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Abstract

This paper studies dynamical systems in product Lukasiewicz semirings and we generalize the results of Markechova

and Riecan concerning the logical entropy. Also, the notion of logical entropy of a product Lukasiewicz semiring
is introduced and it is shown that entropy measure is invariant under isomorphism.
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1. Introduction

Shannon entropy in [25] concept of information theory is studied. Kolmogorov and Sinai [11, 26] developed the
entropy of a dynamical system. Recall that if two dynamical systems are isomorphic, then they have the same entropy.
Recently in the paper [17], in a dynamical system, the notion of logical entropy is studied and it is shown that by
replacing the Shannon entropy function with the logical entropy function, the results that are analogous to the case
of classical Kolmogorov-Sinai entropy theory are obtained [17, 18]. Here, in a product Lukasiewicz semiring, we
introduced logical entropy.

Dynamical systems theory has its origins in the seminal work of Henri Poincar [20] on celestial mechanics. Even-
tually, dynamical systems theory (or nonlinear dynamics) found broad application beyond celestial mechanics (see,
[7]-[16], [24], and [27]). We recall from [19] that there are about entropy of dynamical systems in MV-algebras, es-
pecially after its Mundicïı characterization as an interval in a lattice ordered group. Petrovicov̈ı in [21, 22], for the
product MV-algebras, a entropy theory of Shannon and Kolmogorov-Sinai type has been provided. Recall that the
notion of near semirings, the theory of quantum mechanics, and Lukasiewicz near semirings were introduced in [2]
and[5, 6].

In the present paper, we introduce the notion of logical entropy of a product  Lukasiewicz semiring dynamical system
and prove entropy measure is invariant under isomorphism of product Lukasiewicz semiring dynamical systems.

2. Main results

Recall that a groupoid is a set having one binary operation satisfying only closure and monoid is a set that is closed
under an associative binary operation and has an identity element. We have the following definition from [3]. A near
semiring is an algebra (R, +, ·, 0, 1) of type (2, 2, 0, 0) such that:

1. (R, +, 0) is a commutative monoid,
2. (R, ·, 1) is a groupoid with condition x · 1 = x = 1 · x,
3. (x+ y) · z = (x · z) + (y · z),
4. x · 0 = 0 · x = 0,
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for all x, y, z ∈ R.
Also, a near semiring, which is a monoid, is said a semiring if (R, ·, 1) satisfies left distributivity: x · (y + z) =

(x · y) + (x · z), for all x, y, z ∈ R. A near semiring R if satisfies in the property a+ a = a is called idempotent, for all
a ∈ R. It is clear that (R, +) is a semilattice ([3], Remark 1).

By [3], a function α of an idempotent near semiring (R, +, ·,α , 0, 1) to (R, +, ·,α , 0, 1) is said an involution on R
if, for each a, b ∈ R:

1. aαα = a,
2. if a ≤ b then bα ≤ aα,

with ≤ the induced order.

Definition 2.1. A product Lukasiewicz semiring is an algebraic structure (R, +, ·, α, ×, 0, 1), where (R, +, ·, α, 0, 1)
is a Lukasiewicz semiring and × is an associative and abelian binary operation on R with the following properties:

1. For every x ∈ R, u× x = x;
2. If ((xαα + yα) · yαα)α = 0, then z × x+z × y ≤ u, and z × (x+y) = z × x+z × y, for all x, y, z ∈ R.

We recall that n-tuple X = (x1, x2, . . . , xn) of elements of a product Lukasiewicz semiring (R, +, ·, α, ×, 0, 1)
with the property x1 + x2 + . . .+ xn = 1 is called a partition of unity 1. There is the following definition of [21]:

Definition 2.2. A dynamical system in a product Lukasiewicz semiring (R, +, ·, α, ×, 0, 1) is a system (R, µ,U),
where µ : R −→ [0, 1] is a state, and U : R −→ R is a function such that U(u) = u, the following conditions are
satisfied:

(i) if ((xαα + yα) · yαα)α = 0, then ((U(x))αα + (U(y))α) · (U(y))αα)α = 0 and U(x+ y) = U(x) + U(y);
(ii) U(x× y) = U(x)× U(y);
(iii) µ(U(x)) = µ(x);

for every x, y ∈ R.

Definition 2.3. If X = (x1, x2, . . . , xn) is a partition of unity, then its entropy is defined by the formula

H(X) =

n∑
i=1

ϕ(µ(xi)),

where ϕ(x) = −x log x, if x > 0, ϕ(0) = 0.

Definition 2.4. Suppose (R, µ,U) is a dynamical system in a product Lukasiewicz semiring (R, +, ·, α, ×, 0, 1) and
θ is a sub-additive generator, where a function θ : [0, 1] −→ [0, ∞) is called a sub-additive generator, if the following
implication holds

cij ∈ [0, 1], i = 1, . . . , n, j = 1, . . . , m,

n∑
i=1

cij = bj ,

m∑
j=1

cij = ai,

n∑
i=1

ai = 1,

m∑
j=1

bj = 1,

then
n∑
i=1

m∑
j=1

θ(cij) ≤
n∑
i=1

θ(ai) +

m∑
j=1

θ(bj).

We can define the θ-entropy of (R, µ, U) by the formula

Hµ
θ (U) = sup{Hµ

θ (U, X); X is a partition in (R, +, ·, α, ×, 0, 1),

where

Hµ
θ (U, X) = lim

n−→∞
1/nHµ

θ (

n−1∨
k=0

Uk(X)).
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Definition 2.5. Suppose X = (x1, x2, . . . , xn) is a partition in a product Lukasiewicz semiring (R, +, ·, α, ×, 0, 1),
and µ : R −→ [0, 1] is a state. By Shannon’s formula, we define the entropy of X with respect to µ:

Hµ
s (X) = Σni=1s(µ(xi)),

where s : [0, 1] −→ [0, ∞) is the Shannon entropy function defined by s(x) = x log x and the Shannon entropy is a
number, for every x ∈ [0, 1]. Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be two partitions in R. Then the
conditional entropy of X given Y is defined by

Hµ
s (X/Y ) = Σni=1Σmj=1(µ(xi × yi) · log

µ(xi × yi)
µ(yi)

).

Recall that from [23] the logical entropy of a dynamical system (R, µ,U) in a product Lukasiewicz semiring
(R, +, ·, α, ×, 0, 1) is defined by

Hµ
s (U) = sup{Hµ

s (U, x); X is a partition in R},

and if X is a partition in R, then the logical entropy of U relative to X is defined by

Hµ
s (U, X) = lim

n−→∞
Hµ
s (

n−1∨
k=0

Uk(X)).

Theorem 2.6. [18] Let (R, µ,U) be a dynamical system in a product Lukasiewicz near semiring (R, +, ·, α, ×, 0, 1),
and X be a partition in R. For any non-negative integer r, it holds:

Hµ
s (U, X) = Hµ

s (U,

n−1∨
k=0

Uk(X)).

Definition 2.7. Two product Lukasiewicz near semiring dynamical systems (R1, µ1,U1), (R2, µ2,U2) are isomorphic,
if there exists a mapping λ : R1 −→ R2 with λ(u1) = u2 and satisfying the following conditions:

1. λ(x× y) = λ(x)× λ(y);
2. If ((xαα + yα) · yαα)α = 0, then λ(x+ y) = λ(x) + λ(y);
3. µ2(λ(x)) = µ1(x);
4. λ(U1(x)) = U2(λ(x));

for every x, y ∈ U1.

Now, we are ready to state the following theorem:

Theorem 2.8. Let θ be a sub-additive generator, and (R1, µ1,U1), (R2, µ2,U2) be product  Lukasiewicz near semiring
dynamical systems. If U1 ' U2, then Hµ1

θ (U1) = Hµ2

θ (U2).

Proof. Suppose U1 ' U2 and λ be an isomorphism between dynamical systems (R1, µ1,U1) and (R2, µ2,U2). Now,
assume that X = (x1, x2, . . . , xn) is a partition in a product  Lukasiewicz near semiring (R1, ×) with x1+x2+. . .+xn =
u1. By definition 2.6, we have λ(x1 + x2 + . . . + xn) = λ(x1) + λ(x2) + . . . + λ(xn) = λ(u1) = u2. Therefore, it is
shown that λ(X) = (λ(x1), λ(x2), . . . + λ(xn)) in product  Lukasiewicz near semiring dynamical system (R2, µ2,U2)
is a partition. Also, by Definition 2.7,

Hµ2

θ (λ(X)) =

n∑
i=1

θ(µ2(λ(xi))) =

n∑
i=1

θ(µ1(xi)) = Hµ1

θ (X).

On the other hand, we have

Hµ2

θ (

n−1∨
k=0

Uk2(λ(X))) = Hµ2

θ (

n−1∨
k=0

λ(Uk1(X))) = Hµ2

θ (λ(

n−1∨
k=0

Uk1(X))) = Hµ1

θ (

n−1∨
k=0

Uk1(λ(X))). (2.1)
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If n −→∞, then we conclude

Hµ2

θ (U2, λ(X)) = lim
n−→∞

1

n
Hµ2

θ (

n−1∨
k=0

Uk2(λ(X))) = lim
n−→∞

1

n
Hµ1

θ (

n−1∨
k=0

Uk1(X)) = Hµ1

θ (U1, X). (2.2)

In fact,

Hµ1

θ (U1) = sup{Hµ1

θ (U1, X);

X is a partition in (R1, µ1,U1)} ≤ sup{Hµ2

θ (U2, Y ), Y is a partition in (R2, µ2,U2)} = Hµ2

θ (U2).
Now, we prove that Hµ2

θ (U2) ≤ Hµ1

θ (U1). To do this, it is enough to define λ−1 : R2 −→ R1, that

λ−1(x× y) = λ−1(λ(a)× λ(b)) = λ−1(λ(a× b)) = a× b = λ−1(x)× λ−1(y),

where for every x, y ∈ R2 there exist a, b ∈ R1 such that λ−1(x) = a and λ−1(y) = b. Also,

λ−1(x+ y) = λ−1(λ(a) + λ(b)) = λ−1(λ(a+ b)) = a+ b = λ−1(x) + λ−1(y),

which x+ y ≤ u1 and a+ b ≤ u2. In addition, we have

λ−1(U2(x)) = λ−1(U2(λ(a))) = λ−1(λ(U1(a))) = U1(a) = U1(λ−1(x)),

where x ∈ R2. Therefore, with the same argument for Hµ1

θ (U1) ≤ Hµ2

θ (U2), we obtain

Hµ2

θ (U2) ≤ Hµ1

θ (U1).

�

Entropy of a  Lukasiewicz near semiring dynamical system (R, µ,U) is defined by the

ϕ(U) = sup{ϕ(U, X) |X is a partition of unity}, where ϕ(U, X) = lim
n−→∞

Hn(U, X).

Definition 2.9. Two  Lukasiewicz semiring dynamical systems (R1, µ1,U1), (R2, µ2,U2) are equivalent, if there exists
a function θ : R1 −→ R2 satisfying the following conditions:

(i) θ is a bijection;
(ii) if a, b, c ∈ R1, a = b+c, then θ(a) = θ(b)+θ(c),
(iii) θ(u1) = u2;
(iv) µ2(θ(a)) = µ1(a) for any a ∈ R1;
(v) U2(θ(a)) = θ(U1(a)) for any a ∈ R1.

Corollary 2.10. If (R1, µ1,U1), (R2, µ2,U2) are equivalent, then ϕ(U1) = ϕ(U2).

Proof. We know that if X is any partition of u1, then ϕ(x) is a partition of u2, and H(X) = H(ϕ(X)). Suppose that
δ is an arbitrary positive number and we get a common refinement C of X, . . . ,Un−1(X) such that Hn + δ > H(C).
Clearly that H(C) ≥ Hn(θ(X)). Since Hn(X) + δ ≥ Hn(θ(X)) holds for any δ > 0, we have Hn(X) ≥ Hn(θ(X)). Also
we have

ϕ1(U1, X) = lim
n−→∞

1

n
Hn(X) ≥ lim

n−→∞

1

n
Hn(θ(X)) = ϕ2(U2, θ(X)),

and also

ϕ1(U1) = sup{ϕ1(U1, X), X} ≥ ϕ2(U2, θ(X)).

Suppose B is any partition of u2. Then X = θ−1(B) is a partition of u1 and θ(X) = B. Therefore ϕ1(U1) ≥
ϕ2(U2, θ(X)) = ϕ2(U2, B) for any B, hence ϕ1(U1) ≥ ϕ2(U2).

�
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3. Conclusions

The study of the concept of entropy is very important in contemporary sciences. Entropy has been applied in
information theory, physics, computer sciences, statistics, chemistry, biology, sociology, general systems theory and
many other fields. In the paper, by using the concept of logical entropy of a partition in a product  Lukasiewicz near
semiring, we introduced the notion of logical entropy of a product  Lukasiewicz near semiring dynamical systems. Also,
we have defined a general type of entropy of a product MV-algebra dynamical system. Specifically, we introduced
the notion of logical entropy of a product  Lukasiewicz semiring and prove that entropy measure is invariant under
isomorphism of product  Lukasiewicz semiring dynamical systems.
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