(Ω) ∪ C1(Ω) ∪ C2(Ω).

3. Properties of Solution

Lemma 3.1. (Maximum Principle) Let ξ(u) be any function in U such that ξ(0) ≥ 0, Kξ(2) ≥ 0, L1ξ(2) ≥ 0 for all
u ∈ Ω1, L2ξ(2) ≥ 0 for all u ∈ Ω2 and [ξ′](1) ≤ 0, then ξ(u) ≥ 0 for all u ∈ Ω̄.

Proof. Define the function t(u) as:

t(u) =

{
1
8 + u

2 , u ∈ [0, 1]
3
8 + u

4 , u ∈ [1, 2]

Then t(u) is positive for all u ∈ Ω̄.
Also Lt(u) > 0 for all u ∈ Ω1 ∪ Ω2, t(0) > 0, Kt(2) > 0 and [t]′(1) < 0. Let

µ̄ = max

{
−ξ(u)

t(u)
: u ∈ Ω̄

}
.
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Then ∃u0 ∈ Ω̄ satisfying ξ(u0) + µ̄t(u0) = 0 and ξ(u) + µ̄t(u) ≥ 0, for all u ∈ Ω̄.
Hence ξ + µ̄t(u0) gives minimum value.
Now, suppose that the theorem is not true. Then µ̄ > 0.

Case 1: u0 = 0.
Then

0 < (ξ + µ̄t)(0) = ξ(0) + µ̄t(0) = 0,

which is a contradiction.
Case 2: u0 ∈ Ω1.
Then

0 < L(ξ + µ̄t)(u0) = −ε(ξ + µ̄t)′′(u0) + a(u0)(ξ + µ̄t)′(u0) + b(u0)(ξ + µ̄t)(u0) ≤ 0,

a contradiction.
Case 3: u0 = 1.
Then

0 ≤ [(ξ + µ̄t)′](1) = [ξ′](1) + µ̄[t′](1) < 0,

it is a contradiction.
Case 4: u0 ∈ Ω2.
Then

0 < L(ξ + µ̄t)(u0) = −ε(ξ + µ̄t)′′(u0) + a(u0)(ξ + µ̄t)′(u0)

+ b(u0)(ξ + µ̄t)(u0) + c(u0)(ξ + µ̄t)(u0 − 1) ≤ 0,

again a contradiction.
Case 5: u0 = 2.
Then

0 ≤ K(ξ + µ̄t)′(2) = (ξ + µ̄t)′(2)− ε
∫ 2

0

g(u)(ξ + µ̄t)(u0)du ≤ 0,

which is a contradiction.

Hence the proof. �

Lemma 3.2. (Stability Result) The solution z(u) for (2.1)- (2.2) satisfies:

| z(u) |≤ C̄ max{| z(0) |, | Kz(2) |, sup
u∈Ω∗

| Lz(u) |}, u ∈ Ω̄.

Proof. This is proved using the above lemma with the functions:

θ±(u) = C̄.M̄ .t(u)± z(u), u ∈ Ω̄,

where M̄ = max{| z(0) |, | Kz(2) |, supu∈Ω∗ | Lz(u) |} and t(u) are the test functions in the above lemma.
�

Lemma 3.3. Let z(u) be the solution for the problem (2.1)- (2.2). Then

‖z(k)(u)‖Ω∗ ≤ Cε−k, for k = 1, 2, 3.

4. Description of the method

Consider u0 = 0, u2N = 2, ui = ih and h = 1/N . A function T (u, τ) = T (u) satisfying the following differential
equation in [ui, ui+1],

T ′′(u)− τT (u) = [T ′′(ui)− τT (ui)]
(ui+1 − u)

h
− [T ′′(ui+1)− τT (ui+1)]

(ui − u)

h
, (4.1)
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where T (ui) = zi and τ > 0 is called cubic spline in tension. Equation (4.1) is solved as a linear second order
differential equation to get,

T (u) = Pe
λu
h + Qe

−λu
h +

(
Ri − τzi

τ

)[
u− ui+1

h

]
+

(
Ri+1 − τzi+1

τ

)[
ui − u
h

]
.

By using the conditions T (ui+1) = zi+1, T (ui) = zi, we can find the constants P and Q.
Let λ = hτ1/2 and Ri = T ′′(ui), we get,

T (u) =
h2

λ2 sinhλ

[
Ri+1 sinh

λ(u− ui)
h

+Ri sinh
λ(ui+1 − u)

h

]
− h2

λ2

[
(u− ui)

h

(
Ri+1 −

λ2

h2
zi+1

)
+

(
ui+1 − u

h

)(
Ri −

λ2

h2
zi

)]
.

Differentiating the above equation and finding the limit u→ ui, we get,

T ′(u+
i ) =

zi+1 − zi
h

− h

λ2

[(
1− λ

sinhλ

)
Ri+1 − (1− λ cothλ)Ri

]
. (4.2)

Taking (ui−1, ui) as the interval and continuing in the same manner, we obtain,

T ′(u−i ) =
zi − zi−1

h
− h

λ2

[
(λ cothλ− 1)Ri +

(
1− λ

sinhλ

)
Ri+1

]
. (4.3)

Equations (4.2)and (4.3) are equalized at ui to get,

zi+1 − zi
h

− h

λ2

[(
1− λ

sinhλ

)
Ri+1 − (1− λ cothλ)Ri

]
=
zi − zi−1

h

+
h

λ2

[
(λ cothλ− 1)Ri +

(
1− λ

sinhλ

)
Ri+1

]
.

As a result, we have a tridiagonal system:

h2(λ1Ri−1 + 2λ2Ri + λ1Ri+1) = zi+1 − 2zi + zi−1, i = 1(1)2N − 1, (4.4)

where,

λ1 =
−1

λ2

(
λ

sinhλ
− 1

)
,

λ2 =
−1

λ2
(1− λ cothλ) ,

Ri = T ′′(ui), i = 1, 2, ..., 2N − 1.

The first order derivatives of the spline T (u, τ) at interior nodes are guaranteed to be continuous by the condition of
continuity and the system given in (4.4). If equation is consistent, it is appropriate for solving the given differential
equation. This condition is satisfied, if λ1 + λ2 = 1

2 .

At u = ui,

εz′′(ui) = a(ui)z
′
i + b(ui)zi + c(ui)z(ui − 1)− d(ui).

The conditions can be expressed as:

zi = fi, for −N ≤ i ≤ 0,

z2N = β,
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where fi = f(ui). Let a(ui) = ai, b(ui) = bi, c(ui) = ci and d(ui) = di.

Then we have,

εRi = aiz
′
i + bizi + ciz(ui − 1)− di. (4.5)

The first derivative of z can be replaced using following Taylor series approximations and these are used after substi-
tuting (4.5) into (4.4) to obtain the scheme.

z′i−1 ' −zi+1+4zi−3zi−1

2h ,

z′i ' zi+1−zi−1

2h ,

z′i+1 ' 3zi+1−4zi+zi−1

2h .

Following is the scheme obtained for i = 1(1)2N − 1.

(
ε+

3λ1ai−1h

2
− h2λ1bi−1 + λ2bih−

λ1ai+1h

2

)
zi−1 +

(
−2ε− 2λ1ai−1h− 2λ2bih

2 + 2λ1ai+1h
)
zi

+

(
ε+

λ1ai−1h

2
− h2λ1bi+1 − λ2aih−

3λ1ai+1h

2

)
zi+1

= h2 [λ1ci−1z(ui−1−N ) + 2λ2ciz(ui−N ) + λ1ci+1z(ui+1−N )]− h2(λ1di−1 + 2λ2di + λ1di+1). (4.6)

5. Numerical Algorithm

Step 1: To get the reduced problem, put ε = 0 in (2.1), then we have,

a(u)z′0 + b(u)z0 + c(u)z0(u− 1) = d(u), u ∈ [0, 1],

with z(u) = f(u), u ∈ [−1, 0].

Since z(u) = f(u) in [−1, 0], z0(u− 1) = f(u− 1). This implies,

z′0 =
1

a(u)
[d(u)− b(u)z0 − c(u)f(u− 1)] with z0(0) = f(0).

We use Runge-Kutta method to solve this IVP to get the solution at u = 1, say γ [ie z0(1) = γ].

Step 2: To find the solution in Ω1, we employ the scheme in (4.6) with the fitting factor

σρ = a(1)ρ coth

(
a(1)ρ

2

)
(λ1 + λ2),

where h = ερ.

Now, the scheme in Ω1 can be rewritten as:

Kizi−1 + Lizi +Mizi+1 = Ni, 1 < i < N − 1,
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where,

Ki = εσρ +
3λ1ai−1h

2
− h2λ1bi−1 + λ2bih−

λ1ai+1h

2
,

Li = −2εσρ − 2λ1ai−1h− 2λ2bih
2 + 2λ1ai+1h,

Mi = εσρ +
λ1ai−1h

2
− h2λ1bi+1 − λ2aih−

3λ1ai+1h

2
,

Ni = h2 [λ1ci−1fi−1−N + 2λ2cifi−N + λ1ci+1fi+1−N ]− h2 [λ1di−1 + 2λ2di + λ1di+1] .

Using Gauss elimination method and the conditions z0 = f(0) and zN = γ, we solve the system.

Step 3: We need to know the value of z(2) to proceed for the solution in (1, 2). Given that,

z(2) = k + ε

∫ 2

0

g(u)z(u)du. (5.1)

We employ Simpson’s rule to find the value of the integral in (2.2).

∫ 2

0

g(u)z(u)du =
h

3

[
2

2N−1∑
i=1

g(u2i)z(u2i) + 4

2N∑
i=1

g(u2i−1)z(u2i−1)

]
+
h

3
[g(0)z(0) + g(2)z(2)] .

Using (5.1), we can write as,

z(2)− h

3

[
2

2N−1∑
i=1

g(u2i)z(u2i) + 4

2N∑
i=1

g(u2i−1)z(u2i−1)

]
− h

3
[g(0)z(0) + g(2)z(2)] = k.

Use z(0) = f(0), we get,

z(2) =
hε

(3− hεg(2))

[
g(0)f(0) + 2

2N−1∑
i=1

g(u2i)z(u2i) + 4
2N∑
i=1

g(u2i−1)z(u2i−1)

]
+

k(
1− εh

3 g(2)
) .

Let z2N = β, then,

β =
1(

1− εh
3 g(2)

) [2εh

3

2N−1∑
i=1

g(u2i)z(u2i) +
4εh

3

2N∑
i=1

g(u2i−1)z(u2i−1)

]

+

[
k(

1− εh
3 g(2)

) +
εh

3− εhg(2)
g(0)f(0)

]
.

Step 4: To find the solution in Ω2, we introduce the fitting factor and rewrite the scheme as:

Kizi−1 + Lizi +Mizi+1 = Ni, N + 1 < i < 2N − 1,
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where,

Ki = εσρ +
3λ1ai−1h

2
− h2λ1bi−1 + λ2bih−

λ1ai+1h

2
,

Li = −2εσρ − 2λ1ai−1h− 2λ2bih
2 + 2λ1ai+1h,

Mi = εσρ +
λ1ai−1h

2
− h2λ1bi+1 − λ2aih−

3λ1ai+1h

2
,

Ni = h2 [λ1ci−1zi−1−N + 2λ2cizi−N + λ1ci+1zi+1−N ]− h2 [λ1di−1 + 2λ2di + λ1di+1] .

This system can again be solved by Gauss Elimination method with the condition zN = γ and z2N = β.

6. Convergence Analysis

We write the system in matrix form as:

V Z = W, (6.1)

where V = (vij) is a matrix of order 2N − 1.

Then, for i = 1(1)2N − 2,

vii−1 = εσρ +
3λ1ai−1h

2
− h2λ1bi−1 + λ2bih−

λ1ai+1h

2
,

vii = −2εσρ − 2λ1ai−1h− 2λ2bih
2 + 2λ1ai+1h,

vii+1 = εσρ +
λ1ai−1h

2
− h2λ1bi+1 − λ2aih−

3λ1ai+1h

2
.

Now, for i = 2N − 1,

v2n−1,i =



4giM2N−1εh
(3−εh)g(2) , i = 1(2)N − 1

2giM2N−1εh
(3−εh)g(2) , i = 2(2)N

4giεh
(3−εh)g(2) , i = N + 1(2)2N − 3

2giεh
(3−εh)g(2) , i = N + 2(2)2N − 4

2g2N−2εh
(3−εh)g(2) −K2N−1 , i = 2N − 2

4g2N−1εh
(3−εh)g(2) − L2N−1 , i = 2N − 1

and W = (wi) is a column vector, where,

wi =



N1 −K1f0 , i = 1

h2 [λ1ci−1fi−1−N + 2λ2cifi−N + λ1ci+1fi+1−N ]− h2(λ1di−1 + 2λ2di + λ1di+1) , i = 2(1)N − 1

h2 [λ1ci−1zi−1−N + 2λ2cizi−N + λ1ci+1zi+1−N ]− h2(λ1di−1 + 2λ2di + λ1di+1) , i = N(1)2N − 2

N2n−1 − 3M2N−1

(3−εh)g(2)

[
k + εh

3 g(0)f0

]
, i = 2N − 1
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Also, truncation error is Yi(h) = h4

2 L
∗ +O(h5), where L∗ =

z
(3)
i

ε

[
λ1ai−1 − 2λ2ai

3 + λ1ai+1

]
.

In Error form, (6.1) can also be written as:

V Z − Y (h) = W, (6.2)

where Z =
(
z1 z2 . . . z2N−1

)t
and Y (h) =

(
Y1(h) Y2(h) . . . Y2N−1(h)

)t
. Here Z denote the exact

solution and Y (h) is the truncation error.

From (6.1) and (6.2), we get V (Z − Z) = Y (h). This can be written as:

V E = Y (h), (6.3)

where E = Z −Z =
(
e1 e2 . . . e2N−1

)t
. Now we find each row sum of the matrix V . Let its i−th row sum be

denoted by Sj .

S1 = εσρ −
3λ1ai−1h

2
+
λ1ai+1h

2
− 2h2λ2bi − λ2aih− λ1h

2bi+1,

Sj = h2 [−λ1bi−1 − λ2bi − λ1bi+1] = h2(Bi), j = 2(1)2N − 2,

S2N−1 =
2εh

(3− εh)g(2)
M2N−1 [2(g1 + g3 + ...+ gN−1) + (g2 + g4 + ...+ gN )]

+
2εh

(3− εh)g(2)
[2(gN+1 + gN+3 + ...+ g2N−3) + (gN+2 + gN+4 + ...+ g2N−4)]

+
2εh

(3− εh)g(2)
[g2N−2 + 2g2N−1 −K2N−1 − L2N−1] .

Also h → 0, V is monotone and irreducible, which implies that the matrix is invertible and its elements are not less
than zero. From (6.3), it follows that:

E = V −1Y (h). (6.4)

Hence,

‖E‖ ≤ ‖V −1‖‖Y (h)‖. (6.5)

Let vj,i denote the (j, i)-th element of V −1.

Then
∑2N−1
i=1 vj,iSi = 1, j = 1(1)2N − 1. This gives

2N−1∑
i=1

vj,i ≤
1

min1≤i≤2N−1 Si
≤ 1

h2 | Bi |
. (6.6)

From Equations (6.1), (6.4), (6.5), and (6.6), we have,

ei =

2N−1∑
j=1

vj,iYi(h) , i = 1(1)2N − 1,

which implies,

ei ≤

2N−1∑
j=1

vj,i

 max
1≤i≤2N−1

| Yi(h) |,

≤ 1

h2 | Bi |
× h4L∗

2
= O(h2),

where L∗ is a constant which does not depend on h. So ‖E‖ = O(h2). Hence the proposed approach is of second order
convergence.
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7. Numerical Experiments

In order to demonstrate that the method being proposed is applicable, we look at the results of three different
numerical experiments and the results are presented for λ1 = 1/12 and λ2 = 5/12 . The computed answer is presented
in the form of tables that demonstrate the solution for a variety of ε values. The double-mesh principle is used to the
instances that are provided in order to arrive at a determination of the maximum absolute errors.

ENε = max
i
| zNi − z2N

2i | . (7.1)

The ε−uniform maximum absolute error for N is calculated by

EN = max
ε
ENε . (7.2)

In this work, MATLAB R2022a mathematical software has been used to obtain the numerical results and plots and
these are compared with some published works.

Rate of Convergence. The numerical rate of convergence ρ is also computed using the double mesh principle and
is defined as:

ρ =
log(Eh)− log

(
Eh/2

)
log 2

.

Example 7.1. Consider

−εz′′(u) + 3z′(u) + z(u)− z(u− 1) = 1, u ∈ (0, 2),

with,

z(u) = 1, u ∈ [−1, 0],

z(2) = 2 +
ε

3

∫ 2

0

uz(u)du.

As the perturbation parameter is varied, the Table 1 display the maximum absolute inaccuracy that can occur. Figure 1
depicts the numerical solution and Figure 2 gives the point-wise absolute errors of this example for different N values.
In addition, Figure 3 shows the maximum absolute error for various ε values. The rate of convergence table is also
presented in Table 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

N
u

m
e

ri
c

a
l 

S
o

lu
ti

o
n

(u
)

=2
-1

=2
-2

=2
-3

=2
-4

=2
-5

=2
-6

Figure 1. The numerical solution of Example 7.1 for different ε values.
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Table 1. The maximum absolute error of Example 7.1 for different values of ε.

ε N

32 64 128 256 512 1024 2048

2−4 4.55e-04 1.70e-04 9.75e-05 5.21e-05 2.69e-05 1.37e-05 6.88e-06
2−8 1.12e-03 5.65e-04 2.66e-04 1.02e-04 2.90e-05 6.45e-06 1.61e-06
2−12 1.12e-03 5.67e-04 2.85e-04 1.43e-04 7.14e-05 3.56e-05 1.67e-05
2−16 1.12e-03 5.67e-04 2.85e-04 1.43e-04 7.14e-05 3.57e-05 1.79e-05
2−20 1.12e-03 5.67e-04 2.85e-04 1.43e-04 7.14e-05 3.57e-05 1.79e-05
2−24 1.12e-03 5.67e-04 2.85e-04 1.43e-04 7.14e-05 3.57e-05 1.79e-05
2−28 1.12e-03 5.67e-04 2.85e-04 1.43e-04 7.14e-05 3.57e-05 1.79e-05
2−32 1.12e-03 5.67e-04 2.85e-04 1.43e-04 7.14e-05 3.57e-05 1.79e-05
EN 1.12e-03 5.67e-04 2.85e-04 1.43e-04 7.14e-05 3.57e-05 1.79e-05

CPU time 0.0938 s 0.1094 s 0.2031 s 0.4531 s 1.2500 s 6.5312 s 35.2812 s

Results in [17]
2−4 4.04e-01 1.19e-01 2.62e-02 6.83e-03 1.94e-03 6.09e-04 2.18e-04
2−8 6.71e-01 3.17e-01 1.18e-01 3.51e-02 1.00e-02 2.89e-03 1.06e-03
2−12 6.70e-01 3.18e-01 1.21e-01 3.73e-02 1.13e-02 3.26e-03 1.56e-03
2−16 6.70e-01 3.17e-01 1.20e-01 3.73e-02 1.25e-02 4.29e-03 1.29e-03
2−20 6.70e-01 3.17e-01 1.20e-01 3.69e-02 1.17e-02 4.20e-03 2.08e-03
2−24 6.70e-01 3.17e-01 1.20e-01 3.69e-02 1.16e-02 3.87e-03 1.43e-03
2−28 6.70e-01 3.17e-01 1.20e-01 3.69e-02 1.16e-02 3.84e-03 1.35e-03
2−32 6.70e-01 3.17e-01 1.20e-01 3.69e-02 1.16e-02 3.84e-03 1.32e-03
EN 6.70e-01 3.17e-01 1.20e-01 3.69e-02 1.16e-02 3.84e-03 1.32e-03

Results in [24]
2−4 5.61e-04 2.85e-04 1.44e-04 7.21e-05 3.61e-05 1.81e-05 -
2−8 3.82e-03 1.63e-03 6.80e-04 2.83e-04 1.22e-04 1.93e-05 -
2−12 5.57e-03 2.74e-03 1.34e-03 6.60e-04 3.26e-04 1.64e-04 -
2−16 5.99e-03 3.00e-03 1.50e-03 7.47e-04 3.73e-04 1.87e-04 -
2−20 6.10e-03 3.07e-03 1.54e-03 7.69e-04 3.85e-04 1.92e-04 -
EN 6.10e-03 3.07e-03 1.54e-03 7.69e-04 3.85e-04 1.92e-04 -

Results in [6]
2−4 3.83e-03 1.18e-03 3.28e-04 8.66e-05 2.23e-05 - -
2−8 5.18e-03 2.71e-03 1.46e-04 6.67e-04 2.42e-05 - -
2−12 5.17e-03 2.59e-03 1.30e-03 6.50e-04 3.26e-04 - -
2−16 5.17e-03 2.59e-03 1.30e-03 6.50e-04 3.25e-04 - -
2−20 5.17e-03 2.59e-03 1.30e-03 6.50e-04 3.25e-04 - -
2−24 5.17e-03 2.59e-03 1.30e-03 6.50e-04 3.25e-04 - -
2−28 5.17e-03 2.59e-03 1.30e-03 6.50e-04 3.25e-04 - -
2−32 5.17e-03 2.59e-03 1.30e-03 6.50e-04 3.25e-04 - -
EN 5.17e-03 2.59e-03 1.30e-03 6.50e-04 3.25e-04 - -
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Table 2. Rate of convergence ρ of Example 7.1 for ε = 2−6.

h h
2 Eh

h
4 Eh

2
ρ

1/16 1/32 2.0629e-03 1/64 8.0068e-04 1.3778
1/32 1/64 8.0068e-04 1/128 2.3016e-04 1.8036
1/64 1/128 2.3016e-04 1/256 5.1075e-05 2.1711
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Figure 2. The point-wise absolute errors of Example 7.1 for different values of N.

2
5

 2
6

 2
7

 2
8

 2
9

N

0

0.5

1

1.5

2

2.5

3

3.5

4

M
a

x
im

u
m

 A
b

s
o

lu
te

 E
r
r
o

r

10
-3

=2
-1

=2
-2

=2
-3

=2
-4

=2
-5

=2
-6

Figure 3. The maximum absolute error of Example 7.1 for different ε values.

Example 7.2. Consider

−εz′′(u) + (1 + u)z′(u) + (u+ 10)z(u)− euz(u− 1) =
4

π2
u(1− u), u ∈ (0, 2),
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Figure 4. The point-wise absolute errors of Example 7.2 for different values of N.

Table 3. Rate of convergence ρ of Example 7.2 for ε = 2−6.

h h
2 Eh

h
4 Eh

2
ρ

1/16 1/32 8.1678e-02 1/64 2.6983e-02 1.5979
1/32 1/64 2.6983e-02 1/128 7.6138e-03 1.8253
1/64 1/128 7.6138e-03 1/256 3.0963e-03 1.4787

with,

z(u) = 2 + u, u ∈ [−1, 0],

z(2) = 2 +
ε

3

∫ 2

0

ueu sinuz(u)du.

As the perturbation parameter is varied, the Table 4 display the maximum absolute inaccuracy that can occur. Figure 6
depicts the estimated solution and Figure 4 gives the point-wise absolute errors of this example for different N values.
In addition, Figure 5 shows the maximum absolute error for various ε values. The rate of convergence table is also
presented in Table 3.

Example 7.3. Consider

−εz′′(u) + 3z′(u) + z(u)− z(u− 1) = 1, u ∈ (0, 2),

with,

z(u) = 0, u ∈ [−1, 0],

z(2) = 2 +
ε

3

∫ 2

0

uz(u)du.

As the perturbation parameter is varied, the Table 5 display the maximum absolute inaccuracy that can occur. Figure 8
depicts the numerical solution and Figure 9 gives the point-wise absolute errors of this example for different N values.
In addition, Figure 7 shows the maximum absolute error for various ε values. The rate of convergence table is also
presented in Table 6.



CMDE Vol. *, No. *, *, pp. 1-18 13

Table 4. The maximum absolute error of Example 7.2 for different values of ε.

ε N

32 64 128 256 512 1024 2048

2−4 7.61e-03 3.10e-03 1.51e-03 8.03e-04 4.09e-04 2.06e-04 1.03e-04
2−8 5.04e-02 1.81e-02 1.19e-03 1.94e-03 5.86e-03 3.19e-03 1.64e-03
2−12 5.42e-02 2.91e-02 1.51e-02 7.39e-03 3.19e-03 8.93e-03 9.60e-03
2−16 5.42e-02 2.91e-02 1.51e-02 7.61e-03 3.95e-03 1.99e-03 9.98e-04
2−20 5.42e-02 2.91e-02 1.51e-02 7.61e-03 3.95e-03 1.99e-03 9.98e-04
2−24 5.42e-02 2.91e-02 1.51e-02 7.61e-03 3.95e-03 1.99e-03 9.98e-04
2−28 5.42e-02 2.91e-02 1.51e-02 7.61e-03 3.95e-03 1.99e-03 9.98e-04
2−32 5.42e-02 2.91e-02 1.51e-02 7.61e-03 3.95e-03 1.99e-03 9.98e-04
EN 5.42e-02 2.91e-02 1.51e-02 7.61e-03 3.95e-03 1.99e-03 9.98e-04

CPU time 0.1094 s 0.1406 s 0.2500 s 0.5000 s 1.4375 s 7.7344 s 36.4375 s

Results in [17]
2−4 6.65e-01 1.76e-01 3.55e-02 7.70e-03 1.55e-03 8.75e-04 4.24e-04
2−8 8.77e-01 4.15e-01 1.51e-01 4.19e-02 1.27e-02 3.25e-03 1.07e-03
2−12 8.80e-01 4.11e-01 1.51e-01 4.36e-02 1.25e-02 4.63e-03 2.17e-03
2−16 8.80e-01 4.11e-01 1.51e-01 4.39e-02 1.29e-02 3.85e-03 1.15e-03
2−20 8.80e-01 4.11e-01 1.51e-01 4.39e-02 1.29e-02 3.88e-03 1.15e-03
2−24 8.80e-01 4.11e-01 1.51e-01 4.39e-02 1.29e-02 3.89e-03 1.17e-03
2−28 8.80e-01 4.11e-01 1.51e-01 4.39e-02 1.29e-02 3.89e-03 1.17e-03
2−32 8.80e-01 4.11e-01 1.51e-01 4.39e-02 1.29e-02 3.89e-03 1.17e-03
EN 8.80e-01 4.11e-01 1.51e-01 4.39e-02 1.29e-02 3.89e-03 1.17e-03

Results in [6]
2−4 1.42e-02 7.86e-03 4.13e-03 2.11e-03 1.07e-03 - -
2−8 4.41e-02 1.49e-02 4.26e-03 1.97e-03 1.14e-03 - -
2−12 5.53e-02 2.95e-02 1.52e-02 7.53e-03 3.11e-03 - -
2−16 5.53e-02 2.95e-02 1.52e-02 7.74e-03 3.90e-03 - -
2−20 5.53e-02 2.95e-02 1.52e-02 7.74e-03 3.90e-03 - -
2−24 5.53e-02 2.95e-02 1.52e-02 7.74e-03 3.90e-03 - -
2−28 5.53e-02 2.95e-02 1.52e-02 7.74e-03 3.90e-03 - -
2−32 5.53e-02 2.95e-02 1.52e-02 7.74e-03 3.90e-03 - -
EN 5.53e-02 2.95e-02 1.52e-02 7.74e-03 3.90e-03 - -

8. Conclusion

In this study, we use cubic spline in tension method to solve a second order singularly perturbed delay differential
equation with integral boundary condition. We applied the current methodology to three examples using different
values of ε and the resulting computational results are shown in tables 1, 4 and 5. According to the graphs given
in 3, 5 and 7, it is possible to deduce that the maximum absolute errors go smaller as the grid size h gets smaller,
which demonstrates the convergence to the computed solution. The rate of convergence tables are also presented in
tables 2, 3 and 6. Our results are compared to those of previously developed numerical methods found in published
works [6], [17], [24], [27]. The suggested approach yields more precise, consistent and convergent numerical results.
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Figure 5. The maximum absolute error of Example 7.2 for different ε values.
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Figure 6. The numerical solution of Example 7.2 for different ε values.

9. Future Recommendations

The approach we used in addressing singularly perturbed large delay differential equations with integral boundary
conditions can be extended to partial differential equation problems as well as the problems with delay and advanced
parameters. These equations also find applications in various fields such as chemical engineering, mechanical systems,
neuroscience, environmental sciences, climate modelling and so on. This also helps in modelling biochemical reactions
with delays, such as gene expression and they also pay a major role in designing control systems with delayed feedback
for stability analysis and examining systems with long communication delays in networked control. By using this
work, analyzing communication networks with propagation delays and studying signal processing in networks with
large delays can also be done. These applications demonstrate the versatility of SPDDEs in capturing complex
phenomena across diverse domains.

Acknowledgment

The authors are grateful to the reviewers for their valuable suggestions and comments.



CMDE Vol. *, No. *, *, pp. 1-18 15

2
5

 2
6

 2
7

 2
8

 2
9

N

0

0.5

1

1.5

2

2.5

3

3.5

4

M
a

x
im

u
m

 A
b

s
o

lu
te

 E
r
r
o

r

10
-3

=2
-1

=2
-2

=2
-3

=2
-4

=2
-5

=2
-6

Figure 7. The maximum absolute error of Example 7.3 for different ε values.
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Figure 8. The numerical solution of Example 7.3 for different ε values.
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Figure 9. The point-wise absolute errors of Example 7.3 for different values of N.
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Table 5. The maximum absolute error of Example 7.3 for different values of ε.

ε N

32 64 128 256 512 1024 2048

2−4 3.252e-04 1.882e-04 1.017e-04 5.282e-05 2.691e-05 1.358e-05 6.821e-06
2−8 8.466e-04 4.268e-04 1.976e-04 7.033e-05 1.805e-05 4.324e-06 1.082e-06
2−12 8.466e-04 4.287e-04 2.157e-04 1.082e-04 5.417e-05 2.699e-05 1.012e-05
2−16 8.466e-04 4.287e-04 2.157e-04 1.082e-04 5.417e-05 2.711e-05 1.016e-05
2−20 8.466e-04 4.287e-04 2.157e-04 1.082e-04 5.417e-05 2.711e-05 1.016e-05
2−24 8.466e-04 4.287e-04 2.157e-04 1.082e-04 5.417e-05 2.711e-05 1.016e-05
2−28 8.466e-04 4.287e-04 2.157e-04 1.082e-04 5.417e-05 2.711e-05 1.016e-05
2−32 8.466e-04 4.287e-04 2.157e-04 1.082e-04 5.417e-05 2.711e-05 1.016e-05
EN 8.466e-04 4.287e-04 2.157e-04 1.082e-04 5.417e-05 2.711e-05 1.016e-05
CPU time 0.1406 s 0.1562 s 0.2031 s 0.5469 s 1.2500 s 6.4375 s 35.5156 s

Results in [27]
2−4 9.680e-03 3.280e-03 1.105e-03 3.662e-04 1.182e-04 3.726e-05 1.151e-05
2−8 8.763e-03 2.966e-03 9.967e-04 3.302e-04 1.065e-04 3.356e-05 1.036e-05
2−12 8.710e-03 2.949e-03 9.910e-04 3.283e-04 1.059e-04 3.335e-05 1.030e-05
2−16 8.707e-03 2.948e-03 9.906e-04 3.282e-04 1.059e-04 3.335e-05 1.029e-05
2−20 8.707e-03 2.948e-03 9.906e-04 3.282e-04 1.059e-04 3.335e-05 1.029e-05
224 8.707e-03 2.948e-03 9.906e-04 3.282e-04 1.059e-04 3.335e-05 1.029e-05
2−28 8.707e-03 2.948e-03 9.906e-04 3.282e-04 1.059e-04 3.335e-05 1.029e-05
2−32 8.707e-03 2.948e-03 9.906e-04 3.282e-04 1.059e-04 3.335e-05 1.029e-05
EN 9.680e-03 3.280e-03 1.105e-03 3.662e-04 1.182e-04 3.726e-05 1.151e-05

Table 6. Rate of convergence ρ of Example 7.3 for ε = 2−6

h h
2 Eh

h
4 Eh

2
ρ

1/16 1/32 7.75834-04 1/64 2.7864e-04 1.4773
1/32 1/64 2.7864e-04 1/128 7.1786e-05 1.9566
1/64 1/128 7.1786e-05 1/256 1.7195e-05 2.0617
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