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Abstract
In this paper, we obtained the Poincare return maps for the planar piecewise linear differential systems of the

type focus-focus. Normal forms for planar piecewise smooth systems with two zones of the type focus-focus and

saddle-saddle, separated by a straight line and with a center at the origin, are obtained. Upper bounds for the
number of limit cycles bifurcated from the period annulus of these normal forms due to perturbation by polynomial

functions of any degree are established.
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1. Introduction

Piecewise-smooth differential systems have applications in various fields, such as automatic control, neural networks,
electrical engineering, economics, and ecosystems. In the last decade, vast research has been done on bifurcations of
such systems induced by discontinuity loci. The study of the bifurcation of limit cycles for planar piecewise smooth
differential systems, from period annulus as well as from equilibrium point, are attracting many researchers. In [23],
authors derived the first-order Melnikov function for a planar piecewise smooth Hamiltonian system, which can be
used to study the number of limit cycles for such systems. The First-order Melnikov function for planar piecewise
smooth integrable systems is derived in [11], and it is used to find the number of limit cycles bifurcated from the
period annulus of a planar piecewise smooth integrable differential system with a cusp singularity when the system
is perturbed in the class of polynomial functions. In [7], a lower bound for the maximum number of limit cycles in
the focus-saddle and node-saddle cases is obtained. A piecewise linear differential system with two zones when one
of the linear differential systems has a center, either real or virtual, has at most two limit cycles; for instance, see
[8]. The number of crossing periodic orbits for the saddle-focus dynamics is discussed in [16]. In [6], the problem of
the maximum number of limit cycles of a piecewise linear system of focus-focus type is studied. In this paper, we
present the Poincaré full return maps for piecewise differential systems of the types focus-focus, center-center, and
center-focus.

A survey of known bifurcations for a family of Filippov systems is presented in [3], with bifurcations and qualitatively
different phase portraits of equilibria into zones are discussed. In [4], piecewise planar systems with crossing limit
cycles are studied through canonical forms.

The maximal number of limit cycles for planer piecewise linear refracting systems studied in [5, 9, 10, 13, 18–20].
According to Lum-Chau’s conjecture, a planar continuous piecewise differential system placed in two zones and a
straight line functioning as a separation boundary can have at most one limit cycle, that, if it exists, can be attracting
or repelling. A new simple proof of Lum-Chau’s conjecture is presented in [22].
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Using the Picard-Fuchs equations, the upper bound for the number of limit cycles that bifurcate from the period
annulus is obtained in [12]. In [21], the authors studied the canonical forms of an n-dimensional piecewise linear
system.

In this article, we discuss normal forms of piecewise linear differential systems of the types focus-focus and saddle-
saddle. Moreover, we have obtained an upper bound for the number of limit cycles that are bifurcated from the period
annulus due to polynomial perturbation.
The paper is organized as follows:

In section 2, some preliminary results are presented. Section 3 characterizes piecewise linear (PWL) systems (2.2)
of the Focus-Focus (FF) type with having a period annulus. Section 4 is about the normal forms of piecewise smooth
(PWS) systems (2.1), having origin as a center and hence a period annulus around the equilibrium point (0, 0). Section
5 discusses the number of limit cycles bifurcated from the period annulus of the normal forms derived in section 4 as
a result of perturbation in the class of polynomial functions.

We derive the first-order Melnikov functions when the system is perturbed. The number of limit cycles for the
perturbed system is equal to the number of zeros of the first-order Melnikov function. Upper bounds on the number of
zeros of the first-order Melnikov function can be computed using the Chebyshev criterion or Picard-Fuchs equations.
Moreover, upper bounds for the number of zeros are obtained, and these bounds are strict.

2. Preliminaries

We briefly present some preliminaries of a piecewise smooth planar differential system Z(x, y) with a straight line
separation boundary Σ = {(x, y) ∈ R2 : y = 0}.

If Z+(x, y) = (Z−1 (x, y), Z+
2 (x, y)) is a smooth vector field on the upper half plane Σ+ = {(x, y) ∈ R2 : y > 0} and

Z−(x, y) = (Z−1 (x, y), Z−2 (x, y)) is a smooth vector field on the lower half plane Σ− = {(x, y) ∈ R2 : y < 0}, then a
planar piecewise smooth differential system Z is defined as

Z(x, y) =

{
Z+(x, y), if y ∈ Σ+ ∪ Σ,

Z−(x, y), if y ∈ Σ− ∪ Σ.
(2.1)

In particular, a piecewise linear differential system (PWL) with a straight line separation boundary Σ, is given by

Z(x, y) =

{
(a+x+ b+y + α+, c+x+ d+y + β+), if (x, y) ∈ Σ+ ∪ Σ,

(a−x+ b−y + α−, c−x+ d−y + β−), if (x, y) ∈ Σ− ∪ Σ.
(2.2)

Note that Z is multivalued on Σ. Hence, we cannot define a solution (x(t), y(t)) of the system (2.1), when (x(0), y(0)) ∈
Σ. If a solution of the system (2.1), which starts at a point in Σ+ or Σ−, remains in the same region forever, then it
is a full orbit of Z+ or Z−, respectively. To define an orbit that arrives at Σ, we can have a vector field

Zµ(x, 0) = µZ+(x, 0) + (1− µ)Z−(x, 0), 0 ≤ µ ≤ 1. (2.3)

According to the Filippov convention, the vector field (2.3) on Σ is formed by a convex combination.
We partition Σ into two parts:

(1) Crossing region: Σc =
{

(x, 0) ∈ Σ: Z+
2 (x, 0) · Z−2 (x, 0) > 0

}
,

(2) Sliding region: Σs =
{

(x, 0) ∈ Σ: Z+
2 (x, 0) · Z−2 (x, 0) ≤ 0

}
.

If (x, 0) ∈ Σc, then both of the vector fields Z+ and Z− are transversals to Σ, with their normal components having
the same sign and an orbit of Z passing through (x, 0) is obtained by concatenating orbits of Z+ and Z− in a natural
way. If (x, 0) ∈ Σs, then either the normal components of vector fields Z+ and Z− at (x, 0) have opposite signs, or
at least one of them vanishes. In this paper, we assume that the orbit slides along Σ according to the Filippov vector
field (2.3). Therefore, the normal component of the vector field Zµ on Σs is zero. Hence, we have

µZ+
2 (x, 0) + (1− µ)Z−2 (x, 0)) = 0 for all (x, 0) ∈ Σs.
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Thus, for all (x, 0) ∈ Σs,

µ(x) =
Z−2 (x, 0)

Z+
2 (x, 0)− Z−2 (x, 0)

, and

Zµ(x, 0) =

(
Z+

1 (x, 0)Z−2 (x, 0)− Z−1 (x, 0)Z+
2 (x, 0)

Z+
2 (x, 0)− Z−2 (x, 0)

, 0

)
,

when Z+
2 (x, 0) 6= Z−2 (x, 0).

If Z+
2 (x, 0) = Z−2 (x, 0), then Z+

2 (x, 0) = Z−2 (x, 0) = 0, so that

Zµ(x, 0) = (µZ+
1 (x, 0) + (1− µ)Z−1 (x, 0), 0),

which is not uniquely determined.
Assume that each of the vector fields Z+ and Z− has a single equilibrium point, say (x+

0 , y
+
0 ) and (x−0 , y

−
0 ),

respectively. We have the following situations, according to the locations of equilibrium points (x±0 , y
±
0 ):

(1) Both Z+ and Z− have the same equilibrium point, i.e., x+
0 = x−0 and y+

0 = y−0 .
(2) Either Z+ or Z− have an equilibrium point on Σ, i.e., y+

0 = 0 or y−0 = 0.
(3) Both Z+ and Z− have a real equilibrium point but not on boundary Σ, i.e., y+

0 > 0 and y−0 < 0.
(4) Both Z+ and Z− have virtual equilibrium but not on boundary Σ, i.e., y+

0 < 0 and y−0 > 0.

Equilibrium points (x±0 , y
±
0 ) for Z± are one of the types: Focus or center (F), Saddle (S), or Node (N).

System (2.1) is classified into six types according to the type of equilibrium points in two zones;
FF, FS, FN, SS, SN and NN .
Poincare full-return map P of Z can be obtained from the composition of half-return maps P+ and P− of Z+ and

Z−, respectively, is given by P (ρ) = P− ◦ P+(ρ), ρ ∈ I ⊆ Σ.
If P (ρ) = ρ for all ρ in some interval I, then all orbits passing through the points (ρ, 0), ρ ∈ I, are closed, so that

the orbits are periodic, and hence the system (2.1) has a period annulus.

3. Piecewise linear system of type focus focus

In this section, first, we will discuss the half-return maps of a linear system with a focus on (x0, y0) defined on some
region on the x-axis.

Let a, b, c, d, α and β be constants, and let µ = a+ d, δ = ad− bc and ∆ = 4δ − µ2. If δ 6= 0 and ∆ > 0, then the
linear system

(ẋ, ẏ) = (ax+ by + α, cx+ dy + β), (3.1)

has a focus or a center at

(x0, y0) =

(
bβ − dα
ad− bc

,
cα− aβ
ad− bc

)
,

and does not have any other equilibrium point. Further, if µ = 0, then (x0, y0) is a center. The orientation of orbits
of system (3.1) is determined by the signs of constants b and c, for instance, see [17].

At the point (x0 + ε, y0), the vector field (3.1) is given by

(ẋ, ẏ) = (ax0 + by0 + α+ aε, cx0 + dy0 + β + cε) = ε(a, c).

Assume 0 < ε � 1. An orbit of a system (3.1) is oriented anticlockwise if and only if the orbit through (x0 + ε, y0)
must forward above y > y0 so that the component along the y-axis of the tangent vector ε(a, c) is positive. When we
evaluate the vector field (3.1) at a point (x0, y0 + ε), the orbit is oriented anticlockwise if and only if the x-component
of the tangent vector ε(b, d) is negative. Note that the solutions of the system exhibit rotation if and only if bc < 0,
and the sense of rotation is determined by the sign of c or b. Thus, the solutions of the system exhibit rotation if and
only if bc < 0 and are oriented anticlockwise if and only if either c > 0 or b < 0, for instance, see [17].

In the following lemma, we find an expression for the half-return map for the system (3.1) with the center. The
expression for the half-return map obtained is independent of the orientation of orbits when y0 = 0.
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Lemma 3.1. In (3.1), let µ = 0, δ > 0. Suppose that P defines a half-return map for the system (3.1), which maps
the point (ρ, 0) to the point (P (ρ), 0). Then

P (ρ) =


−ρ− 2(aα+ bβ)

a2 + bc
= −ρ+ 2x0, if y0 = aβ − cα = 0,

−ρ− 2β

c
= −ρ+ 2

(
x0 − a

c y0

)
, if y0 = aβ − cα 6= 0.

(3.2)

Proof. Let A =

[
a b
c d

]
, f(t) = cos(

√
δt), and g(t) = sin(

√
δt). Then eigenvalues of A are ±i

√
δ. Suppose v =

v1 + iv2 is an eigenvector of A associated to the eigenvalue i
√
δ, where v1 =

[
v11

v12

]
and v2 =

[
v21

v22

]
∈ R2. So that,

(A− i
√
δI)(v1 + iv2) = 0 and hence,

1√
δ
A = [−v2, v1][v1, v2]−1.

Then the general solution of (3.1) is given by[
x(t)
y(t)

]
= (f(t)[v1, v2] + g(t)[−v2, v1])

[
c1
c2

]
+

1

δ

[
bβ + aα
cα− aβ

]
,

where c1 and c2 are arbitrary constants. Applying the initial conditions x(0) = ρ and y(0) = 0, we get[
c1
c2

]
= [v1, v2]−1

([
ρ
0

]
− 1

δ

[
bβ + aα
cα− aβ

])
.

Hence, an orbit (a solution), Γ(ρ), of the system that starts at (ρ, 0), is given by[
x(t)
y(t)

]
=
(
f(t)I + g(t)[−v2, v1][v1, v2]−1

)
+

([
ρ
0

]
− 1

δ

[
bβ + aα
cα− aβ

])
+

1

δ

[
bβ + aα
cα− aβ

]
=

(
f(t)I +

g(t)√
δ
A

)
+

([
ρ
0

]
− 1

δ

[
bβ + aα
cα− aβ

])
+

1

δ

[
bβ + aα
cα− aβ

]
. (3.3)

Let T be the smallest positive time required for Γ(ρ) to reach the point (P (ρ), 0) from (ρ, 0). Then,[
P (ρ)

0

]
− 1

δ

[
bβ + aα
cα− aβ

]
=

(
f(T )I +

g(T )√
δ
A

)
+

([
ρ
0

]
− 1

δ

[
bβ + aα
cα− aβ

])
. (3.4)

Thus,

P (ρ)− x0 =f(T )(ρ− x0) + g(T )
a(ρ− x0)− by0√

δ
, and

y0 =− f(T )y0 + g(T )
c(ρ− x0) + ay0√

δ
.

If y0 = 0, then g(T ) = 0, f(T ) = ±1 and hence P (ρ)− x0 = ±(ρ− x0), which implies that

P (ρ) = ρ or P (ρ) = −ρ+
2(bβ − aα)

a2 + bc
.

Hence,

P (ρ) = −ρ+ 2x0 = −ρ+
2(bβ − dα)

ad− bc
.

Assume that y0 6= 0. The system of Equations (3.4) is linear in f(T ) and g(T ) with determinant of its coefficient
matrix,

D =
c(ρ− x0)2 + 2ay0(ρ− x0)− by2

0√
δ

,



CMDE Vol. 13, No. 2, 2025, pp. 395-419 399

(a) y0 = 0. (b) y0 6= 0.

Figure 1. Half-return map for center.

which is a quadratic polynomial in ρ and its discriminant, −4y2
0δ, is negative. Hence, the system of Equations (3.4)

has a unique solution,

(
f(T )
g(T )

)
=


c(ρ− x0)(P (ρ)− x0) + ay0((P (ρ) + ρ− 2x0))− by2

0)

c(ρ− x0)2 + 2ay0(ρ− x0)− by2
0

y0

√
δ (−P (ρ) + ρ)

(c(ρ− x0)2 + 2ay0(ρ− x0)− by2
0)

 . (3.5)

Now substituting x0 =
bβ + aα

δ
, y0 =

cα− aβ
δ

and δ = −a2 − bc in (3.5), we get

f(T ) =
Pbc2ρ+

(
Pa2ρ+ β (P + ρ) b− α2

)
c+

(
(P + ρ) a2 + 2aα+ bβ

)
β

bρ2c2 + (a2ρ2 + 2bβρ− α2) c+ 2
(
a2ρ+ aα+ bβ

2

)
β

,

and g(T ) =
(aβ − cα) (P − ρ)

√
−a2 − bc(

ρ (cρ+ 2β) a2 + 2βaα+ (cρ+ β)
2
b− cα2

) .
Since f2(T ) + g2(T ) = 1, we have(

bβ2 +
(
2P (ρ)a2 + 2Pbc+ 2aα

)
β + c

(
P 2(ρ)a2 + P 2(ρ)bc− α2

))(
bβ2 +

(
2a2ρ+ 2bcρ+ 2aα

)
β + c

(
a2ρ2 + bcρ2 − α2

))
=
(
bβ2 +

(
2a2ρ+ 2bcρ+ 2aα

)
β + c

(
a2ρ2 + bcρ2 − α2

))2
. (3.6)

Solving the Equation (3.6) for P , the Poincaré half-return map is given by

P (ρ) = −ρ− 2
β

c
= −ρ+ 2

(
x0 −

a

c
y0

)
.

�

In the following lemma, we obtain an expression of the half-return map defined on the x-axis when (x0, y0) is a focus
but not a center of the system (3.1). We assume that the solutions of the system (3.1) are oriented in an anticlockwise
direction, and the equilibrium point (x0, y0) of the system (3.1) does not lie in the lower part of the plane, i.e., y0 ≥ 0.
If the solutions of the system are clockwise oriented, then by a change of variable, t to −t, we can transform the system
(3.1) such that solutions are anticlockwise oriented, and we get the same expression of the half-return map. We find
an expression of the half-return P which maps the point (ρ, 0) to the point (P (ρ), 0), provided ρ > x0. Observe that



400 N. PHATANGARE, K. MASALKAR, AND S. KENDRE

if y0 = 0, we get the simple expression for the half-return map, whereas we get a rather complicated expression for
the half-return map when y0 6= 0.

Lemma 3.2. In system (3.1), let µ = a+ d 6= 0, δ = ad− bc, ∆ = 4δ − µ2 > 0,

bc < 0, c > 0 or b < 0, f(t) = eµt/2 cos(
√

∆t/2) and g(t) = eµt/2 sin(
√

∆t/2). Suppose that P is the half-return map
for the system (3.1), which maps the point (ρ, 0) to the point (P (ρ), 0). Then, for y0 ≤ 0, we have

P (ρ) = x0 − e
µπ√

∆ (ρ− x0), (3.7)

and for y0 > 0, ρ > x0, we have

P (ρ) = x0 − e
µπ√

∆ (P1(ρ)− x0)f(T3)−

(
e
µπ√

∆ (P1(ρ)− x0)(a− d) + 2by0√
∆

)
g(T3), (3.8)

where P1(ρ) = x0 + (ρ− x0)f(T1) +

(
(a− d)(ρ− x0)− 2by0√

∆

)
g(T1), and T1, T3 are the smallest positive roots of

g(T3) =
e
−µπ√

∆ y0

√
∆

2c(P1(ρ)− x0)
, tan

(√
∆

2
T1

)
=

(
y0

√
∆

2c(ρ− x0) + (a− d)y0

)
.

Proof. Eigenvalues of the coefficient matrix A =

[
a b
c d

]
of the system (3.1) are

µ± i
√

∆

2
.

Let v = v1 + iv2 be an eigenvector of the matrix A associated to the eigenvalue
µ+ i

√
∆

2
, where

v1 =

[
v11

v12

]
, v2 =

[
v21

v22

]
∈ R2.

Then, (
A− µ+ i

√
∆

2
I

)
(v1 + iv2) = 0

implies that (
A− µ

2
I
)
v1 +

√
∆

2
v2 = 0, and

(
A− µ

2
I
)
v2 −

√
∆

2
v1 = 0.

Hence,

2√
∆

(
A− µ

2
I
)

= [−v2, v1][v1, v2]−1

⇒ 2√
∆

a− d2
b

c −a− d
2

 = [−v2, v1][v1, v2]−1.

Let

B =
1

ad− bc

[
−dα+ bβ
cα− aβ

]
=

[
x0

y0

]
.

Then the general solution of (3.1) is given by[
x
y

]
= (f(t)[v1, v2] + g(t)[−v2, v1])

[
c1
c2

]
+B. (3.9)

Let ρ be any real number. Orbit of the differential system starting at (ρ, 0) satisfy the initial conditions x(0) = ρ and
y(0) = 0, so that from (3.9), we get,[

c1
c2

]
= [v1, v2]−1

[
ρ− x0

−y0

]
. (3.10)
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Hence, a solution of (3.1) satisfying the initial conditions x(0) = ρ and y(0) = 0 is[
x
y

]
=
(
f(t)I + g(t)[−v2, v1][v1, v2]−1

) [ρ− x0

−y0

]
+B. (3.11)

If P is the Poincare half-return map that maps the point (ρ, 0) to the point (P (ρ), 0), satisfy the equations[
P (ρ)− x0

−y0

]
=
(
f(T )I + g(T )[−v2, v1][v1, v2]−1

) [ρ− x0

−y0

]
, (3.12)

where T is the least time required for the orbit to reach the point (P (ρ), 0) from the point (ρ, 0). From (3.12), we get,

P (ρ)− x0 = (ρ− x0)f(T ) +

(
(a− d)(ρ− x0)− 2by0√

∆

)
g(T ), and

−y0 = −y0f(T ) +

(
2c(ρ− x0) + (a− d)y0√

∆

)
g(T ).

Assume that for y0 ≥ 0, ρ > x0, c > 0 and b < 0. If y0 = 0, then g(T ) = e
µ
2 T sin

(√
∆T

2

)
= 0 and hence, T = 2π√

∆

and f(T ) = −e
µπ√

∆ .
Therefore,

P (ρ) = x0 − e
µπ√

∆ (ρ− x0) = −e
µπ√

∆

(
ρ− bβ − dα

ad− bc

)
+
bβ − dα
ad− bc

. (3.13)

Next, to obtain an expression of the half-return map for the system (3.1) that sends the point (ρ, 0), ρ > x0, to
the point (P (ρ), 0), when the solutions are oriented in an anticlockwise direction and its equilibrium point (x0, y0) is
in the lower half-plane, i.e., (x0, y0) is virtual for the system (3.1). If the solutions of the system (3.1) are oriented
in the clockwise direction, then again reversing the orientation using the change of the time variable, t to −t, we get
the same expression of the half-return map. Using the translation x = u + x0, y = v + y0, the Equations (3.1) get
transformed to

(u̇, v̇) = (au+ bv, cu+ dv). (2.1*)

System (2.1*) has an equilibrium point at (u, v) = (0, 0), and its solution is given by u(t) = x(t)−x0, v(t) = y(t)− y0,
where (x(t), y(t)) is a solution of the system (3.1). Similar to the case, when y0 = 0 in Lemma 3.2, expression for the
half-return map of (2.1*) will be

P (ρ) = −e
µπ√

∆ ρ, for u = ρ > 0.

Hence, for (3.1),

P (ρ) = x0 − e
µπ√

∆ (ρ− x0), for x = ρ > x0.

.
Now assume that y0 > 0. Let T1, T2 and T3 be the times of flights of the trajectories from the initial point (ρ, 0) to

(P1(ρ), y0), from (P1(ρ), y0) to (P2(ρ), y0), and from (P2(ρ), y0) to the point (P (ρ), 0), respectively (see Figure 2(b).
First, to find an expression for P1(ρ), note that (P1(ρ), y0) and (ρ, 0) correspond to (t = T1, x = P1(ρ), y =

y0) and (t = 0, x = ρ, y = 0), respectively. Applying these conditions to the general solution given by the Equation
(3.12), we get

P1(ρ)− x0 = (ρ− x0)f(T1) +

(
(a− d)(ρ− x0)− 2by0√

∆

)
g(T1), (3.14)

0 = −y0f(T1) +

(
2c(ρ− x0) + (a− d)y0√

∆

)
g(T1). (3.15)

From (3.15), we get

tan(T1

√
∆/2) =

g(T1)

f(T1)
=

y0

√
∆

2c(ρ− x0) + (a− d)y0
.
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(a) y0 = 0, ρ > x0. (b) y0 > 0, ρ > x0. (c) y0 > 0, ρ < x0.

Figure 2. Half-return maps for focus.

Hence,

T1 =
2√
∆

tan−1

(
y0

√
∆

2c(ρ− x0) + (a− d)y0

)
. (3.16)

Since T1 is the time of flight, it is the smallest positive root of the Equation (3.16).
Next, to find an expression for P2, note that the orbit (a solution) starts at (P1(ρ), y0), and ends at (P2(ρ), y0) in

time T2, which corresponds to the conditions (x(0) = P1(ρ), y(0) = y0) and (x(0) = P2(ρ), y(0) = y0), respectively.
On similar lines, as in the case when y0 = 0, from (3.12), we obtain

P2(ρ) = x0 − e
µπ√

∆ (P1(ρ)− x0). (3.17)

Finally, to obtain an expression for P (ρ), applying initial conditions x = P2(ρ), y = y0 to the Equation (3.12), we can
find the equation of the trajectory starting at (P2(ρ), y0) as,[

x
y

]
=
(
fI + g[−v2, v1][v1, v2]−1

) [P2(ρ)− x0

0

]
+B.

Since x(T3) = P (ρ) and y(T3) = 0, we get,[
P (ρ)

0

]
=
(
f(T3)I + g(T3)[−v2, v1][v1, v2]−1

) [P2(ρ)− x0

0

]
+B. (3.18)

Thus,

P (ρ)− x0 = (P2(ρ)− x0)f(T3) +

(
(a− d)(P2(ρ)− x0)− 2by0√

∆

)
g(T3),

−y0 =

(
2c(P2(ρ)− x0)√

∆

)
g(T3).

Hence, from the Equation (3.17), we get,

P (ρ) = x0 − e
µπ√

∆ (P1(ρ)− x0)f(T3)−

(
e
µπ√

∆ (P1(ρ)− x0)(a− d) + 2by0√
∆

)
g(T3), and

g(T3) =
e
− µπ√

∆ y0

√
∆

2c(P1(ρ)− x0)
.

Since T3 is the time of flight, it is the smallest positive root of the above equation. �
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If µ > 0,∆ > 0 and y0 > 0, then the system (3.1) has a real focus at (x0, y0) in the upper half-plane. Then the
expression for the half-return map P for the system (3.1) involves the time of flight T explicitly. In this case, it is not
easy to find an expression of the half-return map P , which sends points (ρ, 0) to (P (ρ), 0) that depends only on ρ, and
parameters of the system. In such cases, we can find the first few coefficients in powers of ρ− x0 in Taylor’s series of
P (ρ) about point ρ = x0. In the following lemma, we obtain the initial two terms in Taylor’s series of the half-return
map of the system (3.1), with a focus at (x0, y0) in an upper half part of the plane. In the proof, there is a remarkable
use of Taylor’s series expansion of the inverse of an analytic function, as in [14], [1].

Lemma 3.3. In system (3.1), assume that c > 0, µ = a+ d 6= 0, δ = ad− bc, ∆ = 4δ − µ2 > 0, and y0 6= 0. Suppose
that P is a half-return map for the system (3.1), which maps the point (ρ, 0) to the point (P (ρ), 0). Then the linear
approximation of P (ρ)− x0 is given by

P (ρ)− x0 = L(ρ− x0) +M,

where L = (1 + aA+ (ax0 − by0)B)

(
by0

2

c
e
− µπ√

∆ − e
µπ√

∆

)
,

M = −1

4

b2y2
0(A+Bx0)2

√
∆µ

c
−
(
−by0

2

c
e
− µπ√

∆ − e
µπ√

∆

)
by0(A+Bx0)− 1

2

(a− d) y0

c
,

A =
2√
∆

tan−1

(
y0

√
∆

−2cx0 + (a− d)y0

)
, and B =

y0

by0
2 + x0 (a− d) y0 − cx0

2
.

Proof. Using the linear approximations of f(T1) and g(T1) from expression of P1(ρ)− x0 obtained in Lemma 3.2, we
get

P1(ρ)− x0 = (ρ− x0)

(
1 +

1

2
µA+

1

2
µBx0 +

1

2
µB(ρ− x0)

)
+

(
(a− d)

2
(ρ− x0)− by0

)
(A+Bx0 +B(ρ− x0)) ,

where

A =
2√
∆

tan−1

(
y0

√
∆

−2cx0 + (a− d)y0

)
=

2√
∆

tan−1

(
y0

√
∆

2β − µy0

)
, and

B =
y0

by0
2 + x0 (a− d) y0 − cx0

2
=

y0

βx0 − αy0
.

Hence, the linear approximation of P1(ρ)− x0 is given by

P1(ρ)− x0 = −by0(Bx0 +A) + (1 + aA+ (ax0 − by0)B) (ρ− x0)

= C +D(ρ− x0), (3.19)

where C = −by0(Bx0 +A) and D = aA+ (ax0 − by0)B.
Also, using the linear approximations of f(T3), P1(ρ) − x0 and g(T3) in the expression of P (ρ) − x0 from Lemma

3.2, we get

P (ρ)− x0 = −e
µπ√

∆ (C +D(ρ− x0))

(
1 +

µT3

2

)
− y0

2c(C +D(ρ− x0))

(
(C +D(ρ− x0))(a− d) + 2by0e

−µπ√
∆

)
= −e

µπ√
∆ (C +D(ρ− x0))

(
1 +

µT3

2

)
− a− d

2c
y0 −

b

c
y2

0

e
− µπ√

∆

C +D(ρ− x0)
. (3.20)



404 N. PHATANGARE, K. MASALKAR, AND S. KENDRE

From g(T3) in Lemma 3.2, linear approximation of T3 using Taylor’s series of holomorphic functions, for instance, see
[14], is given by

T3 = g−1

(
e
−µπ√

∆
y0

√
∆

2c(C +D(ρ− x0))

)

= g−1

(
e
−µπ√

∆
y0

√
∆

2cC

(
1− D

C
(ρ− x0)

)
+ o((ρ− x0)2)

)

= e
−µπ√

∆
y0

√
∆

2c
(C −D(ρ− x0)) . (3.21)

From (3.20) and (3.21), expression for P (ρ)− x0 becomes

P (ρ)− x0 = − (C +D(ρ− x0))

(
e
µπ√

∆ +
µy0

√
∆ (C −D(ρ− x0))

4c

)

− a− d
2c

y0 −
by2

0

c
e
− µπ√

∆ (C −D(ρ− x0)). (3.22)

Hence, the linear approximation for P (ρ)− x0 is given by

P (ρ)− x0 =D

(
by0

2

c
e
− µπ√

∆ − e
µπ√

∆

)
(ρ− x0)− 1

4

C2
√

∆µ

c
+

(
−by0

2

c
e
− µπ√

∆ − e
µπ√

∆

)
C − 1

2

(a− d) y0

c

=L(ρ− x0) +M,

where L =(1 + aA+ (ax0 − by0)B)

(
by0

2

c
e
− µπ√

∆ − e
µπ√

∆

)
, and

M =− 1

4

b2y2
0(A+Bx0)2

√
∆µ

c
−
(
−by0

2

c
e
− µπ√

∆ − e
µπ√

∆

)
by0(A+Bx0)− 1

2

(a− d) y0

c
.

�

In the following lemma, we find expressions of full Poincaré return maps for the PWL system (2.2) of FF type,
which is a composition of the half-return maps obtained in Lemma 3.1 and Lemma 3.2.

Lemma 3.4. In system (2.2), let µ± = a± + d±, δ± = a±d± − b±c± 6= 0,

∆± = 4δ± − (µ±)2 > 0, x±0 =
b±β± − d±α±

a±d± − b±c±
and y±0 =

c±α± − a±β±

a±d± − b±c±
.

Then, for c± > 0 and ρ ∈ Σcr, P
+(ρ) ∈ Σcl , we have the following:

(1) If µ+ = µ− = 0, then the full return map of the system (2.2) is given by

P (ρ) = ρ+ 2

(
x−0 − x

+
0 −

a−

c−
y−0 +

a+

c+
y+

0

)
. (3.23)

(2) If µ+µ− 6= 0 and y+
0 = y−0 = 0, then the full return map of the system (2.2) is given by

P (ρ) = e
µ+π√

∆+
+ µ−π√

∆− ρ− e
µ−π√

∆−

(
e
µ+π√

∆+ + 1

)
x+

0 +

(
e
µ−π√

∆− + 1

)
x−0 . (3.24)

(3) If µ+ 6= 0, µ− = 0 and y+
0 = 0, then the full return map of the system (2.2) is given by

P (ρ) = e
µ+π√

∆+ ρ+ 2

(
x−0 −

a−

c−
y−0

)
−
(

1 + e
µ+π√

∆+

)
x+

0 . (3.25)

(4) If µ+ = 0, µ− 6= 0 and y−0 = 0, then full return map of the system (2.2) is given by

P (ρ) = e
µ−π√

∆− ρ+

(
1 + e

µ−π√
∆−

)
x−0 − 2e

µ−π√
∆−

(
x+

0 −
a+

c+
y+

0

)
. (3.26)



CMDE Vol. 13, No. 2, 2025, pp. 395-419 405

Proof. The expression of Poincare maps in Equations (3.23), (3.24), (3.25), and (3.26) follows from the composition
of expression of half-return map obtained in Lemma 3.1 and Lemma 3.2. �

Now we discuss the domain on which the full return map is well-defined. The crossing region of the PWL system
(2.2) is

Σc =
{

(x, 0) ∈ Σ : (c+x+ β+) · (c−x+ β−) > 0
}
.

For simplicity, let us assume that the solutions of the system (2.2) are oriented in an anticlockwise direction. Therefore,
c± > 0, b∓ < 0. Also, assume that subsystems of the system (2.2) have real equilibrium points (x±0 , y

±
0 ). Therefore,

y+
0 > 0 and y−0 < 0. In this case, the crossing region of the system (2.2) is given by

Σc =

{
(x, 0) ∈ Σ : x > x+

0 +
d+

c+
y+

0 , x > x−0 +
d−

c−
y−0

}
∪
{

(x, 0) ∈ Σ : x < x+
0 +

d+

c+
y+

0 , x < x−0 +
d−

c−
y−0

}
.

Let us denote

Σcr =

{
(x, 0) ∈ Σ : x > x+

0 +
d+

c+
y+

0 and x > x−0 +
d−

c−
y−0

}
,

Σcl =

{
(x, 0) ∈ Σ : x < x+

0 +
d+

c+
y+

0 and x < x−0 +
d−

c−
y−0

}
.

Then, Σc = Σcr ∪ Σcl . We have the following cases:

Case(i): x−0 + d−

c− y
−
0 < x+

0 + d+

c+ y
+
0 ,

Case(ii): x+
0 + d+

c+ y
+
0 < x−0 + d−

c− y
−
0 .

In Case (i), we have

Σcr =

{
(x, 0) ∈ Σ: x+

0 +
d+

c+
y+

0 < x

}
, Σcl =

{
(x, 0) ∈ Σ: x < x−0 +

d−

c−
y−0

}
,

Σs = Σ�Σc =

{
(x, 0) ∈ Σ: x−0 +

d−

c−
y−0 < x < x+

0 +
d+

c+
y+

0

}
.

If the upper half orbit Γ+ of the system (2.2) begins at a point (ρ, 0) in the region Σcr, and reaches at the point (P+(ρ), 0)
in the region Σcl , and the lower half orbit Γ− which starts at (P+(ρ), 0), reaches at the point (P (ρ) = P−(P+(ρ)), 0)
in Σcr, then the full return map P = P− ◦ P+ is well defined, and we have a full orbit of the system (2.2), which is of

crossing type. Therefore, if ρ ∈ Σcr, i.e., x+
0 + d+

c+ y
+
0 < ρ and P+(ρ) ∈ Σcl , i.e., P+(ρ) = x+

0 −e
µ+π√

∆+ (ρ−x+
0 ) < x−0 + d−

c− y
−
0 ,

then the full return map P = P− ◦ P+ is well defined, and the full orbits of the system (2.2) are of crossing type.

Thus, for ρ > max

{
x+

0 + d+

c+ y
+
0 , x

+
0 − e

µ+π√
∆+ d+

c+ y
+
0

}
, P (ρ) is well defined.

Similarly, in case(ii), the full return map P (ρ) is defined for each

ρ > max

{
x−0 + d−

c− y
−
0 , x

−
0 − e

µ−π√
∆− d−

c− y
−
0

}
. Further, if the subsystems of the system (2.2) have foci at (x±0 , y

±
0 = 0),

then P (ρ) is defined for ρ > max{x+
0 , x

−
0 }.

Now, we will obtain the conditions under which the system (2.2) has a sliding limit cycle. From the expression of P+,
observe that ρ ∈ Σcr , P+(ρ) ∈ Σsl if and only if

x+
0 +

d+

c+
y+

0 < ρ < e
− µ+π√

∆+

(
x+

0 − x
−
0 −

d−

c−
y−0

)
+ x+

0 .

Remark 3.5. If c+ − c− 6= 0 or β+ − β− 6= 0, then the sliding vector field of the system (2.2) is given by

Zs(x, 0) =
Z+

1 (x, 0)Z−2 (x, 0)− Z−1 (x, 0)Z+
2 (x, 0)

Z+
2 (x, 0)− Z−2 (x, 0)
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=
(a+x+ α+)(c−x+ β−)− (a−x+ α−)(c+x+ β+)

c+x+ β+ − c−x− β−

=
(a+c− − a−c+)x2 + (a+β− − a−β+ + α+c− − c+α−)x+ (α+β− − α−β+)

(c+ − c−)x+ (β+ − β−)
.

Let D = a+β− − a−β+ + α+c− − c− − c+α−)2 − 4(a+c− − a−c+)(α+β− − α−β+). Observe that the sliding vector
field Zs has two equilibrium points when D > 0, one equilibrium point when D = 0, and no equilibrium point when
D < 0.

Using the full return map, we will give the conditions for the period annulus of the system (2.2) when it is FF type
with y±0 = 0.

Proposition 3.6. In the system (2.2), let µ± = a± + d±, δ± = a±d± − b±c± 6= 0,

∆± = 4δ± − (µ±)2 > 0, x±0 =
b±β± − d±α±

a±d± − b±c±
, and y±0 =

c±α± − a±β±

a±d± − b±c±
.

Assume that µ± 6= 0 whenever y±0 = 0. Then for the piecewise linear system (2.2), a period annulus occurs in the
following cases only:

(1) µ+ = µ− = 0 and c+0 x
+
0 − a+y+

0 − c−x
−
0 + a−y−0 = 0.

(2) µ+µ− 6= 0, y+
0 = y−0 = 0, µ+

√
∆+

= − µ−√
∆−

and x+
0 = x−0 .

Proof. The orbits starting at points (ρ, 0), with (ρ, 0) in the interval I in Σcr, are periodic orbits if and only if P (ρ) = ρ.
Hence, from the equation, P (ρ) = ρ for all ρ in the interval I ⊆ Σcr, we get required conditions. �

4. Normal forms of the types focus-focus and saddle-saddle

In accordance with Proposition 3.6, a period annulus exists around the equilibrium point (x+
0 = x−0 , 0) of the PWL

system (2.2) in canonical form if it satisfies either
(1) µ+ = µ− = 0, i.e., both Z+ and Z− have centers at (x+

0 , y
+
0 ) and (x−0 , y

−
0 ), respectively, or

(2) µ+µ− 6= 0 and Z+ and Z− both have foci at (x+
0 = x−0 , 0).

Using the above information, we show that the normal form of a piecewise smooth differential system (2.1), if it
has a period annulus around the origin, are nothing but PWL systems in some neighbourhood of the origin.
Consider the following hypotheses about the system (2.1):

AI: The system (2.1) has a center at the origin, i.e., a period annulus around the origin.

AII: Both Z+ and Z− have focus only at the origin when both Z+ and Z− are extended independently on R2.

AIII: Z+ has a saddle only at (x+
0 , y

+
0 ) and Z− has a saddle only at (x−0 , y

−
0 ).

Assuming hypotheses (AI) and (AII), we claim that the PWL system (2.1) is Σ-conjugate to the PWL system given
by

Z0(x, y) =

{
(x− y, x+ y), if y ∈ Σ+ = {(x, y) ∈ R2 : y > 0},
(−x− y, x− y), if y ∈ Σ− = {(x, y) ∈ R2 : y < 0}.

(4.1)

On Σ = {(x, 0) : (x, 0) ∈ R2}, the system (4.1) is defined by the Filippov convex combination.

Proposition 4.1. Suppose that the system (2.1) satisfies the hypotheses (AI) and (AII). Then there exist open subsets
U and V in R2 containing the origin such that the systems (2.1) on U and (4.1) on V are Σ-conjugate.

Proof. Proof is similar to the proof of Theorem 2 in [15]. �

If hypotheses (AI) and (AIII) hold, then it can be seen that the PWS system (2.1) is Σ-conjugate to PWL system

Z0(x, y) =

{
(y − 1, x) if y ∈ Σ+ = {(x, y) ∈ R2 : y > 0},
(y + 1, x) if y ∈ Σ− = {(x, y) ∈ R2 : y < 0}.

(4.2)
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On Σ = {(x, 0) : (x, 0) ∈ R2}, the system (4.2) is defined by the Filippov convex combination.

Proposition 4.2. Suppose that the hypotheses (AI) and (AIII) hold for the system (2.1). Then there exist open subsets
U and V of R2 containing the origin such that the system (2.1) on U and the system (4.2) on V are Σ-conjugate to
each other.

Proof. The proof is similar to the proof of Theorem 2 in [15]. �

5. Bifurcation of limit cycles from period annulus

The zeros of the Melnikov function of order one are used to find the number of limit cycles bifurcated from the
period annulus of a differential system. We find an upper bound for the number of limit cycles that bifurcates from
the period annulus of the systems (4.1) and (4.2) due to perturbation.

5.1. Focus-Focus. Consider a perturbation of the system (4.1) in a class of polynomial functions of degree n as,

Zε(x, y) =

{
(x− y + εf+(x, y), x+ y + εg+(x, y)), x ≥ 0,

(−x− y + εf−(x, y), x− y + εg−(x, y)), x < 0,
(5.1)

where

f±(x, y) =

n∑
i+j=0

a±i,jx
iyj , g±(x, y) =

n∑
i+j=0

b±ijx
iyj .

System (5.1) at ε = 0 is integrable, and the first integral is

H(x, y) =


H+(x, y) = 1

2 ln(x2 + y2) + tan−1
(
x
y

)
, if y > 0,

π/2, if y = 0,

H−(x, y) = 1
2 ln(x2 + y2)− tan−1

(
x
y

)
, if y < 0,

with the integrating factors ξ(x, y)± =
1

x2 + y2
.

Note that the system (5.1) at ε = 0 satisfies the following hypotheses:

BI: There is an interval I = (−∞,∞) and two points A(h) = (a(h), 0) = (eh−π/2, 0) and B(h) = (b(h), 0) =
(−eh−π/2, 0) such that
H+(A(h)) = H+(B(h)) = h, and H−(A(h)) = H−(B(h)) = h, a(h) 6= b(h), h ∈ I.

BII: The system (5.1) at ε = 0 has an orbital arc

Γ+
h : H+(x, y) = h, h ∈ (−∞,∞),

from A(h) to B(h) in an upper half plane and has an orbital arc

Γ−h : H−(x, y) = h, h ∈ (−∞,∞),

from B(h) to A(h) in a lower half plane.

Under the above hypotheses (BI) and (BII), system (5.1) at ε = 0 has a family of closed orbits

Γh = Γ+
h + Γ−h , h ∈ (−∞,∞),

and each of Γh is piecewise smooth. Observe that

lim
(x,y)→(h,0+)

H+(x, y) = lim
(x,y)→(h,0−)

H−(x, y) =

{
ln(h) + π

2 , if h > 0,

ln(−h)− π
2 , if h < 0.

and lim
(x,y)→(h,0+)

H+
x (x, y) = 1/h = lim

(x,y)→(h,0−)
H−x (x, y).
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Figure 3. Orbit of

(
ẋ
ẏ

)
=

(
x− y
x+ y

)
. Figure 4. Orbit of

(
ẋ
ẏ

)
=

(
−x− y
x− y

)
.

Therefore,

H+
x (A(h))

H−x (A(h))
= 1 =

H−x (B(h))

H+
x (B(h))

.

Proposition 5.1. The system (5.1) has at most n limit cycles. Moreover, there exist polynomials f±(x, y) and
g±(x, y) such that (5.1) has exactly n limit cycles.

Proof. From Theorem 1.1 in [23], the Melnikov function of first order, M(h), for the system (5.1), is given by

M(h) =

∫
Γ+
h

ξ+(g+(x, y)dx− f+(x, y)dy) +

∫
Γ−h

ξ−(g−(x, y)dx− f−(x, y)dy

=

∫
Γ+
h

ξ+(g+(x, y)dx− f+(x, y)dy) +

∫
Γ−h

ξ−(g−(x, y)dx− f−(x, y)dy

=

∫
Γ+
h

1

x2 + y2

 n∑
i+j=0

b+ijx
iyj

 dx−

 n∑
i+j=0

a+
ijx

iyj

 dy


+

∫
Γ−h

1

x2 + y2

 n∑
i+j=0

b−ijx
iyj

 dx−

 n∑
i+j=0

a−ijx
iyj

 dy


=

n∑
i+j=0

(∫
Γ+
h

1

x2 + y2

(
b+ijx

iyjdx− a+
ijx

iyjdy
)

+

∫
Γ−h

1

x2 + y2

(
b−ijx

iyjdx− a−ijx
iyjdy

))
. (5.2)

To find the line integrals over Γ+
h and Γ−h , we write Γ+

h and Γ−h in polar coordinates, x = r cos θ, y = r sin θ. Then

Γ+
h : reθ = eh, 0 < θ < π.

Thus, in parametric form

Γh : x(θ) = e−θ+h cos(θ), y(θ) = e−θ+h sin(θ), 0 < θ < π.

Similarly,

Γ−h : x(θ) = eθ+h cos(θ), y(θ) = eθ+h sin(θ), π < θ < 2π.

From (5.2), the first-order Melnikov function becomes,

M(h) =

n∑
i+j=0

eh(i+j−1)

∫ π

0

e−θ(i+j+3) cosi θ sinj θ
(
b+ij(− cos θ − sin θ)− a+

ij(− sin θ + cos θ)
)
dθ
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+

n∑
i+j=0

eh(i+j−1)

∫ 2π

π

e−θ(i+j+3) cosi θ sinj θ
(
b−ij(− cos θ − sin θ)− a−ij(− sin θ + cos θ)

)
dθ

=

n∑
i+j=0

αije
h(i+j−1), (5.3)

where

αij =

∫ π

0

e−θ(i+j+3) cosi θ sinj θ
(
b+ij(− cos θ − sin θ)− a+

ij(− sin θ + cos θ)
)
dθ

+

∫ 2π

π

e−θ(i+j+3) cosi θ sinj θ
(
b−ij(− cos θ − sin θ)− a−ij(− sin θ + cos θ)

)
dθ.

We can write (5.3) as

ehM(h) =

n∑
i+j=0

αije
h(i+j) for h 6= 0, (5.4)

Put eh = h̃ > 0 in (5.4), we get

h̃M(ln(h̃) =

n∑
i+j=0

αij h̃
i+j for h̃ > 0. (5.5)

The right-hand side of Equation (5.5) is a n degree polynomial in h̃, and hence it has at most n positive zeros.
Therefore, M(h) has at most n positive zeros. Thus, the system (5.1) has at most n limit cycles.

Further, the right-hand side of the Equation (5.5) is a polynomial of degree n in h̃, and the coefficient of h̃k is

uk =
∑
i+j=k

αij , it is clear that
∂(u0, u1, ..., un)

∂(α00, α01, ...., αnn)
has a full row rank. Also, note that αij ’s are linear combinations

of aij ’s and bij ’s. Therefore, there exist parameters αij , and hence parameters aij , bij such that M(h) has exactly n
positive zeros. Hence, there exist polynomials f±(x, y) and g±(x, y) such that the system (5.1) has exactly n limit
cycles. �

Now we present an example of a piecewise smooth system of the type focus-focus with polynomial perturbation.
Here, we discuss the polynomial perturbation of degree n = 5.

Example 5.2. Consider the system (5.1) with n = 5, where

a+
0,0 = −600, b+0,0 = a−0,0 = b−0,0 = 0, a+

1,0 = −40

7

1

1− e−4π

274

2
, b+1,0 = a−1,0 = b−1,0 = 0,

a+
0,1 = −40

1

1

1 + e−4π

274

2
, b+0,1 = a−0,1 = b−0,1 = 0, a+

2,0 = −221

33

1

1 + e−5π

225

3
, b+2,0 = a−2,0 = b−2,0 = 0,

a+
1,1 = −442

9

1

1 + e−5π

225

3
, b+1,1 = a−1,1 = b−1,1 = 0, a+

0,2 = −221
1

1 + e−5π

225

3
, b+0,2 = a−0,2 = b−0,2 = 0,

a+
3,0 =

208

27

1

1− e−6π

85

4
, b+3,0 = a−3,0 = b−3,0 = 0, a+

1,2 =
3120

11

1

1− e−6π

85

4
, b+1,2 = a−1,2 = b−1,2 = 0,

a+
2,1 =

3120

49

1

1− e−6π

85

4
, b+2,1 = a−2,1 = b−2,1 = 0, a+

0,3 = 1040
1

1− e−6π

85

4
, b+0,3 = a−0,3 = b−0,3 = 0,

a+
4,0 = −26825

3077

1

1 + e−7π

15

5
, b+4,0 = a−4,0 = b−4,0 = 0, a+

3,1 = −26825

332

1

1 + e−7π

15

5
, b+3,1 = a−3,1 = b−3,1 = 0,

a+
1,3 = −53650

39

1

1 + e−7π

15

5
, b+1,3 = a−1,3 = b−1,3 = 0, a+

2,2 = −26825

39

1

1 + e−7π

15

5
, b+2,2 = a−2,2 = b−2,2 = 0,
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a+
0,4 = −26825

36

1

1 + e−7π

15

5
, b+0,4 = a−0,4 = b−0,4 = 0, a+

5,0 =
54400

5889

1

1− e−8π

1

5
, b+5,0 = a−5,0 = b−5,0 = 0,

a+
4,1 =

54400

543

1

1− e−8π

1

5
, b+4,1 = a−4,1 = b−4,1 = 0, a+

3,2 =
54400

101

1

1− e−8π

1

5
, b+3,2 = a−3,2 = b−3,2 = 0,

a+
2,3 =

54400

17

1

1− e−8π

1

5
, b+2,3 = a−2,3 = b−2,3 = 0, a+

1,4 =
54400

9

1

1− e−8π

1

5
, b+1,4 = a−1,4 = b−1,4 = 0,

a+
0,5 =

54400

3

1

1− e−8π

1

5
, b+0,5 = a−0,5 = b−0,5 = 0. (5.6)

Then the Melnikov function of (5.1) is given by

M(h) =

n∑
i+j=1

αije
h(i+j−1), (5.7)

where

α0,0 =− 2

5

(
e−3π + 1

)
b+0,0 +

1

5

(
e−3π + 1

)
a+

0,0 +
2

5

(
e−3π + e−6π

)
b−0,0 +

1

5

(
e−3π + e−6π

)
a−0,0,

α1,0 =− 11
(
e−4π + 1

)
b+1,0 + 7

(
e−4π + 1

)
a+

1,0 − 11
(
e−4π + e−8π

)
b−1,0 − 7

(
e−4π + e−8π

)
a−1,0,

α0,1 =− 3
(
e−4π + 1

)
b+0,1 +

(
e−4π + 1

)
a+

0,1 − 3
(
e−4π + e−8π

)
b−0,1 −

(
e−4π + e−8π

)
a−0,1,

α2,0 =− 47
(
e−5π + 1

)
b+2,0 + 33

(
e−5π + 1

)
a+

2,0 + 47
(
e−5π + e−10π

)
b−2,0 + 33

(
e−5π + e−10π

)
a−2,0,

α1,1 =− 19
(
e−5π + 1

)
b+1,1 + 9

(
e−5π + 1

)
a+

1,1 + 19
(
e−5π + e−10π

)
b−1,1 + 9

(
e−5π + e−10π

)
a−1,1,

α0,2 =− 4
(
e−5π + 1

)
b+0,2 +

(
e−5π + 1

)
a+

0,2 + 4
(
e−5π + e−10π

)
b−0,2 +

(
e−5π + e−10π

)
a−0,2,

α3,0 =
181

1040

(
e−6π − 1

)
b+3,0 +

27

208

(
e−6π − 1

)
a+

3,0 −
181

1040

(
e−6π − e−12π

)
b−3,0 +

27

208

(
e−6π − e−12π

)
a−3,0,

α1,2 =29
(
e−6π − 1

)
b+1,2 − 11

(
e−6π − 1

)
a+

1,2 − 29
(
e−6π − e−12π

)
b−1,2 + 11

(
e−6π − e−12π

)
a−1,2,

α2,1 =89
(
e−6π − 1

)
b+2,1 + 49

(
e−6π − 1

)
a+

2,1 − 89
(
e−6π − e−12π

)
b−2,1 − 49

(
e−6π − e−12π

)
a−2,1,

α0,3 =− 1

208

(
e−6π − 1

)
b+0,3 +

1

1040

(
e−6π − 1

)
a+

0,3 −
1

208

(
e−6π + e−12π

)
b−0,3 −

1

1040

(
e−6π + e−12π

)
a−0,3,

α4,0 =
e−14π

26825

(
e7π + 1

) (
3077 a+

4,0e7π − 3958 b+4,0e7π + 3077 a−4,0 + 3958 b−4,0
)
,

α3,1 =
e−14π

26825

(
e7π + 1

) (
332 a+

3,1e7π − 549 b+3,1e7π + 332 a−3,1 + 549 b−3,1
)
,

α2,2 =
e−14π

26825

(
e7π + 1

) (
68 a+

2,2e7π − 149 b+2,2e7π + 68 a−2,2 + 149 b−2,2
)
,

α1,3 =
e−14π

53650

(
3 e7π + 3

) (
13 a+

1,3e7π − 41 b+1,3e7π + 13 a−1,3 + 41 b−1,3
)
,

α0,4 =
e−14π

26825

(
6 e7π + 6

) (
a+

0,4e7π − 6 b+0,4e7π + c0,4 + 6 b−0,4
)
,

α5,0 =
e−16π

54400

(
e8π − 1

) (
5589 a+

5,0e8π − 6973 b+5,0e8π − 5589 a−5,0 − 6973 b−5,0
)
,

α4,1 =
e−16π

54400

(
e8π − 1

) (
543 a+

4,1e8π − 841 b+4,1e8π − 543 a−4,1 − 841 b−4,1
)
,

α3,2 =
e−16π

54400

(
e8π − 1

) (
101 a+

3,2e8π − 197 b+3,2e8π − 101 a−3,2 − 197 b−3,2
)
,



CMDE Vol. 13, No. 2, 2025, pp. 395-419 411

α2,3 =
e−16π

54400

(
3 e8π − 3

) (
9 a+

2,3e8π − 23 b+2,3e8π − 9 a−2,3 − 23 b−2,3
)
,

α1,4 =
e−16π

54400

(
3 e8π − 3

) (
3 a+

1,4e8π − 11 b+1,4e8π − 3 a−1,4 − 11 b−1,4
)
,

α0,5 =
e−16π

54400

(
3 e8π − 3

) (
a+

0,5e8π − 7 b+0,5e8π − c0,5 − 7 b−0,5
)
.

After simplification, Equation (5.7) reduces to

M(h) =h5 − 15h4 + 85h3 − 225h2 + 274h− 120

=(h− 1)(h− 2)(h− 3)(h− 4)(h− 5). (5.8)

Hence, the corresponding system has five limit cycles.
Thus, for n = 5, there is a systems with polynomial perturbation of degree five that has exactly five limit cycles.

Similarly, for any positive integer n, there exist polynomial functions f±, g± of degree n such that the system (5.1)
has exactly n limit cycles.

5.2. Saddle-Saddle. Now consider the piecewise system of the type saddle-saddle;

(ẋ, ẏ) =

{
(y − 1, x), y > 0,

(y + 1, x), y < 0,
(5.9)

and its perturbation in the class of polynomial function of degree n,

(ẋ, ẏ) =

{
(y − 1 + εf+(x, y), x+ εg+(x, y)), y > 0,

(y + 1 + εf−(x, y), x+ εg−(x, y)), y < 0,
(5.10)

where f±(x, y) =

n∑
i+j=0

a±ijx
iyj , g±(x, y) =

n∑
i+j=0

b±ijx
iyj .

System (5.9) is Hamiltonion with integral,

H(x, y) =


H+(x, y) =

y2

2
− x2

2
− y, y > 0,

H−(x, y) =
y2

2
− x2

2
+ y, y < 0,

and it satisfies the following hypotheses;

CI: For h ∈ (0, 1), we have

H+(A(h)) = H+(B(h)) = −h
2

and H−(A(h)) = H−(B(h)) = −h
2
,

where A(h) = (
√
h, 0) and B(h) = (−

√
h, 0).

CII: The system (5.9) has an orbit arc Γ+
h from A(h) to B(h) which is defined by H+(x, y) = −h/2, y ≥ 0 and an

orbit Γ−h from B(h) to A(h) is defined by H−(x, y) = −h/2, y < 0.
CIII: System (5.9) has a family of periodic orbits,

Γh = Γ+
h ∪ Γ−h = {(x, y) : H+(x, y) = −h

2
, y ≥ 0} ∪ {(x, y) : H−(x, y) = −h

2
, y < 0}, for h ∈ (0, 1).

Lemma 5.3. The first-order Melnikov function for the system (5.10) can be expressed in the form

M(h) = p(h)I0(h) + q(h)I1(h) + r(h)J0(h) + s(h)J1(h),

where I0(h) = I0,0(h), I1(h) = I0,1(h), J0(h) = J0,0(h), J0(h) = J0,1(h),

Iij(h) =

∫
Γ+
h

xiyjdx, Jij(h) =

∫
Γ−h

xiyjdx, i, j ∈ N, and p(h), q(h), r(h), s(h) are polynomials in h with deg p(h) ≤

[n2 ],deg q(h) ≤ [n−1
2 ],deg r(h) ≤ [n2 ] and deg s(h) ≤ [n−1

2 ].
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(a) Orbits of

(
ẋ
ẏ

)
=

(
y − 1
x

)
. (b) Orbits of

(
ẋ
ẏ

)
=

(
y + 1
x

)
. (c) Period annulus of (5.9).

Figure 5. Saddle-saddle.

Proof. The first-order Melnikov function for the system (5.10) is given by

M(h) =
H+
y (A(h))

H−y (A(h))

[
H−y (B(h))

H+
y (B(h))

∫
Γ+
h

(g+(x, y)dx− f+(x, y)dy) +

∫
Γ−h

(g−(x, y)dx− f−(x, y)dy)

]
. (5.11)

Observe here that,
H+
y (A(h))

H−y (A(h))
·
H−y (B(h))

H+
y (B(h))

= 1.

Hence, for h ∈ (0, 1), the Melnikov function (5.11) becomes

M(h) =

∫
Γ+

h

(g+(x, y)dx− f+(x, y)dy) +

∫
Γ−h

(g−(x, y)dx− f−(x, y)dy)

=

∫
Γ+
h

n∑
i+j=0

b+ijx
iyjdx−

∫
Γ+
h

n∑
i+j=0

a+
ijx

iyjdy +

∫
Γ−h

n∑
i+j=0

b−ijx
iyjdx−

∫
Γ−h

n∑
i+j=0

a−ijx
iyjdy

=

n∑
i+j=0

b+ij

∫
Γ+
h

xiyjdx−
n∑

i+j=0

a+
ij

∫
Γ+
h

xiyjdy +

n∑
i+j=0

b−ij

∫
Γ−h

xiyjdx−
n∑

i+j=0

a−ij

∫
Γ−h

xiyjdy. (5.12)

We have, by Green’s formula,∫
Γ+
h

xiyjdy =

∫
ÂB∪

−−→
BA

xiyjdy −
∫
−−→
BA

xiyjdy =

∫
ÂB∪

−−→
BA

xiyjdy = i

∫∫
R+

xi−1yjdxdy, (5.13)

where ÂB is a path along the trajectory Γ+
h traversed from A to B, and R+ is the region bounded by Γ+

h and the
segment BA.

Similarly,∫
Γ+
h

xi−1yj+1dx = −(j + 1)

∫∫
R+

xi−1yjdxdy. (5.14)

From (5.13) and (5.14), we get,∫
Γ+
h

xiyjdy = − i

j + 1

∫
Γ+
h

xi−1yj+1dx. (5.15)
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Similarly, we can obtain,∫
Γ−h

xiyjdy = − i

j + 1

∫
Γ−h

xi−1yj+1dx. (5.16)

Substituting (5.15) and (5.16) in (5.12) gives,

M(h) =

n∑
i+j=0

b+ij

∫
Γ+
h

xiyjdx+

n∑
i+j=0,i≥1

i

j + 1
a+
ij

∫
Γ+
h

xi−1yj+1dx

+

n∑
i+j=0

b−ij

∫
Γ−h

xiyjdx+

n∑
i+j=0,i≥1

i

j + 1
a−ij

∫
Γ−h

xi−1yj+1dx

=

n∑
i+j=0

b+ijIij +

n∑
i+j=0,i≥1

i

j + 1
a+
ijIi−1,j+1 +

n∑
i+j=0

b−ijJij +

n∑
i+j=0,i≥1

i

j + 1
a−ijJi−1,j+1, (5.17)

where

Iij(h) =

∫
Γ+
h

xiyjdx, Jij(h) =

∫
Γ−h

xiyjdx, i, j ∈ N.

Now differentiating H+(x, y) =
y2

2
− x2

2
− y with respect to x, we get

y
∂y

∂x
− ∂y

∂x
− x = 0.

Multiplying this equation by xi−1yjdx and integrating along Γ+
h , we get

Ii,j(h) = − i− 1

j + 2
Ii−2,j+2(h) +

i− 1

j + 1
Ii−2,j+1(h). (5.18)

Now multiplying H+(x, y) =
y2

2
− x2

2
− y = −h

2
by xiyj−1dx and integrate over Γ+

h gives

∫
Γ+
h

xiyj+1

2
dx−

∫
Γ+
h

xi+2yj−1

2
dx−

∫
Γ+
h

xiyj = −h
2

∫
Γ+
h

xiyj−1dx.

That is,

Ii,j =
1

2
(Ii,j+1 − Ii+2,j−1 + hIi,j−1). (5.19)

Substituting the expression for Ii−2,j+1 from (5.19) into (5.18), we get

Ii,j =− j(i− 1)

(2j + i+ 1)(j + 2)
Ii−2,j+2 +

i− 1

2j + i+ 1
hIi−2,j . (5.20)

Also, substituting expression of Ii+2,j−1 obtained from (5.18) into (5.19), we get

Ii,j =
j(i+ j + 2)

(i+ 2j + 1)(j + 1)
Ii,j+1 +

j

i+ 2j + 1
hIi,j−1. (5.21)

Replacing j by j − 1 in (5.21), we get

Ii,j =
j(i+ 2j − 1)

(j − 1)(i+ j + 1)
Ii,j−1 −

j

i+ j + 1
hIi,j−2. (5.22)

Substitute expression of Ii−2,j+2 from (5.22) in (5.18), we get

Ii,j =− i− 1

j + 1

[
j2 + 5j + i+ 5

(j + 1)(i+ j + 1)
Ii−2,j+1 −

j + 2

i+ j + 1
hIi−2,j

]
. (5.23)
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Note that, since Γ+
h and Γ−h are symmetric about the y-axis,

I2i+1,j(h) = J2i+1,j = 0 for all i, j ∈ N ∪ {0}.
Therefore, we need to consider only I2i,j(h) and J2i,j(h) for h ∈ (0, 1), i, j ∈ N ∪ {0} . Observe that Equation (5.22)
holds true for all 0 ≤ i ≤ n and 2 ≤ j ≤ n, and Equation (5.23) holds true for all 2 ≤ i ≤ n and 0 ≤ j ≤ n.

We shall use induction on k = i+ j. From Equations (5.22) and (5.23), for i+ j = k = 2, 3, we have

I2,0(h) =
1

3
hI0,0(h),

I0,2(h) =2I0,1 −
2

3
hI0,0,

I2,1(h) =
1

12
hI0,0 +

1

4
(h− 1)I0,1,

I0,3(h) =− 5

4
hI0,0 +

3

8
(10− 2h)I0,1.

(5.24)

Assume that the result holds for all i+ j ≤ k − 1, k ≥ 3.
For i+ j = k odd, take the pairs (i, j) = (k− 1, 1), (k− 3, 3), (k− 5, 5), · · · , (2, k− 2) in the Equation (5.23), and (0, k)
in the Equation (5.22), we get

Ik−1,1(h) = −k − 2

2

[
3(k + 4)

2(k + 1)
− 1

]
Ik−3,2 −

3

k + 1
hIk−3,1,

Ik−3,3(h) = −k − 4

4

[
k + 26

6(k + 1)
Ik−5,4 −

5

k + 1
hIk−5,3

]
,

...

I2,k−2(h) = − 1

(k − 1)

[
(k − 2)(k + 3) + 7

(k − 1)(k + 1)
I0,k−1 −

k

k + 1
hI0,k−2

]
,

I0,k(h) =
k(2k − 1)

(k − 1)(k + 1)
I0,k−1 −

k

k + 1
hI0,k−2.

(5.25)

Now, if k is even, then for i+ j = k, k ≥ 2, from (5.22) and (5.23), we obtain,

Ik,0(h) = − (k − 1)(k + 5)

k + 1
Ik−2,1 +

2(k − 1)

k + 1
hIk−2,0

Ik−2,2(h) = 2Ik−2,1 −
2

k + 1
hIk−2,0

Ik−4,4(h) =
4(k + 3)

3(k + 1)
Ik−4,3 −

4

k + 1
hIk−4,2

...

I2,k−2(h) =
(k − 2)(2k − 1)

(k − 3)(k + 1)
I2,k−3 −

k − 2

k + 1
hI2,k−4

I0,k(h) =
k(2k − 1)

(k − 1)(k + 1)
I0,k−1 −

k

k + 1
hI0,k−2.

(5.26)

From Equations (5.24), it is clear that for i+ j = k = 2, 3, we have
Ii,j = p(h)I0(h) + q(h)I1(h), where deg p(h) ≤ [k2 ] and deg q(h) ≤ [k−1

2 ].
From the recurrence in (5.25) and (5.26), it is clear that for i+ j = k ≥ 3, we have

Ii,j = p(h)I0(h) + q(h)I1(h),

where deg p(h) ≤ [k2 ] and deg q(h) ≤ [k−1
2 ].

Thus, for 2i+ j = k, 2 ≤ k ≤ n, we have

I2i,j(h) =pk−1(h)I0,0(h) + qk−1(h)I0,1(h) + h[pk−2(h)I0,0(h) + qk−2(h)I0,1(h)]

=pk(h)I0 + qk(h)I1(h), (5.27)
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where pk−1, pk−2, qk−1, and qk−2 represent the polynomials in h that satisfy,
deg pk−1(h) ≤ [k−1

2 ],deg pk−2(h) ≤ [k−2
2 ],deg qk−1(h) ≤ [k−2

2 ] and deg qk−2(h) ≤ [k−3
2 ], respectively. Note that,

max
{

[k−1
2 ], [k−2

2 ]
}
≤ [k2 ], we have deg pk(h) ≤ [k2 ] and deg qk(h) ≤ [k−1

2 ].
Similarly, it can be shown that for i+ j = k, 0 ≤ k ≤ n,

J2i,j(h) = rk(h)J0(h) + sk(h)J1(h), (5.28)

where rk(h) and sk(h) are polynomials with deg rk(h) ≤ [k2 ] and deg sk(h) ≤ [k−1
2 ]. �

Proposition 5.4. The number of limit cycles of the system (5.10) is less than or equal to
[
n
2

]
+
[
n−1

2

]
+ 3. Moreover,

there exist polynomials f± and g± such that the perturbed system (5.10) has a number of limit cycles equal to
[
n
2

]
+[

n−1
2

]
+ 3.

Proof. We have

I0 = I0,0 =

∫
Γ+
h

x0y0dx =

∫ −√h
√
h

dx = −2
√
h (5.29)

and

I1(h) = I0,1 =

∫
Γ+
h

x0y1dx =

∫ −√h
√
h

ydx =

∫ −√h
√
h

(1−
√
x2 + 1− h)dx

= −3
√
h− 1− h

2
ln

(
1−
√
h√

h+ 1

)
. (5.30)

Similarly,

J0 = J0,0 =

∫
Γ−h

x0y0dx =

∫ √h
−
√
h

dx = 2
√
h (5.31)

and

J1 = J0,1 =

∫
Γ−h

x0y1dx =

∫ √h
−
√
h

ydx =

∫ √h
−
√
h

(−1 +
√
x2 + 1− h)dx = 3

√
h+

1− h
2

ln

(
1−
√
h√

h+ 1

)
. (5.32)

Therefore, from Lemma 5.3 and Equations (5.29)-(5.32), the first order Melnikov function becomes

M(h) = p(h)I0(h) + q(h)I1(h) + r(h)J0(h) + s(h)J1(h)

= p(h)(−2
√
h) + q(h)

(
−3
√
h− 1− h

2
ln

(
1−
√
h√

h+ 1

))

+ r(h)(−3
√
h) + s(h)

(
3
√
h+

1− h
2

ln

(
1−
√
h√

h+ 1

))

= u(h)
√
h+ v(h) ln

(
1−
√
h√

h+ 1

)
, (5.33)

where u(h) = (p(h)− 3q(h)− 3r(h) + 3s(h)), v(h) = (q(h) + s(h)) 1−h
2 .

It is clear that, deg(u(h)) ≤ [n2 ], deg(v(h)) ≤ [n−1
2 ] + 1.

Let #f(t) denote the number of zeros of a polynomial function f . Then,

#M(h) ≤ #

(
M(h)

v(h)

)
+ #(v(h)). (5.34)
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Differentiating
M(h)

v(h)
with respect to h, we get

d

dh

(
M(h)

v(h)

)
=

(1− h)u(h)v(h) + h(1− h)(v(h)u′(h)− v′(h)u(h))− 2(v(h))2

√
h(1− h)(v(h))2

. (5.35)

Since the numerator of the Equation (5.35) is a polynomial of degree less than or equal to n, we can say that

#
(
M(h)
v(h)

)
≤ 2[n−1

2 ] + 2. Hence, from the Equation (5.34), we get that

#(M(h)) ≤ #

(
M(h)

v(h)

)
+ #(v(h)) ≤ 3

[
n− 1

2

]
+ 3. (5.36)

Observe that,

√
hM(h) ∈ span

{
h, h2, · · · , hk, hk+1,

√
h ln

(
1−
√
h

1 +
√
h

)
, · · · ,

√
hhj+1 ln

(
1−
√
h

1 +
√
h

)}
,

where k =
[n

2

]
, j =

[
n− 1

2

]
.

Consider the linear combination
k+1∑
i=1

aih
i +

j+1∑
i=0

bih
i
√
h ln

(
1−
√
h

1 +
√
h

)
= 0. (5.37)

Expand the left-hand side of (5.37) into Taylor’s series about 0 and equate the coefficient of each hi, i = 0, 1, 2, · · ·
to 0, we get infinite number equations in ai’s and bi’s. Solving the first k + j + 4 equations explicitly, we get
ai = bi = 0 for i = 1, 2, . . . k + 1. Hence,

B =

{
h, h2, · · · , hk, hk+1,

√
h ln

(
1−
√
h

1 +
√
h

)
, · · · ,

√
hhj+1 ln

(
1−
√
h

1 +
√
h

)}
,

is linearly independent set of C∞ functions on (0, 1). Therefore, the Wronskian of any ordered subset of B is nonzero.
Hence, by Theorem 1.3 in [2], there exists a function in span B that has exactly

[
n
2

]
+
[
n−1

2

]
+ 3 zeros. Therefore,

there exists a perturbed system (4.2) such that the Melnikov function M(h) in (5.33) has exactly
[
n
2

]
+
[
n−1

2

]
+ 3

zeros. Thus, Melnikov function M(h) has at most
[
n
2

]
+
[
n−1

2

]
+ 3 zeros. �

Now we present an example of a piecewise smooth differential system of the type saddle-saddle when perturbed in
the class of polynomial functions of degree n = 2. The method followed here can be used to obtain a perturbation in
the class of polynomial functions of degree n such that the perturbed systems has exactly

[
n
2

]
+
[
n−1

2

]
+3 limit cycles.

Example 5.5. Consider the system (5.10), with f±, g± being polynomial functions of degree n = 2. Let

r = 2
√
h, and s = 3

√
h+

1− h
2

ln

(
1−
√
h

1 +
√
h

)
.

Then the Melnikov function is given by,

M (h) =
1

120
(A1h+A2) s+

2

15
r
(
B1h

2 +B2h+B3

)
, (5.38)

where

A1 = 30 a+
1,2 − 30 a+

2,1 − 60 a+
2,2 − 40 a−1,2 + 40 b−2,1 − 120 b−2,2, (5.39)

A2 = 300 a−1,2 + 60 b−2,0 − 120 b−2,1 + 225 b−2,2 − 180 a−1,1 − 360 b−0,2 − 120 a+
1,1 − 150 a+

1,2 (5.40)

− 240 a+
0,2 + 30 a+

2,1 + 60 a+
2,2 − 120 a+

1,0 − 120 a+
0,1 + 120 a−1,0 + 120 b−0,1, (5.41)

B1 = a+
2,2 −

15

8
b−2,2, (5.42)
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B2 =
−15

2
b−0,2 +

15

4
b−2,0 +

5

2
a+

1,1 +
25

8
a+

1,2 −
5

8
a+

2,1 −
5

4
a+

2,2 −
15

4
a−1,1 +

25

4
a−1,2 (5.43)

− 5

2
b−2,1 +

75

16
b−2,2 + 5 a+

0,2 −
5

2
a+

2,0, (5.44)

and

B3 = −15/2 a+
0,0 + 15/2 b−0,0. (5.45)

Now we choose the numbers A1, A2, B1, B2 and B3 so that,

M(h) =
1

120
(A1h+A2) s+

2

15
r
(
B1h

2 +B2h+B3

)
=
(

1000
√
h− 1

)(
4000

√
h− 1

)[
8.2944h3/2 − 2.0736 ln

(
−−1 +

√
h

1 +
√
h

)
h

+16.4416
√
h+ 2.0736 ln

(
−−1 +

√
h

1 +
√
h

)
− 24.48h

]
. (5.46)

Therefore,

A1 = 2.952638889, A2 = 0.6035542051× 10−3, B1 = 1, B2 = − 1

800
, and B3 =

1

4000000
.

Note that for these values of A1, A2, B1, B2, and B3, the Equations (5.39)-(5.45) represent a system of five linear
equations with 27 unknowns that has nontrivial solutions. Thus, there exist a±i,j , b

±
i,j , 0 ≤ i, j ≤ 2, not all zero, that

satisfy the Equations (5.39)-(5.45).
The roots of Melnikov function (5.46) are

h1 = 0.000001000000000, h2 = 0.00000006250000000, h3 = 0.9507439781, and h4 = 0.6845346498.

Hence, for n = 2, there exist polynomial functions f± and g± such that the system (5.10) has exactly
[
n
2

]
+
[
n−1

2

]
+3 = 4

limit cycles.

In general, for any positive integer n, there are polynomial functions f±, g± of degree n such that the system (5.10)
has exactly

[
n
2

]
+
[
n−1

2

]
+ 3 limit cycles.

6. Discussion and conclusions

In this paper, Poincaré half-return maps for center and focus are obtained in a simpler form. Several possibilities
for the equilibrium point (x0, y0), such as x0 > 0, x0 < 0, y0 = 0, y0 > 0 etc., are discussed. Using the half-return
maps, the full-return map for a piecewise linear system of focus-focus type is established, and conditions for the period
annulus are developed. This idea can be extended to establish the Poincaré maps for a general class of piecewise
differential systems to identify the number and location of limit cycles.

Normal forms of piecewise smooth differential systems of focus-focus and saddle-saddle types are obtained, and the
limit cycle bifurcation of these systems when perturbed in polynomial functions is discussed. The Chebyshev criterion,
Picard-Fuchs equations, and Taylor’s series for the inverse function are used in the analysis of limit cycles. The upper
bound for the number of limit cycles established in this paper can be further improved. This technique can be utilized
to obtain the finer bounds on the number of bifurcated limit cycles from the period annulus for a general class of
planar systems.
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[5] P. Enrique, R. Javier, and V. Eĺısabet, The boundary focus–saddle bifurcation in planar piecewise linear systems.
Application to the analysis of memristor oscillators, Nonlinear Analysis: Real World Applications, 43 (2018),
495-514.

[6] L. Haihua, L. Shimin, and Z. Xiang, Limit cycles and global dynamics of planar piecewise linear refracting systems
of focus-focus type, Nonlinear Analysis: Real World Applications, 58 (2021), 103228.

[7] L. Jaume, T. Marco Antonio, and T. Joan, Lower bounds for the maximum number of limit cycles of discontinuous
piecewise linear differential systems with a straight line of separation, International Journal of Bifurcation and
Chaos,23(4) (2013), 1350066.

[8] L. Jaume and Z. Xiang, Limit cycles for discontinuous planar piecewise linear differential systems separated by
one straight line and having a center, Journal of Mathematical Analysis and Applications, 467(1) (2018), 537-549.

[9] W. Jiafu, H. Chuangxia, and H. Lihong, Discontinuity-induced limit cycles in a general planar piecewise linear
system of saddle–focus type, Nonlinear Analysis: Hybrid Systems, 33 (2019), 162-178.

[10] W. Jiafu, C. Xiaoyan, and H. Lihong, The number and stability of limit cycles for planar piecewise linear systems
of node-saddle type, Journal of Mathematical Analysis and Applications, 469(1) (2019), 405-427.

[11] Y. Jihua, Z. Erli, and L. Mei, Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized
heteroclinic loop through a cusp, Communications on Pure & Applied Analysis, 16(6) (2017), 2321.

[12] Y. Jihua and Z. Erli, On the number of limit cycles for a class of piecewise smooth Hamiltonian systems with
discontinuous perturbations, Nonlinear Analysis: Real World Applications, 52 (2020), 103046.
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