
Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 13, No. 2, 2025, pp. 646-658
DOI:10.22034/cmde.2024.60655.2599

Exploring high-frequency waves and soliton solutions of fluid turbulence through relaxation
medium modeled by vakhnenko-parkes equation

Samah M. Mabrouk1, Mahy M. Mahdy1, Ahmed S. Rashed1,2,∗, and Rasha Saleh1

1Department of Physics and Engineering Mathematics, Faculty of Engineering, Zagazig University, Egypt.

2Basic Science Department, Faculty of Engineering, Delta University for Science and Technology, Gamasa, 11152, Egypt.

Abstract

One of the most important natural phenomena that has been studied extensively in engineering, oceanography,

meteorology and other fields is called fluid turbulence (FT). FT stands for irregular flow of fluid. Scientists

detected models to describe this phenomenon, among these models is the (3+1)-dimensional Vakhnenko-Parkes
(VP) equation. In this research, the high-frequency waves’ dynamical behavior through the relaxation medium

is explored by considering two semi-analytic methods, the

(
G

′

G

)
and the tanh-coth (TC) expansion methods.

Nineteen different solutions have been detected and some of these solutions have been illustrated graphically.
Figures show a range of degenerate, periodic, and complex propagating soliton wave solutions.
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1. Introduction

Most phenomena in life, whether physical, biological, geological, or meteorological have applications in areas such
as plasma physics, nonlinear optics, chemical reactions, electric networks, wave propagation, and fluid turbulence
all of which are described by nonlinear partial differential equations (NLPDEs). The fluid turbulence is a common
occurrence in various engineering and natural contexts. In engineering, the importance of turbulence appears in
the design of pipelines, ships, and aircraft. In industrial procedures, it is critical for efficient mixing and chemical
reactions in reactors. Furthermore, the turbulent flow is crucial for the mixing of water in rivers and oceans, as well as
for climate dynamics. One of the models that describes this issue is the equation governing the propagation of high-
frequency waves in a relaxing medium, known as the (3+1)-dimensional Vakhnenko-Parkes equation (see [24]). There
are several analytical methods for solving nonlinear partial differential equations, including Lie-symmetry analysis (see
[18, 27]), the Jacobi elliptic function method (see [5]), the Riccati equation method (see [2]), the inverse scattering
transformation method (see [3]), the Darboux transformation method (see [1]), the Backlund transformation method
(see [28]), the tanh-coth method (see [7, 25]), the (G′/G) expansion [13] and similarity methods for partial differential
equations of integer or fractional order (see [14, 15, 19, 20]). Moreover, some numerical techniques have also been
employed (see [16, 17]). Vakhnenko (see [24]) derived a nonlinear evolution equation imitation the propagation of
short waves in a relaxing medium given by:

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0. (1.1)
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Victor et al presented a model equation for relaxing high-rate processes in active barotropic media given by (see [12]):

(
∂

∂x
+

∂

∂y

)(
∂

∂t
+ u

(
∂

∂x
+

∂

∂y

))
u+ u = 0. (1.2)

In 2019 Wazwaz developed a (3+1)-dimensional Vakhnenko-Parkes equation in the following manner (see [26]):(
∂

∂x
+

∂

∂y
+

∂

∂z

)(
∂

∂t
+ u

(
∂

∂x
+

∂

∂y
+

∂

∂z

))
u+ u = 0, (1.3)

where, u is a differentiable function in the variables x, y, z, and t, which governing the propagation of high-frequency
waves in a relaxing medium. Khater et al investigated the solitary wave solutions of VP equation by applying the
Khater II method (see [8]. Khan and Akbar found the general solution by using the exp (− Φ (ξ))-expansion method
(see [9]). Kumar obtained some exact solutions of VP equation with power law nonlinearity (see [10]). Wazwaz
derived multiple real and multiple complex soliton solutions for VP and the modified Vakhnenko-Parkes (MVP) using
the simplified Hirota’s method (see [26]). Roshid et al. found some solitary wave solutions of this equation through
the exp-function method and the exp (− Φ (ξ))-expansion method (see [21]). Kumar and Nikita Mann utilized
three methods to obtain the precise exact solitary wave solutions for the VP equation, the generalized Kudryashov
method (GKM), the generalized exponential rational function method (GERFM), and the generalized Riccati equation
mapping method (GREMM) (see [11]).

In this study, two distinct methods are applied, namely tanh-coth and
(
G

′

G

)
expansion methods, to find the analytic

solutions of the (3+1)-dimensional VP equation. The paper is arranged as follows. Section 2, presents several analytic

solutions of the VP equation via the tanh-coth method. In section 3, the
(
G

′

G

)
expansion method is utilized. The

paper ends with conclusions in section 4.

2. Tanh-coth method for the (3+1)-dimensional Vakhnenko-Parkes equation

In this section, the traveling wave solutions of the (3+1)-dimensional VP equation are constructed through consid-

ering the tanh-coth method. Özkan et al. (see [22]) converted (1.3) into the following potential form:

(uxxt + uxxy + uxxz + uxut + uxuy + uxuz + ux = 0). (2.1)

Analyzing (2.1) using the tanh-coth method (see [7, 25]) fundamentally about reducing the PDE to an ODE by
employing the traveling wave transformation given as:

ς = Dx+Ay +Bz − Ct. (2.2)

Substituting Eq. (2.2) into (2.1) simplifies it to:

qD2u′′′ +Dq(u
′
)
2
+Du′ = 0, (2.3)

with

q = A+B − C. (2.4)

The derivative symbol represents the derivatives with respect to ς. The remaining steps of the method is summarized
as:

Firstly, introducing the independent variable:

Y = tanh(ψς) (2.5)

where, ς is defined in (2.2) and ψ is considered the wave number. Assume that the solution of (2.3) can be represented
by the following finite expansion:

u(ψς) = s(y) =

M∑
k=0

aky
k +

M∑
k=1

bky
−k, (2.6)
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where, M is a positive integer that can be determined by balancing the highest order nonlinear terms with the linear
terms of highest order through a scheme as follows:

u→M,

un → nM,

u
′ →M + 1,

u(n) →M + n.

(2.7)

Substituting (2.5) into (2.3) and then collecting all coefficients of each power of yk, 0 ≤ k ≤ nM , in the resulting
equation where these coefficients must vanish. This gives a system of algebraic equations involving the parameters
ak, bk, ψ, A, D, B, and C. Two cases of solutions will be discussed as follows:

Case 1:
Balancing u′′′ with (u

′
)
2
in (2.3) results in:

M + 3 = 2(M + 1), → M = 1. (2.8)

Substituting from (2.8) into (2.6):

u(ψς) = S(Y ) =

1∑
k=0

aky
k +

1∑
k=1

bky
−k. (2.9)

The following values of S and its derivatives are obtained:
s = a0 + a1y + b1y

−1,

s
′
= a1 − b1y

−2,

s
′′
= 2b1y

−3,

s
′′′

= −6b1y
−4.

(2.10)

Substituting (2.10) into (2.3) while taking into account (2.5), gathering the coefficients of each yk power, and setting
the sum to zero yields the subsequent algebraic equations:
Coefficient of y0:

−2ψ3a1qD
2 + ψ2D

(
b1

2 + a1
2 + 4a1b1

)
q +Dψ (a1 + b1) = 0. (2.11)

Coefficient of y2:

2ψ3D2q (4a1 + 3b1)− 6b1ψ
3qD2 − 2ψ2Dq

(
a1b1 + a1

2
)
− a1Dψ = 0. (2.12)

Coefficient of y4:

−6a1ψ
3D2q + a1

2Dq = 0. (2.13)

Coefficient of y−2:

8b1ψ
3D2q + ψ2Dq

(
−2b1

2 − 2a1b1
)
− b1Dψ = 0. (2.14)

Coefficient of y−4:

−6b1D
2qψ3 +Db1

2qψ2 = 0. (2.15)

Solving the algebraic system (2.11)-(2.15) using Maple package confers three different sets of solutions of the system
which result in three different solutions of the VP Equation (2.1) as follows:
Set 1:

a1 =
−3

4(
(
− 16BDψ2−16CDψ2+1

8ψD

)
+ 2Bψ − 2Cψ)

, b1 = 6Dψ, A =
16BDψ2 − 16CDψ2 + 1

−16ψ2D
, (2.16)

u1 = a0 + 6Dψtanh

(
ψ

(
Dx+

16BDψ2 − 16CDψ2 + 1

−16ψ2D
y +Bz − ct

))−1

(2.17)
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Figure 1. Propagating wave
u2 at A = − 1

4 , B = 1, C =
1, D = 1, ψ = 1 λ = 1
, a0 = 1, a1 = 0, b1 = 6,
z = 0.1, and t = 0.2.

Figure 2. Kink wave u3 at A =
− 1

4 , B = 1, C = 1, D = 1,
ψ = 1 λ = 1 , a0 = 1, a1 = 6, z =
0.1, and t = 0.2.

+
−3

4
((

− 16BDψ2−16CDψ2+1
8ψD

)
+ 2Bψ − 2Cψ

) tanh

(
ψ

(
Dx+

16BDψ2 − 16CDψ2 + 1

−16ψ2D
y +Bz − ct

))
.

Set 2:

a1 = 0, b1 = 6Dψ, A =
4BDψ2 − 4CDψ2 + 1

−4D
, (2.18)

u2 = a0 + 6Dψtanh (ψ(Dx+
4BDψ2 − 4CDψ2 + 1

−4D
y +Bz − ct))

−1

. (2.19)

Set 3:

a1 = 6Dψ, b1 = 0, A =
4BDψ2 − 4CDψ2 + 1

−4D
, (2.20)

u3 = a0 + 6Dψ tanh (ψ(Dx+
4BDψ2 − 4CDψ2 + 1

−4D
y +Bz − ct)). (2.21)

The multi-Soliton wave u2 is illustrated in Figure 1 at:

A = −1

4
, B = 1, C = 1, D = 1, ψ = 1, λ = 1, a0 = 1, a1 = 0, b1 = 6, z = 0.1, and t = 0.2.

Also, Figure 2 shows the kink wave solutionu3 at:

A = −1

4
, B = 1, C = 1, D = 1, ψ = 1, λ = 1, a0 = 1, a1 = 6, z = 0.1, and t = 0.2.

Case 2:
Equation (2.1) can be reduced in order through considering:

u
′
= v. (2.22)

Substituting Eq. (2.22) into (2.1) confers:

qD2v′′ +Dqv2 +Dv = 0. (2.23)
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Applying the TC method to solve this equation, where balancing v′′ and v2 results in; M = 2, then Eq. (2.5) becomes:

u(ψς) = S(Y ) =

2∑
k=0

aky
k +

2∑
k=1

bky
−k, (2.24)

with the following obtained forms of s and its derivatives
s = a0 + a1y + a2y

2 + b1y
−1 + b2y

−2,

s
′
= a1 + 2a2y − b1y

−2 − 2b2y
−3,

s
′′
= 2a2 + 2b1y

−3 + 6b2y
−4.

(2.25)

Inserting (2.25) into (2.23), considering (2.5), collecting all coefficients of each power of yk and equating by zero lead
to:
Coefficient of y−1:

−2ψ2b1qD
2 + 2a0b1Dq + 2a1b2Dq + b1D = 0. (2.26)

Coefficient ofy−2:

−8ψ2b2qD
2 + 2a0b2Dq + b1

2Dq + b2D = 0. (2.27)

Coefficient of y−3:

2ψ2b1qD
2 + 2b1b2Dq = 0. (2.28)

Coefficient of y−4:

6ψ2b2qD
2 + b2

2Dq = 0. (2.29)

Coefficient ofy0:

2ψ2a2qD
2 + 2ψ2b2qD

2 + a0
2Dq + 2a1b1Dq + 2a2b2Dq + a0D = 0. (2.30)

Coefficient of y1:

−2ψ2a1qD
2 + 2ψ2b2qD

2 + 2a0a1Dq + 2a2b1Dq + a1D = 0. (2.31)

Coefficient of y2:

−8ψ2a2qD
2 + 2a0a2Dq + a1

2Dq + a2D = 0. (2.32)

Coefficient of y3:

2ψ2a1qD
2 + 2a1a2Dq = 0. (2.33)

Coefficient of y4:

6ψ2a2qD
2 + a2

2Dq = 0. (2.34)

Solving the algebraic system (2.26)-(2.34) using Maple software confers different sets of solutions of the system which
result in six different solutions of the VP Equation (2.1) as: Set 4:

a0 =
−3

2(−16BDψ2+16CDψ2−1
8ψ2D + 2B − 2C)

, a1 = 0, a2 = −6Dψ2, b1 = 0, b2 = −6Dψ2,

A =
−16BDψ2 + 16CDψ2 − 1

16ψ2D
,

(2.35)

v1 =
−3

2
(

−16BDψ2+16CDψ2−1
8ψ2D + 2B − 2C

) − 6Dψ2tanh (ψ(Dx− 16BDψ2 − 16CDψ2 + 1

16ψ2D
y +Bz − ct))

2

− 6Dψ2tanh (ψ(Dx− 16BDψ2 − 16CDψ2 + 1

16ψ2D
y +Bz − ct))

−2

. (2.36)
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Verifying (2.22) to get the VP solution in the form:

u4 =
−3

2(−16BDψ2+16CDψ2−1
8ψ2D + 2B − 2C)

ς +
6Dψ2

ψ
tanh (ψς)) +

6Dψ2 ∗ ln(tanh (ψς)− 1)

2ψ

− 6Dψ2 ∗ ln(tanh (ψς) + 1)

2ψ
+

6Dψ2 ∗ ln(tanh (ψς)− 1)

2ψ
− 6Dψ2 ∗ ln(tanh (ψς) + 1)

2ψ

+
6Dψ2

ψ tanh (ψς))
. (2.37)

Set 5:

a0 =
−1

2(−16BDψ2+16CDψ2−1
8ψ2D + 2B − 2C)

, a1 = 0, a2 = −6Dψ2, b1 = 0, b2 = −6Dψ2,

A =
−16BDψ2 + 16CDψ2 + 1

16ψ2D
,

(2.38)

v2 =
−1

2(−16BDψ2+16CDψ2−1
8ψ2D + 2B − 2C)

− 6Dψ2(tanh (ψ(Dx− 16BDψ2 − 16CDψ2 − 1

16ψ2D
y +Bz − ct))

2

− 6Dψ2(tanh (ψ(Dx− 16BDψ2 − 16CDψ2 − 1

16ψ2D
y +Bz − ct))

−2

, (2.39)

u5 =
−1

2
(

−16BDψ2+16CDψ2−1
8ψ2D + 2B − 2C

) ς + 6Dψ2

ψ
tanh (ψς)) +

6Dψ2 ∗ ln(tanh (ψς)− 1)

2ψ

− 6Dψ2 ∗ ln(tanh (ψς) + 1)

2ψ
+

6Dψ2 ∗ ln(tanh (ψς)− 1)

2ψ
− 6Dψ2 ∗ ln(tanh (ψς) + 1)

2ψ

+
6Dψ2

ψ tanh (ψς))
. (2.40)

Set 6:

a0 =
−3

(−4BDψ2+4CDψ2−1
2ψ2D + 2B − 2C)

, a1 = 0, a2 = 0, b1 = 0, b2 = −6Dψ2,

A =
−4BDψ2 + 4CDψ2 − 1

4ψ2D
,

(2.41)

v3 = −6Dψ2tanh (ψ(Dx− 4BDψ2 − 4CDψ2 + 1

4ψ2D
y +Bz − ct))y

−2

+
−3

(−4BDψ2+4CDψ2−1
2ψ2D + 2B − 2C)

, (2.42)

u6 =
−3(

−4BDψ2+4CDψ2−1
2ψ2D + 2B − 2C

) ς + 6Dψ2 ∗ ln(tanh (ψς)− 1)

2ψ

+
−6Dψ2 ∗ ln(tanh (ψς) + 1)

2ψ
+

6Dψ2

ψ tanh (ψς))
. (2.43)
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Set 7:

a0 =
1

(−4BDψ2+4CDψ2+1
2ψ2D + 2B − 2C)

, a1 = 0, a2 = 0, b1 = 0, b2 = −6Dψ2,

A =
−4BDψ2 + 4CDψ2 − 1

4ψ2D

(2.44)

v4 = −6Dψ2tanh

(
ψ

(
Dx− 4BDψ2 − 4CDψ2 + 1

4ψ2D
y +Bz − ct

))
y
−2

+
1

(−4BDψ2+4CDψ2+1
2ψ2D + 2B − 2C)

, (2.45)

u7 =
1

(−4BDψ2+4CDψ2+1
2ψ2D + 2B − 2C)

ς +
6Dψ2 ∗ ln(tanh (ψς)− 1)

2ψ

− 6Dψ2 ∗ ln(tanh (ψς) + 1)

2ψ
+

6Dψ2

ψ tanh (ψς))
. (2.46)

Set 8:

a0 =
−3

(−4BDψ2+4CDψ2−1
2ψ2D + 2B − 2C)

, a1 = 0, a2 = −6Dψ2, b1 = 0, b2 = 0,

A =
−4BDψ2 + 4CDψ2 − 1

4ψ2D
,

(2.47)

v5 = −6Dψ2tanh

(
ψ

(
Dx− 4BDψ2 − 4CDψ2 + 1

4ψ2D
y +Bz − ct

))
y
2

+
−3

(−4BDψ2+4CDψ2−1
2ψ2D + 2B − 2C)

(2.48)

u8 =
−3

(−4BDψ2+4CDψ2−1
2ψ2D + 2B − 2C)

ς +
6Dψ2 ∗ ln(tanh (ψς)− 1)

2ψ

− 6Dψ2 ∗ ln(tanh (ψς) + 1)

2ψ
+

6Dψ2 tanh (ψς))

ψ
. (2.49)

Set 9:

a0 =
1

(−4BDψ2+4CDψ2+1
2ψ2D + 2B − 2C)

, a1 = 0, a2 = 0, b1 = 0, b2 = −6Dψ2,

A =
−4BDψ2 + 4CDψ2 + 1

4ψ2D
,

(2.50)

v6 = −6Dψ2tanh (ψ(Dx− 4BDψ2 − 4CDψ2 − 1

4ψ2D
y +Bz − ct))y

−2

+
1

(−4BDψ2+4CDψ2+1
2ψ2D + 2B − 2C)

, (2.51)

u9 =
1

(−4BDψ2+4CDψ2+1
2ψ2D + 2B − 2C)

ς +
6Dψ2 ∗ ln(tanh (ψς)− 1)

2ψ

− 6Dψ2 ∗ ln(tanh (ψς) + 1)

2ψ
+

6Dψ2 tanh (ψς))

ψ
. (2.52)

Plots of solutions u4, u6, and u8 are presented in Figures 3-5.
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Figure 3. Soliton wave solution u4
at B = 1, C = 1, D = 1, ψ =
1, λ = 1, z = 0.1, t = 0.2, a0 =
12, a2 = −6, b2 = −6 and A =
−1/16.

Figure 4. Propagating wave u6 at
B = 1, C = 1, D = 1, ψ = 1, λ =
1, z = 0.1, t = .2, a0 = 6, b2 =
−6 , and A = −0.25.

Figure 5. Typical breaking soliton
wave solution u8 at B = 1, C =
1, D = 1, ψ = 1, λ = 1, z =
0.1, t = 0.2, a0 = 6, a2 =
−6, and A = −0.25.

Figure 6. Degenerate wave solu-
tion u11, for A = 0.1, B = 1, C =
1, D = 1, ψ = 2, λ = 2, a0 = 1, a1 =
6, z = 1, t = 2, c1 = 1, andc2 = 2.

3. G’/G expansion method of the (3+1)-dimensional VP equation

The G′

G expansion method mainly starts from the reduced Equation (2.3), based on the assumption described in
[4], where the solution of the ODE is given by:

u(ς) =

M∑
i=0

ai

(
G

′

G

)i
, am ̸= 0, (3.1)

where ai(i = 0, 1, 2, . . . , m) are constants, while G = G(ς) will satisfy the following second-order linear differential
equation:

G
′′
( ς) + λG

′
( ς) + µ G( ς) = 0, (3.2)
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where λ and µ are constants (see [6]). The positive integer M is determined by balancing the highest order nonlinear
terms with the linear terms of highest order aforementioned in (2.7). Solutions of Eq. (3.1) (see [23]) are:

(
G

′

G

)
=



−λ
2 +

√
λ2−4µ

2

 c1sinh(

√
λ2−4µ

2 ς) +c2cosh(

√
λ2−4µ

2 ς)

c1cosh(

√
λ2−4µ

2 ς)+c2 sinh

(√
λ2−4µ

2 ς

)
 , λ2 − 4µ > 0,

−λ
2 +

√
4µ−λ2

2

−c1sin(
√

4µ−λ2

2 ς)+c2cos(

√
4µ−λ2

2 ς)

c1cos(

√
4µ−λ2

2 ς)+c2 sin

(√
4µ−λ2

2 ς

)
 , λ2 − 4µ < 0,

−λ
2 + c2

c1+c2ς
, λ2 − 4µ = 0.

(3.3)

By substituting Eq. (3.1) into Eq. (2.3), utilizing Eq. (2.7), and consolidating all terms with the same power of G
′

G ,

Eq. (2.3) can be transformed into a polynomial in powers of G
′

G . Equating each coefficient of the resulting polynomial
to zero, a set of algebraic equations is obtained for ai, λ ,µ, A, D, B, and C. Two cases of solutions will be discussed
by solving the algebraic equations system as follows:
Case 1: M = 1, as shown in Eq. (2.8), then according to (3.1):

u = a0 +
G′

G
a1. (3.4)

By substituting Eq. (3.4) into Eq. (2.3) utilizing Eq. (3.2), obtain the following system of algebraic equations:

(
G

′

G

)0
: −a1µD + a21µ

2qD + qD2
(
−a1λ2 − 2a1µ

2
)
= 0,(

G
′

G

)
: −a1λD + 2qa21µλD + qD2

(
−a1λ3 − 8a1λµ

)
= 0,(

G
′

G

)2
: −a1D + qD

(
2a21µ+ a21λ

2
)
+ qD2

(
−7a1λ

2 − 8a1µ
)
= 0,(

G
′

G

)3
: 2qa21λD + qD2 − 12a1λ = 0,(

G
′

G

)4
: qa21 D − 6qa1D

2 = 0.

(3.5)

The solutions of the system (3.5) with Maple package are:
Set 10:

a0 = a0, a1 = 6D, A = −4BDµ3 − 4CDµ3 −BDλµ2 + CDλµ2 − µ2

D (4µ3 − λµ2)
, (3.6)

At µ = 2 , λ = 3 , a0 = 1, a1 = 6 , c1 = 1, and c2 = 2,

u11 = 1 + 6

(
−3

2
+

1

2

(
sinh( 12 ς) + 2cosh(12 ς)

cosh( 12 ς) + 2 sinh
(
1
2 ς
))) . (3.7)

At µ =2, λ = 2, a0 = 1, a1 = 6, c1 = 1, and c2 = 2,

u12 = 1 + 6

(
1 +

(
−sin( ς) + 2cos( ς)

cos( ς) + 2 sin( ς)

))
. (3.8)

At µ = 1 , λ = 2 , a0 = 1, a1 = 6 , c1 = 1, and c2 = 2,

u13 = 1 + 6(−1 +
2

1 + 2ς
). (3.9)

Case 2: Solution of Eq. (3.1) with M = 2

u = a0 +
G′

G
a1 + a2

(
G

′

G

)2

. (3.10)
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The following system of algebraic equations is obtained as:

(
G

′

G

)0
: a0D +Dqa20 + qD2

(
a1µλ+ 2a2µ

2
)
= 0,(

G
′

G

)
: Da1 + 2qDa0a1 + qD2

(
6a2λµ+ 2a1µ+ a1λ

2
)
= 0,(

G
′

G

)2
: Da2 + qD

(
2a0a2 + a21

)
+ qD2

(
8a2ψ + 3a1λ+ 4a2λ

2
)
= 0,(

G
′

G

)3
: 2qDa1a2 + qD2 (2a1 + 10a2λ) = 0,(

G
′

G

)4
: qDa22 + qD26a2 = 0.

(3.11)

The solutions of system (3.11) using Maple package are given by:
Set 11:

a0 =
1

36

432D3µλ− a1
3

Da1
, a1 = a1, a2 = −6D,

A =
−864BD3µλ+ 864CD3µλ−Ba1

3 + Ca1
3 + 36Da1

864D3µλ+ a13
, µ =

−6Dµλ

a1
and λ =

a1
−6D

(3.12)

v1 = a0 + a1 ∗
G

′

G
− 6D

(
G

′

G

)2

. (3.13)

For λ2 − 4µ < 0 , µ = 1, and λ = 1 ,

u14 =
1

36

432D3µλ− a1
3

Da1
ς − 1

2
a1λς + a1 ln

(
cos

(√
3

2
ς

)
+ 2 sin(

√
3

2
ς)

)

− 30Dλ2

4
√
3 ∗ (1 + 2 tan

(√
3
2 ς
) +

30Dµ
√
3(1 + 2 tan

(√
3
2 ς
)
)
+ 6Dλ ln (1 + 2 tan

(√
3

2
ς

)
)

− 3Dλ ln (tan

(√
3

2
ς

)2

+ 1)−
6Dλ2 tan−1

(
tan

(√
3
2 ς
))

√
3

−
6Dλ2 tan−1

(
tan

(√
3
2 ς
))

√
3

+
12Dµ tan−1

(
tan

(√
3
2 ς
))

√
3

. (3.14)

At λ2 − 4µ > 0 , ψ = 1, and λ = −6 ,

u15 = a0ς −
1

2
a1λς + a1 ln

(
cosh

(
2
√
2ς
)
+ 2 sinh

(
2
√
2ς
))

+
3a2λ

2 tanh
(√

2ς
)

4
√
2
(
tanh

(√
2ς
)2

+4 tanh
(√

2ς
)
+ 1
) −

12a2µ tanh
(√

2ς
)

4
√
2
(
tanh

(√
2ς
)2

+4 tanh
(√

2ς
)
+ 1
)

+ a2λ ln
(
tanh

(√
2ς
)
− 1
)
−
a2λ

2 ln
(
tanh

(√
2ς
)
− 1
)

4
√
2

+
2a2µ ln

(
tanh

(√
2ς
)
− 1
)

4
√
2

− a2λ ln

(
tanh

(√
2ς
)2

+ 4 tanh
(√

2ς
)
+ 1

)
+ a2λ ln

(
tanh

(√
2ς
)
+ 1
)

+
a2λ

2 ln
(
tanh

(√
2ς
)
+ 1
)

4
√
2

−
a2µ ln

(
tanh

(√
2ς
)
+ 1
)

2
√
2

. (3.15)
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At λ2 − 4µ = 0 , µ = 1, and λ = 2 ,

u16 = a0ς − a1ς + a1 ln (c2ς + c1) + a2ς −
a2c2

c2ς + c1
− 2a2 ln (c2ς + c1) . (3.16)

Set 12:

a0 = 36
D2µλ

a1
, a1 = a1 , a2 = −6D ,µ =

−6Dψλ

a1
, λ =

a1
−6D

,

A = −864BD3µλ− 864CD3µλ+Ba1
3 − Ca1

3 + 36Da1
864D3µλ+ a13

,

v2 = 36
D2µλ

a1
+ a1 ∗

G
′

G
− 6D(

G
′

G
)

2

.

(3.17)

At λ2 − 4µ < 0, µ = 1, and λ = 1,

u17 = 36
D2µλ

a1
ς − 1

2
a1λς + a1 ln

(
cos

(√
3

2
ς

)
+ 2 sin(

√
3

2
ς)

)
− 30Dλ2

4
√
3 ∗ (1 + 2 tan

(√
3
2 ς
)

+
30Dµ

√
3(1 + 2 tan

(√
3
2 ς
)
)
+ 6Dλ ln (1 + 2 tan

(√
3

2
ς

)
)− 3Dλ ln (tan

(√
3

2
ς

)2

+ 1)

−
6Dλ2 tan−1

(
tan

(√
3
2 ς
))

√
3

−
6Dλ2 tan−1

(
tan

(√
3
2 ς
))

√
3

+
12Dµ tan−1

(
tan

(√
3
2 ς
))

√
3

. (3.18)

At λ2 − 4µ > 0, µ = 1, and λ = −6 ,

u18 = a0ς −
1

2
a1λς + a1 ln

(
cosh

(
2
√
2ς
)
+ 2 sinh

(
2
√
2ς
))

+
3a2λ

2 tanh
(√

2ς
)

4
√
2
(
tanh

(√
2ς
)2

+4 tanh
(√

2ς
)
+ 1
) −

12a2µ tanh
(√

2ς
)

4
√
2
(
tanh

(√
2ς
)2

+4 tanh
(√

2ς
)
+ 1
)

+ a2λ ln
(
tanh

(√
2ς
)
− 1
)
−
a2λ

2 ln
(
tanh

(√
2ς
)
− 1
)

4
√
2

+
2a2µ ln

(
tanh

(√
2ς
)
− 1
)

4
√
2

− a2λ ln

(
tanh

(√
2ς
)2

+ 4 tanh
(√

2ς
)
+ 1

)
+ a2λ ln

(
tanh

(√
2ς
)
+ 1
)

+
a2λ

2 ln
(
tanh

(√
2ς
)
+ 1
)

4
√
2

−
a2µ ln

(
tanh

(√
2ς
)
+ 1
)

2
√
2

. (3.19)

At λ2 − 4µ = 0, µ = 1, and λ = 2,

u19 = a0ς − a1ς + a1 ln (c2ς + c1) + a2ς −
a2c2

c2ς + c1
− 2a2 ln (c2ς + c1) . (3.20)

4. Conclusion

The (3+1)-dimensional Vakhnenko–Parkes equation has been investigated by using two distinct schemes namely(
G

′

G

)
and tanh-coth expansion methods. Two different cases are discussed according to the values of the parameter

M. Several soliton wave solutions contain some kink and multi solitons are obtained through the tanh-coth expansion
method that are represented in Equations (2.17),(2.19), and (2.21) for M = 1 and in Equations (2.37), (2.40), (2.43),
(2.46), (2.49), and (2.52) forM = 2. On the other side, several explicit solutions contain some hyperbolic, trigonometric,

and rational functions are obtained by the
(
G

′

G

)
expansion methods which are represented in Equations (3.7)-(3.9)

for M=1 and in Equations (3.14)-(3.16) and (3.18)-(3.20) for M=2. Some of the obtained results would be useful
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Figure 7. Soliton wave solution u12
for A = 0.2, B = 1, C = 1, D =
1, ψ = 2, λ = 3, a0 = 1, a1 = 6, z =
1, t = 2, c1 = 1, andc2 = 2.

Figure 8. Soliton wave solution u13
for A = 0.5, B = 1, C = 1, D = 1,
ψ = 1, λ = 2 , a0 = 1, a1 = 6, z =
1, t = 2, c1 = 1, and c2 = 2.

to investigate multiple physical applications. Many of these solutions are essential for understanding the behavior of
high frequency waves in relaxation mediums. Such results are tremendously recommended in advanced research and
innovation.
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