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Abstract

Genocchi polynomials have exciting properties in the approximation of functions. Their derivative and integral

calculations are simpler than other polynomials and, in practice, they give better results with low degrees. For
these reasons, in this article, after introducing the important properties of these polynomials, we use them to

approximate the solution of different population balance models. In each case, we first discuss the solution method
and then do the error analysis. Since we do not have an exact solution, we compare our numerical results with

those of other methods. The comparison of the obtained results shows the efficiency of our method. The validity

of the presented results is indicated using MATLAB-Simulink.
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1. Introduction

In this article, we investigate the numerical solution of different population balance models. These equations include
a wide range of ordinary and partial differential equations. Here we focus on the numerical solution of three models
of these equations:

Binary equal breakage model. In 1988, Randolph and Larson discovered that various particle processes can be
explained using population balance equations [21]. These processes include crystallization from solution, emulsion
polymerization, microbial growth, and particle aggregation. These equations are defined in the following way [20]:

dw

dt
+
(
1 + εtk

)
= 2k+1εtkw (2t) , t ∈ [0, α] . (1.1)

In the Equation (1.1), ε and k are constant and the initial condition is:

w (0) = 1. (1.2)

These equations may look simple, but they are complex. The presence of w (2t) adds to their complexity. So, it is
necessary to use numerical methods to approximate the solution.

Binary uniform breakage model. The population balance equation for a continuous, mixed-suspension, mixed-
product removal crystallizer with a binary uniform breakage model, can be converted into the conventional integro-
differential Equation (1.3)

dw

dt
+
(
1 + εtk

)
w = 2εt

∫ ∞

t

xk−2w (x) dx t ∈ [0, α] , (1.3)

with the initial condition (1.2).
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Volterra’s population model. Researchers have defined this model to describe population growth. The model
applies to a closed system. The references for this model are [25, 27]

dw

dt
− αw + βw2 + χw

∫ ξ

0

w (z) dz = 0, w (0) = w0. (1.4)

In Equation (1.4), α, β, and χ represent different factors. The factors are the birth rate, crowding factor, and toxicity
factor. w0 represents the initial condition. w(ξ) represents the population at time ξ. The extra integral term represents
the accumulated toxicity on the species [2].
Among the numerical methods proposed to solve these equations are:
The Adams-Moultion-Shell method [20] is one approach. Another method is the weighted residual method [26]. There
is also the Block-Pulse method [13]. Consider the Shifted Legender method [5] as well. The Wavelet-Galerkin method
[6] is another technique. Another option is using rationalized Haar functions [1]. Srivastava et al. introduced and
developed a generalized wavelet method with the quasilinearization technique to solve Volterra’s population growth
model of fractional order. Unlike existing operational matrix methods based on orthogonal functions, they have
formulated wavelet operational matrices by general order integration without using block pulse functions [28]. Yuzbasi
uses the Bessel collocation method to give solutions for the fractional Volterra’s model for the population growth of a
species in a closed system [39].

Other methods that have been used to solve population growth model (fractional or ordinary) and similar differential
equations are: Gegenbauer wavelet quasi-linearization [9], improved Bessel collocation method [40], a sinc-Gauss-
Jacobi collocation method [24], improved Legendre method [41], modified Lagrange polynomial method [3], modified
Lyapunov–Razumikhin method (LRM) [37], Razumikhin method [38], and auto-correlation functions of compactly
supported wavelets [17].

Operational matrix-based methods (which are used in this paper) have been widely used in solving differential
equations, such as orthogonal Polynomials Based Operational Matrices [31, 32], Paraskevopoulos’s algorithm with
operational matrices of Vieta–Lucas polynomials [33, 34] and a decomposition algorithm coupled with operational
matrices [35].

As mentioned above, various methods have been proposed to solve the population balance models, many of which
have used orthogonal polynomials. Here we use orthogonal Genocchi polynomials which have not been used before
and have much simpler calculations to approximate the solution. The exact solution of Equations (1.1), (1.3), and
(1.4) are unknown. Hence, researchers, often compare the results of these methods. As we see in section 2, Genocchi
polynomials have very interesting properties and the calculations of their polynomial values, derivatives, and integrals
are much simpler than other polynomials such as Chebyshev, Legendre, and Hermite. For this reason, in this article,
we solve Eqs. (1.1), (1.3), and (1.4) using Genocchi polynomials. We provide error analysis for each case and compare
the numerical results of the introduced method with the other methods.
We arranged the continuation of this article as follows:
In section 2, Genocchi polynomials and numbers and their properties are introduced. It gave the method of ap-
proximating an arbitrary function by Genocchi polynomials in section 3. In this section, error bounds for Genocchi
polynomials interpolation are also given. In section 4, the methods of solving Eqs. (1.1), (1.3), and (1.4) are given,
the error bound is checked and we compare the numerical results with other methods. By interpreting the tables and
results of this section, we can see the effectiveness of the introduced method.

2. Genocchi numbers and polynomials

Genocchi numbers Gn, named after Angelo Genocchi, are sequences of integers. These sequences satisfy a specific
relation

−2t

1 + e−t
=

∞∑
n=0

Gn
tn

n!
.



CMDE Vol. 13, No. 2, 2025, pp. 659-675 661

Table 1. The first few Genocchi numbers.

n : 1 2 3 4 5 6 7 8 9 10 11 12

Genocchi number: 1 −1 0 1 0 −3 0 17 0 −155 0 2073

For these numbers we have

G2n−1 = 0,

G2n = 2
(
1− 22n

)
B2n = 2nE2n−1 (0) ,

where n ∈ Z>0, Bn is a Bernoulli number and En (x) is an Euler polynomial. The first few Genocchi numbers are
given in Table 1. The prime Genocchi numbers are only -3 and 17. These occur for n = 6 and 8. It can be proven
that only these numbers are prime Genocchi numbers [12].
Genocchi polynomials are an important polynomial in the Appell polynomial family. These polynomials are defined
as [23].

2t

et + 1
ext =

∞∑
n=0

Gn (x)
tn

n!
, |t| < π.

The Genocchi polynomial of degree n can be written in the following explicit form

Gn (x) =

n∑
i=0

(
n
i

)
Gix

n−i,

and Gi is a Genocchi number. Now, if we take derivatives from both sides of the above relationship, with respect to
x, we get

d

dx
Gn (x) = nGn−1 (x) , (2.1)

and as a result∫ x2

x1

Gn (x) dx =
Gn+1 (x2)− Gn+1 (x1)

n+ 1
.

Below, we give some of the most important properties of Genocchi polynomials.

Gi (x+ 1) + Gi (x) = 2ixi−1 ⇒ Gi (1) + Gi (0) = 0, i > 1,∫ 1

0

Gi (x)Gj (x) dx =
2i(−1)

i
!j!Gi+j

(i+ j)!
, i, i ≥ 1.

Genocchi polynomials and related wavelets have been widely used in solving fractional calculus problems [7, 8, 14].
Loh and Phang, create a new numerical scheme for solving the system of Volterra integro-differential equation with
Genocchi polynomials[16]. Some other problems whose solutions have been approximated with high accuracy using
these polynomials are: fractional diffusion wave equation and fractional Klein–Gordon equation [15], nonlocal anti-
periodic boundary value problem of arbitrary fractional order [18], fractional Abel differential equation [22],variable
order fractional optimal control problems [30], Bratu-type equations [11, 29]. In this article, we try to approximate
Equations (1.1), (1.3), and (1.4) using Genocchi polynomials, approximate the error and display the results numerically.

3. Function approximation

In this section, how to approximate a function by Genocchi polynomials and the resulting error are investigated.
We can use Genocchi polynomials as basic polynomials to approximate function f (x) ∈ L2 [0, 1].
For this end, assume

G = Span {G1(x),G2(x), ...,GN (x)}
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be the space generated by Genocchi polynomials. The approximation of f in this space is

f (x) ≈ fN (x) =

N∑
i=1

fiGi (x), (3.1)

For example, to approximate the sin (x) with N = 4 we have

sin (x) ≈ f4 (x) =

4∑
i=1

fiGi (x)

= f1 + f2 (2x− 1) + f3
(
3x2 − 3x

)
+ f4

(
4x3 − 6x2 + 1

)
=

[
f1 f2 f3 f4

] 
1
2x− 1
3x2 − 3x
4x3 − 6x2 + 1

 .

Now, with collocation points
{
0, 1

3 ,
2
3 , 1

}
the following four equations and four unknowns are obtained

f1 −f2 +f4 = sin (0)

f1 − 1
3f2 − 2

3f3 + 13
27f4 = sin

(
1
3

)
f1 + 1

3f2 + 2
3f3 − 13

27f4 = sin
(
2
3

)
f1 +f2 −f4 = sin (1)

By solving we have

f1 = 0.2805, f2 = 0.4368, f3 = −0.3782, f4 = −0.1242

f4 (x) = 0.4968x3 − 0.3894x2 + 2.0082x− 0.2805

The best approximation is unique in G, then [10]

∥f (x)− fN (x)∥ ≤ ∥f (x)− g (x)∥ , ∀g (x) ∈ G.

⇒ (f (x)− fN (x) , g (x)) = 0,
(3.2)

where (. , .) is the inner product.
The approximation of the f (3.1), can be written as the following matrix

fN (x) = FTG (x) ,

where

FT = [f1, f2, · · · , fN ]
T
, G (x) = [G1 (x) ,G2 (x) , · · · ,GN (x)]

T
, (3.3)

and according to (3.2), for all G ∈ G we can write(
f (x)− FTG (x) ,Gi (x)

)
= 0.

The vector of coefficients in the relation (3.3) (i.e. vector F), can be calculated as follows

F = O−1 (f (x) ,G (x)) ,

where

Oij = (G (x) ,G (x))ij =

∫ 1

0

Gi (x)Gj (x) dx =
2i(−1)

i
!j!Gi+j

(i+ j)!
.
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According to (2.1), the derivative of function f (x) can be approximated by Genocchi polynomials

f ′ (x) ≈ f ′
N (x) =

N∑
i=1

fiG
′
i (x) =

N∑
i=2

fiiGi−1 (x) = FDG (x) , (3.4)

where D is a operational matrix of derivative and

D =


0 0 · · · 0 0
2 0 0 · · · 0 0
0 3 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · N 0


N×N

.

Thus, D is N ×N operational matrix of derivative. Accordingly, the kth derivative of G (x) can be obtained by

G′ (x) = DG (x) = G (x)DT ,

G′′ (x) = DG′ (x) = G (x)
(
DT

)2
,

G′′′ (x) = DG′′ (x) = ... = G (x)
(
DT

)3
,

...

G(k) (x) = DG(k−1) (x) = ... = G (x)
(
DT

)k
.

3.1. Approximation error.

Theorem 3.1. Suppose that f (x) ∈ CN+1 [0, 1] (N is the order of approximation), and fN (x) is the best approxima-
tion to f (x) out of G, Then a bound for the approximation error can be expressed as,

∥f (x)− fN (x)∥2 ≤
maxx∈[0,1]

∣∣f (N+1) (x)
∣∣

(N + 1)!
√
2N + 3

.

Proof. Suppose TN (x) is a Taylor expansion for approximate of f (x) about x = α, then

f (x) ≈ TN (x) =

N∑
j=0

f (j) (α) (x− α)
j

j!
,

and

|f (x)− TN (x)| ≤ M
|x− α|N+1

(N + 1)!
,

where M is a maximum value of
∣∣f (N+1)

∣∣ on [α, x].
Now, since fN (x) is the best approximation of f (x) and the best approximation is unique, then we can write

∥f (x)− fN (x)∥2 ≤ ∥f (x)− TN (x)∥2 ≤
∥∥∥M (x−α)N+1

(N+1)!

∥∥∥
2

=

√∫ 1

0

(
M (x−α)N+1

(N+1)!

)2

dt = M
(N+1)!

√∫ 1

0
(x− α)

2N+2
dt

= M
(N+1)!

√∫ 1

0
(x− α)

2N+2
du = M

(N+1)!

√
(x−α)2N+3

2N+3

∣∣∣∣ 1
0

.

If we set the value of α equal to 0, we will have

∥f (x)− fN (x)∥2 ≤ M

(N + 1)!
√
2N + 3

.
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□

According to Theorem 3.1, it is clear that

lim
N→∞

∥f (x)− fN (x)∥2 = 0.

4. Solution of population balance equations by the Genocchi polynomials

In this section, we use the collocation method based on the Genocchi polynomials to solve the population balance
equations numerically. To this end, we first approximate w (t), by Genocchi polynomials

w (t) ≈
N∑
i=1

λiGi (t) = ΛTG (t) , (4.1)

where

ΛT = [λ1, λ2, · · · , λN ]
T
, G (t) = [G1 (t) ,G2 (t) , · · · ,GN (t)]

T
.

Also, using (3.4) to approximate the derivative of w (x), we have

w′ (t) ≈
N∑
i=0

λiG′
i (t) = ΛTG′ (t) = ΛTDG (t) . (4.2)

4.1. Binary equal breakage model. Population balance differential Equation (1.1) can be normalized by changing
the independent variable to t = αx, then we have

dw(αx)
d(αx) +

(
1 + εαkxk

)
= 2k+1εαkxkw (2αx) , 0 ≤ x ≤ 1,

1
α

dw(αx)
dx +

(
1 + εαkxk

)
= 2k+1εαkxkw (2αx) , 0 ≤ x ≤ 1

a1w
′ (αx) + a2 (x)w (αx)− a3 (x)w (2αx) = 0, 0 ≤ x ≤ 1,

w (0) = 1,
(4.3)

where

a1 =
1

α
, a2 (x) = 1 + εαkxk, a3 (x) = 2k+1εαkxk.

Therefore, substituting (4.1) and (4.2) in (4.3), we have

a1Λ
TDG (αx) + a2 (x) Λ

TG (αx)− a3 (x) Λ
TG (2αx) = 0, 0 < x ≤ 1. (4.4)

From the initial condition, we can write

ΛTG (0) = 1. (4.5)

For the approximate w (x), we collocate (4.4) at the below collocation points

a1Λ
TDG (αxi) + a2 (xi) Λ

TG (αxi)− a3 (xi) Λ
TG (2αxi) = 0,

xi =
i

N−1 , i = 1, 2, · · · , N − 1.
(4.6)

Relation (4.6) along with the initial condition (4.5), contains N equations and N unknowns, which can be solved by
using the usual methods of solving algebraic equations.
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4.1.1. Error Analysis. Assuming that wN is the approximate solution obtained from Genocchi polynomials for Equa-
tion (4.3), we write as follows

E (wN ) = a1w
′
N + a2wN − a3ŵN .

If w is the exact solution of the equation, then E (w) = 0 and can be written as

∥E (wN )∥2 = ∥E (wN )− E (w)∥2
= ∥a1 (w′

N − w′) + a2 (wN − w)− a3 (ŵN − a3ŵ)∥2,

where ŵN (αx) = wN (2αx) and ŵ (αx) = w (2αx). If

M = max
x∈[0,1]

{∣∣∣f (N+1) (αx)
∣∣∣ , ∣∣∣f (N+2) (αx)

∣∣∣} , (4.7)

then

∥E (wN )∥2 ≤ a1∥(w′
N − w′)∥2 + ∥(a2 − a3) (wN − w)∥2 ≤ C1M

(N + 1)!
√
2N + 3

, (4.8)

where

a1 + ∥a2 − a3∥2 =
1

α
+ 1 +

(
1− 2k+1

)
εαkxk ≤ 1

α
+ 1 +

(
1− 2k+1

)
εα2k = C1. (4.9)

4.1.2. Numerical result. Due to the existence of the term w (2x) in Equation (4.3), it is impossible to find the exact
solution, therefore, the results obtained from the introduced method are compared with the results of other methods.
We solve differential Equation (4.3) for constants k = 4, ε = 1

162 and α = 6.5, with different values of N .
(N = 3):

Here, for small N = 3, we implement the method step by step:
We write the approximate solution of (4.1) as below

w (t) ≈
[
λ1 λ2 λ3

]  1
2t− 1
3t2 − 3t

 = λ1 + λ2 (2t− 1) + λ3

(
3t2 − 3t

)
.

By replacing in (4.3), we will have

(0.1538)
[
λ1 λ2 λ3

]  0 0 0
2 0 0
0 3 0

 1
13x− 1

126.75x2 − 19.5x



+
(
1 + 11.0189x4

) [
λ1 λ2 λ3

]  1
13x− 1

126.75x2 − 19.5x



−352.6049x4
[
λ1 λ2 λ3

]  1
26x− 1

507x2 − 39x

 = 0.

Now, with collocation points 1
2 and 1 and initial condition (4.5), the following three equations and three unknowns

are obtained

λ1 −0.6924λ2 −0.4614λ3 = 1,

−20.3491λ1 −254.8583λ2 −2535.9062λ3 = 0,

−340.5860λ1 −8670.5881λ2 −170656.4383λ3 = 0.
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Figure 1. Genocchi polynomials solution for (4.3) with N = 3.

Table 2. Compare the our results (N = 17), with the methods presented in previous literature.

x Genocchi polynomials Wavelet Galerkin [6] rattionalized Haar [1]

0 1 1 1
0.5 0.6070423 0.607006 0.6070341
1 0.3744780 0.374462 0.3744773

1.5 0.2417954 0.241759 0.2417950
2 0.1554201 0.155404 0.1554150

2.5 0.0897601 0.089745 0.0897578
3 0.0455771 0.045574 0.0455772

3.5 0.0195103 0.019403 0.0195095
4 0.00639246 0.00639265 0.00639244

4.5 0.00140580 0.00140666 0.00140578
5 0.00017481 0.000175756 0.00017527

5.5 0.0000103 0.0000101114 0.000010058
6 0.0000001042 0.000000207547 0.0000002030

By solving the above equations, the approximate solution is obtained as follows

0.9241− 0.1121 (2x− 1) + 0.0039
(
3x2 − 3x

)
= 1.0362 + 0.2359x+ 0.0117x2.

The graph of this solution is shown in Figure 1.
(N = 17):
Here, the numerical results obtained from the introduced method are compared with the results of the methods

presented in previous literature, and the result of this comparison is given in Table 2 (N = 17). The presented method
is compared with the rationalized Haar method [1] and wavelet-Galerkin method [6]. In Table 3, we have shown the
approximate result of the introduced method for different values of N . Figure 2 shows the approximate solution of
(4.3) with Genocchi polynomials with N = 17.
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Table 3. Approximate result of the introduced method for different values of N .

x N = 17 N = 14 N = 10 N = 5

0.5 0.6070423 0.6070512 0.6070780 0.6071125
1.5 0.2417954 0.2417893 0.2417713 0.2417052
2.5 0.0897601 0.0897504 0.0897112 0.0896958
3.5 0.0195103 0.0195258 0.0194724 0.0194112
4.5 0.00140580 0.00162104 0.00160102 0.00175128
5 0.00017481 0.000172507 0.00017002 0.00018506

5.5 0.0000103 0.000010208 0.000010365 0.000011021
6 0.0000001042 0.0000001085 0.0000001156 0.0000002034

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

x

w

Figure 2. Genocchi polynomials solution for (4.3) with N = 17.

4.2. Binary uniform breakage model. By changing variable t = αx, the normalized form of Equation (1.3) is
obtained as follows

a1w
′ (x) +

(
1 + εαkxk

)
w (x) = 2εαkx

∫ ∞

αx

χk−2w (χ) dχ, x ∈ [0, 1] . (4.10)

Using relations (4.1) and (4.2), the Equation (4.10) will be as follows

a1Λ
TDG (x) +

(
1 + εαkxk

)
ΛTG (x) = 2εαkxΛT I (x) , x ∈ (0, 1] ,

ΛTG (0) = 1,

where I (x) is calculated as follows

(I (x))i =

∫ ∞

αx

χk−2Gi (χ) dχ = lim
η→∞

(∫ η

αx

χk−2Gi (χ) dχ

)
. (4.11)

If we set the value of k equal to 4, we will have:

∫ η

αx

χ2Gi (χ) dχ = (i+ 1)χ2Gi+1 (χ)

∣∣∣∣ η
αx

− 2 (i+ 1)

∫ η

αx

χGi+1 (χ) dχ
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= (i+ 1)χ2Gi+1 (χ)

∣∣∣∣ η
αx

− 2 (i+ 1)

[
(i+ 2)χGi+2 (χ)

∣∣∣∣ η
αx

− (i+ 2)

∫ η

αx

Gi+2 (χ) dχ

]
= (i+ 1)χ2Gi+1 (χ)

∣∣∣∣ η
αx

− 2 (i+ 1)

[
(i+ 2)χGi+2 (χ)

∣∣∣∣ η
αx

− (i+ 2)

(
Gi+3 (η)− Gi+3 (αx)

(i+ 3)

)]
.

Now, by using the collocation points (4.6), and initial condition, the algebraic equations ofN equation andN unknowns
are obtained, and by solving it, the approximate solution of w is obtained.

4.2.1. Error Analysis. In (4.10), if wN is the approximate answer obtained from Genocchi polynomials, then

a1w
′
N + fwN − g

∫ ∞

αx

χk−2wN (χ) dχ = ϑN ≥ 0,

where

f (x) = 1 + εαkxk,

g (x) = 2εαkx.

It is obvious that

a1w
′ + fw − g

∫ ∞

αx

χk−2w (χ) dχ = 0,

where w is a exact solution of (4.10). So that

∥ϑN∥2 ≤ a1∥w′
N − w′∥2 + ∥f∥2∥wN − w∥2 − ∥g∥2

∥∥∥∥∫ ∞

αx

χk−2 (wN − w) (χ) dχ

∥∥∥∥
2

.

Now with (4.7), we have

∥ϑN∥2 ≤
(
1

α
+A1

)
M

(N + 1)!
√
2N + 3

−A2I1,

∥ϑN∥2 ≤
(
1

α
+A1

)
M

(N + 1)!
√
2N + 3

− MA2

(N + 1)!
√
2N + 3

,

∥ϑN∥2 ≤ ρ

(N + 1)!
√
2N + 3

,

where

ρ =

(
1

α
+A1

)
M +MA2A3,

A1 = 1 + εα2k,

A2 = 1 + εαk+1,

A3 =
∫ η

αx

∥∥χk−2
∥∥
2
dχ,

then

lim
N→∞

∥ϑN∥2 = 0.
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Table 4. Compare the our results for Equation (1.3) (N = 18), with the methods presented in
previous literature.

x Genocchi polynomials Wavelet Galerkin [6] Block pulse functions [13]

0 1 1 1
0.5 0.569034 0.589568 0.608522
1 0.360074 0.360626 0.374203

1.5 0.212065 0.220917 0.233135
2 0.134502 0.133500 0.146054

2.5 0.0698754 0.0771257 0.0897002
3 0.0420123 0.0402498 0.0513895

3.5 0.0127603 0.0172186 0.0254139
4 0.0050281 0.00507987 0.00974413

4.5 0.000541123 0.000665560 0.00251911
5 0.000540113 0.0000739025 0.000368119

5.5 0.000000621309 0.0000224699 0.00000452567
6 0.000000892021 0.00000127375 0.000000536893

Table 5. Approximate solution using Genocchi polynomials of different orders N .

x N = 18 N = 15 N = 12 N = 9

1 0.360074 0.360095 0.3605804 0.3620892
2 0.134502 0.134612 0.134652 0.134806
3 0.0420123 0.042543 0.0428602 0.4325129
4 0.0050281 0.0050982 0.0051385 0.0055024
5 0.000540113 0.000058289 0.000610286 0.000702586
6 0.000000892021 0.000002058 0.000006282 0.000009852

4.2.2. Polynomial approximation of the solution for N = 4. By substituting the approximat solution (4.1) in Equation
(4.10), and using collocation points (4.6), we will get the following equations

λ1 − (0.6923)λ2 − (1.1690)λ3 +λ4 = 1,

− (2.4486e6)λ1 − (3.6485e8)λ2 +(3.3839e52)λ3 − (4.8091e12)λ4 = 0,

− (4.8969e6)λ1 − (7.2969e8)λ2 +(6.7679e52)λ3 − (9.6183e12)λ4 = 0,

− (7.3439e6)λ1 − (1.0945e9)λ2 +(1.0152e53)λ3 − (1.4427e13)λ4 = 0.

By solving the above equations, the solution is obtained as follows

0.8739− 0.1795 (2x− 1) + 0
(
3x2 − 3x

)
+ 0.0017

(
4x3 − 6x2 + 1

)
.

4.2.3. Numerical result. In Table 4, the numerical results obtained for (1.3) using Genocchi polynomials of degree
N = 18, are compared with the methods presented in [6] and [13]. In reference [6], authors have used the wavelet
Galerkin method to approximate the solution. In reference [13], Hwang and Shih have used the block pulse functions to
approximate the solution. Here too, we consider the constant values as the values of Equation (1.1), i.e. k = 4, ε = 1

162
and α = 6.5. Table 5 shows the approximate solution using Genocchi polynomials of different orders N .
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4.3. Volterra’s population model. To solve Equation (1.4), first, we apply scale time and population by introducing
the non-dimensional variables [36]

t =
ξχ

β
, y =

wβ

α
,

then we have

µ
dy

dt
− y + y2 + y

∫ t

0

y (z) dz = 0, y (0) = y0, (4.12)

where µ = χ(αβ)
−1

. If y (0) = y0, then the analytical solution of Equation (4.12) can be calculated as follows [36]

y (t) = y0e
1
µ

∫ t
0 (1−y(ι)−

∫ ι
0
y(z)dz)dι.

For simplicity, Volterra‘s population Equation (4.12) in interval [0, α] convert to interval [0, 1]

µ

α

dy

dt
− y + y2 + y

∫ αt

0

y (z) dz = 0, t ∈ [0, 1] , y (0) = y0. (4.13)

By substituting y (t) ≈
N∑
i=0

λiGi (t) and y′ (t) ≈
N∑
i=0

λiG′
i (t)) in Equation (4.13), we will have

µ
α

N∑
i=1

λiG′
i (t)−

N∑
i=1

λiGi (t) +

(
N∑
i=1

λiGi (t)

)2

+

(
N∑
i=1

λiGi (t)

)(∫ αt

0

N∑
i=1

λiGi (z)dz

)

=
N∑
i=1

λi

(
µ
αG

′ (t)− G (t)
)
+

(
N∑
i=1

λiG (t)

)2

+

(
N∑
i=1

λiGi (t)

)(
N∑
i=1

λi

∫ αt

0
Gi (z) dz

)

=
N∑
i=1

λi

(
µ
αG

′ (t)− G (t)
)
+

(
N∑
i=1

λiG (t)

)2

+

(
N∑
i=1

λiGi (t)

)(
N∑
i=1

λi
Gi+1(αt)−Gi+1(0)

i+1

)
= 0.

It can be written briefly

ΛT
(µ
α
DG (t)−G (t)

)
+
(
ΛTG (t)

)2
+

(
ΛTG (t)

) (
ΛTG+ (t)

)
= 0,

where

G+ (t) =

[
G2 (αt)− G2 (0)

2
,
G3 (αt)− G3 (0)

3
, . . . ,

GN+1 (αt)− GN+1 (0)

N + 1

]T
.

If we use the collocation points ti =
i

N−1 , i = 1, 2, · · · , N − 1 from the above equation then we have

ΛT
(µ
α
DG (ti)−G (ti)

)
+
(
ΛTG (ti)

)2
+
(
ΛTG (ti)

) (
ΛTG+ (ti)

)
= 0. (4.14)

Equations (4.14) with the initial condition ΛTG (0) = y0, gives us N equations to obtain N coefficients λi, i = 1, ..., N ,
and we can obtain these coefficients by Newton iteration method.

4.3.1. Error Analysis.

Theorem 4.1. If yN is the approximate solution from (4.14), then∥∥∥∥µα dyN
dt

− yN + yN
2 + yN

∫ αt

0

yN (z) dz

∥∥∥∥
2

≤ L1

(N + 1)!
√
2N + 3

+
L2

[(N + 1)!]
2
(2N + 3)

,

where L1 and L2 are constant coefficients.
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Proof. We put

E (yN ) =
µ

α

dyN
dt

− yN + yN
2 + yN

∫ αt

0

yN (z) dz.

If y is the exact solution of (4.13), then E (y) = 0. Also we can write

∥E (yN )∥2 = ∥E (yN )− E (y)∥2

=

∥∥∥∥µα d (yN − y)

dt
+ (yN − y) + (yN − y)

2
+

(
yN

∫ αt

0

yN (z) dz − y

∫ αt

0

y (z) dz

)∥∥∥∥
2

≤ µ

α

∥∥∥∥d (yN − y)

dt

∥∥∥∥
2

+ ∥yN − y∥2 + ∥yN − y∥2∥yN − y∥2

+

∥∥∥∥(yN ∫ αt

0

yN (z) dz − y

∫ αt

0

y (z) dz

)∥∥∥∥
2

.

Now by using Theorem 3.1, we have

∥y − yN∥2 ≤ M1C (N) ,

∥y′ − y′N∥2 ≤ M2C (N) ,

where M1 = maxx∈[0,1]

∣∣f (N+1) (x)
∣∣, M2 = maxx∈[0,1]

∣∣f (N+2) (x)
∣∣ and C (N) = 1

(N+1)!
√
2N+3

. If we let y − yN = R,

then

∥E (yN )∥2 ≤ µ

α
M2C (N) +M1C (N) [1 +M1C (N)]−

(
∥R∥2

∥∥∥∥∫ αt

0

y (z) dz

∥∥∥∥
2

+ ∥y −R∥2

∥∥∥∥∫ αt

0

R (z) dz

∥∥∥∥
2

)
.

As we know

∥R∥2 ≤ M1C (N) ,∥∥∥∥∫ αt

0

y (z) dz

∥∥∥∥
2

≤ αymax,∥∥∥∥∫ αt

0

R (z) dz

∥∥∥∥
2

≤ αM1C (N) ,

∥y −R∥2 ≤ ymax −M1C (N) .

where [36]

ymax = 1 + µ ln

(
µ

1 + µ− y0

)
.

As a result, we will have

∥E (yN )∥2 ≤ C (N) [L1 + L2C (N)] ,

where

L1 = µ
αM2 +M1 − 2M1ymaxα,

L2 = M2
1 (1 + α) .

□
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Table 6. Compare the Approxymax of our method (N = 15) with the methods presented in previous
literature and Exactymax for Equation (1.4).

µ Approx ymax Exact ymax

Our method [2] [19] [4]

0.02 0.92342514 0.923409 0.9038380533 0.9038380646 0.923471721
0.1 0.76975021 0.7697499 0.7651130834 0.7651130842 0.76974144907
0.2 0.65905209 0.6590506 0.6579123080 0.6579123129 0.6590503816
0.5 0.48519101 0.48519018 0.4852823482 0.4852823500 0.4851902914

Table 7. Compare the error of our results for Approxymax with the methods presented in previous
literature (degree of Genocchi polynomials is 15).

µ Our method [2] [19] [4]

0.02 4.65e− 5 1.81e− 5 1.72e− 2 1.95e− 2
0.1 8.76e− 6 8.40e− 6 4.63e− 3 4.11e− 3
0.2 1.70e− 6 2.18e− 7 1.14e− 3 1.13e− 3
0.5 7.18e− 7 3.88e− 7 9.56e− 5 9.50e− 5

Table 8. Compare the error of the introduced method for different N .

µ N = 15 N = 12 N = 9 N = 5
Error

0.02 4.65e− 5 3.93e− 4 4.62e− 4 5.75e− 3
0.1 8.76e− 6 2.12e− 5 8.65e− 5 7.72e− 4
0.2 1.70e− 6 3.15e− 5 1.07e− 4 8.03e− 4
0.5 7.18e− 7 2.46e− 6 9.05e− 6 1.02e− 4

4.3.2. Numerical result. In the following, we apply our proposed method based on Gnocchi polynomials to approximate
the solution of the Volterra population model (4.12).
We have obtained the interpolator polynomial for the case N = 3, y0 = 0.1, α = 5, and µ = 0.1, as follows (the
resulting nonlinear equations have been solved using MATLAB function ”fsolve”)

−0.18x2 + 0.2668x− 0.6129.

We implemented our method for µ = 0.02, 0.1, 0.2 and 0.5, with y0 = 0.1 and N = 15. In Table 6, we have compared
the maximum value of the population Approxymax which obtain in our method with the methods introduced in articles
[2] (auto-correlation functions of compact supported wavelets), [19](combining homotopy perturbation method (HPM)
and Pade´ technique) and [4] (modified Adomian decomposition method). The exact value of ymax is [36]

Exactymax = 1 + µ ln

(
µ

1 + µ− y0

)
.

Table 7 shows the comparison between errors of methods given in [2, 4, 19], and our proposed Method of Approxymax.
Table 8 and Figure 3 also compare the error of the introduced method for different N . Figure 3 shows the error as a
function of N for two fixed values of N (N = 5, 9, 12, 15) and µ = 0.1, 0.5. In this figure, we have used a logarithmic
scale for both axes.
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Figure 3. The error as a function of N, µ = 0.1, 0.5 for Equation (1.4).

5. Conclusion

In this article, we investigated and numerically solved three models of population balance equations. For this pur-
pose, we used Genocchi polynomials as basic orthogonal polynomials. The interesting properties of these polynomials
and their simpler calculations (derivative and integral) are a good justification for using these polynomials. The results
obtained for the introduced problems and their comparison with the results of existing methods show the efficiency of
these polynomials well.
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[37] O. Tunç and C. Tunç, Solution estimates to Caputo proportional fractional derivative delay integro–differential

equations, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat. RACSAM, 117 (2023).
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[39] Ş. Yüzbaşı, A numerical approximation for Volterra’s population growth model with fractional order, Applied

Mathematical Modelling, 37 (2013), 3216–3227.
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