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Abstract
In this article, with the help of the new Kudryashov method, we examine general solutions to the (2+1)-dimensional

Sawada-Kotera equation (SKE) and Kaup-Kupershmidt (KK) equation. Using Maple, a symbolic computing
application, it was shown that all obtained solutions are given by hyperbolic, exponential and logaritmic function

solutions which obtained solutions are useful for fluid dynamics, optics and so on. Finally, we have presented

some graphs for general solutions of these equations with special parameter values. The reliability and scope of
programming provide eclectic applicability to high-dimensional nonlinear evolution equations for the development

of this method. The results found gave us important information regarding the applicability of the new Kudryashov
method.
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1. Introduction

Partial differential equations are important component of applied mathematics and have been known by scientists
for a long time. They have a significant role in many fields including elasticity theory, fluid dynamics, plasma physics
and engineering [22]. The development of computer programs for engineers and applied scientists approach to problems
in PDEs has had an a significal impact. Pachage programs such as Maple, Mathematica, Matlab have started to be
used for large calculations in the solutions of problems. In this paper, we used the symbolic computer program Maple
to determine the exact solutions of partial differential equations.

Different approaches to solving nonlinear partial differential equations have been developed in recent years by
scientits. Such as (G’/G)-expansion method [28], symmetry method [2], tanh-coth method [23, 30], Hirota’s bilinear
method [12], sine-cosine function method [32], the homogenous balance method [7, 29], simplest equation method
[5, 34], Backlund transformation method [24], exp-function method [10], variational iteration method [11] , sine-
Gordon method [33], first integral method [8], P 6- model expansion method [1], Kudryashov method [35], unified
Ricatti equation expansion method [36], trial function method [3], sine-Gordon expansion approach [6], and so on.

Kudryashov method is one of the methods to solve the nonlinear PDEs. Kudryashov method was proposed by N.
A. Kudryashov in 2011 [16–18]. Many researchers developed new methods using Kudryashov method [25, 37]. Like as
modified Kudryashov method [14, 15, 27], improved Kudryashov method, modified improved Kudryashov method, gen-
eralized Kudryashov method, modified genereralized Kudryashov method, improved generalized Kudryashov method,
modified improved generalized Kudryashov method, extended Kudryashov method and the new Kudryashov method
[19] that we use in this article.

In this paper we will explain the new Kudryashov method proposed by N.A. Kudryashov. Then we will apply this
method to the (2+1)-dimensional Sawada Kotera equation and the (1+1)-dimensional Kaup-Kuperchmidt equation.
The new Kudryashov method is introduced in section 2. The exact solutions to the (2+1)-dimensional Sawada Kotera
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equation and the (1+1)-dimensional Kaup-Kupershmidt equation are the found and illustrated in section 3. Also, we
present some visual representation of the solutions. The final section provided the conclusion.

2. The new Kudryashov method

In this section, we describe the main steps of the new Kudryashov method. Assume the next nonlinear partial
differential equation (PDE):

Ω (u, ut, ux, utt, uxy, uxx, . . . ) = 0, (2.1)

where Ω simply represents a polynomial.
Step 1 By the travelling wave transformation ϑ = x+ y − σt and with u (x, y, t) = U (ϑ), Equation (2.1) can be

reduced to an ordinary differential equation (ODE)

G (U,Uϑ, Uϑϑ, Uϑϑϑ, . . . ) = 0. (2.2)

Step 2 Consider the Equation (2.2) has a solution as:

U (ϑ) =

N∑
i=0

ciQ
i (ϑ) , (2.3)

where ci (i = 0, 1, ..., N) are the coefficients of Qi (ϑ) with cN 6=0 and

Q (ϑ) =
1(

aA(Θϑ) + bA(−Θϑ)
) , (2.4)

is the solution of the differential Equation (2.5)(
Q

′
(ϑ)
)2

= (Θ (lnA)Q (ϑ))
2 (

1− 4abQ2 (ϑ)
)
, (2.5)

where a, b,Θ andA are constants and non-zero arbitrary real parameters to be determined later, with A>0 and A 6=0.
Also the positive integer N can be determined by using homogenous balance between the highest order derivative
term with the highest order nonlinear term appearing in ODE (2.2).

Step 3 After substituting solution (2.3) into Equation (2.2), the left-hand side of Equation (2.2) can be converted
into a polynomial in powers of Q (ϑ). Collecting the terms that include the same power of Q (ϑ) and equating each
coefficient equal to zero, one obtains an algebraic equation system for c0, c1, c2, A, a, b and Θ.

Step 4 We solve the algebratic equations in the Step 3 with the help of the Maple. Substituting the obtained values
of c0, c1, c2, A, a, b and Θ into solution (2.3) by considering Equation (2.4), the solutions of the NLPE in Equation
(2.1) can be obtained.

3. Application of the new Kudryashov method

3.1. Solutions of the (2+1)-dimensoinal Sawada-Kotera Equation. One of the important model in mathe-
matical physics is the classical Sawada-Kotera equation (SKE), which was put forth by Sawada and Kotera firstly [32].
Aplication for this equation include nonlinear optics, nonlinear acoustic waves in an inharmonic lattice and quantum
mechanics. It also emerged to be used to describe how long waves move in shallow water [33, 34]. Numerous varieties
of approximate and exact solutions are obtained, such as lump solutions, periodic solitary wave solutions, N soliton
solutions, and two soliton solutions. Thus, investigating novel interaction solutions among soliton molecules, breather
molecules and soliton-breather molecules of it also of great significance.

The following form of the (2+1)-dimensional Sawada-Kotera Equation was proposed by Ma et al. [21].

ut + uxxy − 3uuy − 3uxv + u5x − 15
(
uuxx − u3

)
x

= 0,with vx = uy, (3.1)

where u = u (x, y, t) and v = v (x, y, t) are the unknow function with a real value that results from the real independent
variables x, y and t. Also x, y are dimensionless spatial variables and t is temporal variable.

Now, we apply the new Kudryashov method to find the exact-solution for the Equations (3.1).
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Using the travelling wave transformation

u (x, y, t) = U (ϑ) , v (x, y, t) = V (ϑ) , ϑ = x+ y − σt. (3.2)

where σ is represents the wave velocity. The Equation (3.1) is carried to NODE

− σUϑ + Uϑϑϑ − 3UUϑ − 3UϑV + Uϑϑϑϑϑ − 15
(
UUϑϑ − U3

)
ϑ

= 0. (3.3)

Uϑ = Vϑ. (3.4)

By applying integrate on Equation (3.4) with respect to ϑ and then taking the integral constant as zero, we get

U = V. (3.5)

Substituting Equation (3.5) into Equation (3.3), after integrating with respect to ϑ,

−σU + Uϑϑ − 3U2 + Uϑϑϑϑ − 15
(
UUϑϑ − U3

)
+B = 0. (3.6)

where B is constant of integration.
By balancing the highest order derivative term Uϑϑϑϑ and the highest order nonlinear term U3,we get;

N + 4 = 3N, (3.7)

N = 2.

So from solution (2.3), we can write

U (ϑ) = c0 + c1Q (ϑ) + c2Q
2 (ϑ) , (3.8)

where c0, c1 and c2 are constants to be determined later.
Substituting solution (3.8) into the Equation (3.6) yields a polinamial in Q (ϑ). A system of algebraic equations is

obtained by setting each coefficient of the equations to zero.

Q6 : 1920 ln (A)
4
a2b2c2Θ4 + 360 ln (A)

2
abc22Θ2 + 15c32,

Q5 : 384 ln (A)
4
a2b2c1Θ4 + 480 ln (A)

2
abc1c2Θ2 + 45c1c

2
2,

Q4 : −480 ln (A)
4
abc2Θ4 + 360 ln (A)

2
abc0c2Θ2 + 120 ln (A)

2
abc21Θ2 − 24 ln (A)

2
abc2Θ2

− 60 ln (A)
2
c22Θ2 + 45c0c

2
2 + 45c21c2 − 3c22,

Q3 : −80 ln (A)
4
abc1Θ4 + 120 ln (A)

2
abc0c1Θ2 − 8 ln (A)

2
abc1Θ2 − 75 ln (A)

2
c1c2Θ2 + 90c0c1c2 + 15c31 − 6c1c2,

Q2 : 16 ln (A)
4

Θ4c2 − 60 ln (A)
2

Θ2c0c2 − 15 ln (A)
2

Θ2c21 + 4 ln (A)
2

Θ2c2 + 45c20c2 + 45c21c0 − σc2 − 6c0c2 − 3c21,

Q1 : ln (A)
4

Θ4c1 − 15 ln (A)
2

Θ2c0c1 + ln (A)
2

Θ2c1 + 45c20c1 − σc1 − 6c0c1,

Q0 : 15c30 − σc0 − 3c20 +B.

To solve the above system of algebraic equations we use Maple Software. Therefore we get following 2 solution sets;
Set 1

B = 16 ln (A)
4

Θ4c0 − 60 ln (A)
2

Θ2c20 + 4 ln (A)
2

Θ2c0 + 30c30 − 3c20,

σ = 16 ln (A)
4

Θ4 − 60 ln (A)
2

Θ2c0 + 4 ln (A)
2

Θ2 + 45c20 − 6c0,

c0 = c0, c1 = 0, c2 = −8 ln (A)
2

Θ2ab.

(3.9)

Substituting Equations (3.9) into (3.8) with using (2.4), we obtain the exact solution of the (2+1)-dimensional SKE
as follows:

U1 = V1 = c0 −
8 ln (A)

2
Θ2ab(

aA(Θϑ) + bA(−Θϑ)
)2 , (3.10)

where

ϑ = −
(

16 ln (A)
4

Θ4 − 60 ln (A)
2

Θ2c0 + 4 ln (A)
2

Θ2 + 45c20 − 6c0

)
t+ x+ y. (3.11)
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Set 2

B =
−(128 ln(A)6Θ6)

9 +
(16 ln(A)4Θ4)

15 − 1
225 , σ = 16 ln (A)

4
Θ4 − 1

5 ,

c0 =
(4 ln(A)2Θ2)

3 + 1
5 , c1 = 0, c2 = −16 ln (A)

2
Θ2ab.

(3.12)

Substituting Equations (3.12) into (3.8) with using ((2.4), we obtain exact solution of the (2+1)-dimensional SKE
as follows:

U2 = V2 =

(
4 ln (A)

2
Θ2
)

3
+

1

15
− 16 ln (A)

2
Θ2ab(

aA(Θϑ) + bA(−Θϑ)
)2 , (3.13)

where

ϑ = −
(

16 ln (A)
4

Θ4 − 1

5

)
t+ x+ y. (3.14)

In particular, if we have a = b in solution U2 ,then Equation (3.3) has the following bright-soliton solution

u2.1 (x, y, t) =
1

15
+

4 ln (A)
2

Θ2
(

1− 3sech2
(

Θ
(

80t ln (A)
4

Θ4 − t− 5x− 5y
)

ln(A)
5

))
3

. (3.15)

On the other hand if we take a = −b in in solution U2, then Equation (3.3) has the following singular-soliton
solution

u2.2 (x, y, t) =
4 ln (A)

2
Θ2

3
+ 4 ln (A)

2
Θ2csch2

(
Θ
(

80t ln (A)
4

Θ4 − t− 5x− 5y
) ln (A)

5

)
+

1

15
. (3.16)

Figure 1 and Figure 2 as given below, eight graphs in total are drawn with the help of the Maple for the exact
solutions U1 = V1 (3.10) and U2 = V2 (3.13). For the graphs of these exact solutions are drawn for the Sawada-Kotera
equation, the parameters and the range of x and t values are specially chosen.

3.2. Solutions of the (1+1)-dimensional Kaup-Kupershmidt (KK) equation. The standard fifth-order KdV
equation (fKdV) of the form [31],

ut + αu2ux + βuxuxx + γuu3x + u5x = 0. (3.17)

where α, β and γ are arbitrary nonzero and real parameters and u = u (x, t) is a differentiable function. With taking
different values of the parameters α, β and γ, the Equation (3.17) change the characteristics of the fKdV equation.

Kaup-Kupershmidt equation is characterized by

β =
5

2
γ, α =

1

5
γ2.

For γ = 10, then β = 25 and α = 20, therefore Equation (3.17) reduces to standard KK equation:

ut + 20u2ux + 25uxuxx + 10uu3x + u5x = 0. (3.18)

where u = u (x, t) is the unknow function with a real value that results from the real independent variables x and y.
The Kaup-Kupershmidt equation was proposed by Kaup in 1980 [13, 20].
To find the exact-solution for the Kaup-Kupershmidt Equation (3.18), we apply the new Kudryashov method.
Consider the following travelling wave transformation

u (x, t) = U (ϑ) , ϑ = x− σt. (3.19)

where σ is represents the wave velocity.
The Equation (3.18) is carried to NODE

−σUϑ + 20U2Uϑ + 25UϑUϑϑ + 10UϑUϑϑϑ + U5ϑ = 0, (3.20)
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(a) 3d Chart. (b) Contour plot.

(c) 2d Chart. (d) Polar coordinates.

Figure 1. New exact solution U1 = V1(3.6) of the (2+1)-dimensional SKE (3.10), for A = 1.5,Θ =
1.5, a = 3, b = 2, c0 = 0.5, y = 1, when in the range of t ∈ [0, 10], x ∈ [−10, 10].

integrating with respect to ϑ

−σU +
20

3
U3 +

15

2
(Uϑ)

2
+ 10UUϑϑ + Uϑϑϑϑ +B = 0, (3.21)

where B is constant of integration. By balancing the highest order derivative term Uϑϑϑϑ and the highest order
nonlinear term U3, we get,

N + 4 = 3N, (3.22)

N = 2.

So from (2.3), we can write

U (ϑ) = c0 + c1Q (ϑ) + c2Q
2 (ϑ) , (3.23)

where c0, c1 and c2 are constants to be determined later.
Substituting (3.23) into the Equation (3.21) yields a polinamial in Q (ϑ). A system of algebraic equations is

obtained by setting each coefficient of the equations to zero.

Q6 : 1920 ln (A)
4

Θ4a2b2c2 − 360Θ2 ln (A)
2
abc22 +

(
20c32

)
3

,

Q5 : 384 ln (A)
4

Θ4a2b2c1 − 440Θ2 ln (A)
2
abc1c2 + 20c1c

2
2,

Q4 : −480 ln (A)
4

Θ4abc2 − 240Θ2 ln (A)
2
abc0c2 − 110Θ2 ln (A)

2
abc21 + 70Θ2 ln (A)

2
c22 + 20c0c

2
2 + 20c21c2,
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(a) 3d Chart. (b) Contour plot.

(c) 2d Chart. (d) Polar coordinates.

Figure 2. New exact solution U2 = V2(3.13) of the (2+1)-dimensional SKE (3.6), for A = 1.5,Θ =
2, a = 5, b = 2, c0 = 0.5, y = 2 when in the range of t ∈ [0, 10], x ∈ [−10, 10].

Q3 : 80Θ2 ln (A)
2
c1c2 − 80 ln (A)

4
Θ4abc1 + 40c0c1c2 +

20c31
3
− 80Θ2 ln (A)

2
abc0c1,

Q2 : 40Θ2 ln (A)
2
c0c2 + 20c0c

2
1 − σc2 + 20c20c2 + 16 ln (A)

4
Θ4c2 +

35Θ2 ln (A)
2
c21

2
,

Q1 : ln (A)
4

Θ4c1 + 10Θ2 ln (A)
2
c0c1 + 20c20c1 − σc1,

Q0 : B − σc0 +
20c30

3
.

To solve the above system of algebraic equations, we use Maple Software and we get the following two solution sets;
Set 1

B =
Θ6 ln (A)

6

3
, σ = ln (A)

4
Θ4, c0 =

−Θ2 ln (A)
2

2
, c1 = 0, c2 = 6Θ2ab ln (A)

2
. (3.24)

Substituting Equations (3.24) into (3.23) using (2.4), we obtain the exact solution of the KK as follows:

U3 =
−Θ2 ln (A)

2

2
+

6 ln (A)
2

Θ2ab(
aA(Θϑ) + bA(−Θϑ)

)2 , (3.25)

where

ϑ = − ln (A)
4

Θ4t+ x. (3.26)
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(a) 3d Chart. (b) Contour plot.

(c) 2d Chart. (d) Polar coordinates.

Figure 3. New exact solution U3(3.25) of the KK Equation (3.21), for A = 2.5,Θ = 1.5, a = 1, b = 2
when in the range of t ∈ [0, 10], x ∈ [−10, 10].

In particular, if we have a = b in solution U2, then Equation (3.3) has the following bright-soliton solution

u1.1 (x, t) = Θ2 ln (A)
2

3sech2
(

Θ2
(

ln (A)
4

Θ8t− x
)

ln (A)
)
− 1

2
. (3.27)

On the other hand if we take a = −b in in solution U2, then Equation (3.3) has the following singular-soliton
solution

u1.2 (x, t) = −Θ2 ln (A)
2

1 + 3csch2
(

Θ
(

ln (A)
4

Θ4t− x
)

ln (A)
)

2
. (3.28)

Set 2

B =
−832Θ6 ln (A)

6

3
, σ = 176 ln (A)

4
Θ4, c0 = −4Θ2 ln (A)

2
, c1 = 0, c2 = 48Θ2ab ln (A)

2
. (3.29)

Substituting Equations (3.29) into (3.23) with using (2.4), we obtain the exact solution of the KK as follows:

U4 = −4Θ2 ln (A)
2

+
48 ln (A)

2
Θ2ab(

aA(Θϑ) + bA(−Θϑ)
)2 , (3.30)

where

ϑ = −176 ln (A)
4

Θ4t+ x. (3.31)

The graphs are drawn with help of the Maple for the U3 (3.25) and U4 (3.30) by choosing the parameters and x, t
values in Figures 3 and 4.
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(a) 3d Chart. (b) Contour plot.

(c) 2d Chart. (d) Polar coordinates.

Figure 4. New exact solution U4(3.30) of the KK Equation (3.21), for A = 3,Θ = 0.2, a = 2, b = 5
when in the range of t ∈ [0, 10], x ∈ [−10, 10].

4. Conclusion

In this study, we discussed (2+1)-dimensional Sawada Kotera equation and the (1+1)-dimensional Kaup-Kupershmidt
equation, both of which have several uses in mathematics and physics. We utilized the new Kudryashov method after
reducing the PDE to ODE using traveling wave transformation. We observed different bright soliton solutions for
the (2+1)-dimensional Sawada Kotera equation and the (1+1)-dimensional Kaup-Kupershmidt equation using the
Q (ϑ) function, which is in exponential form and is the solution of the auxiliary equation. Various three and two
dimensional plots, polar coordinate plots and contour plots, and dynamical characteristics of these waves are shown
well using Maple. The newly found hyperbolic function solutions may be useful for understanding physical phenomena
especially in long-wave propagation, dynamics of shallow water wave, and plasma fluid. Additionally, it is clear that
the approach used in this article is a powerful and practical mathematical tool that may be used to provide exact
solutions to various other different NLPDEs in the future.
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