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Abstract

This paper examines a high-dimensional non-linear partial differential equation called the generalized Kadomtsev-

Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation exists in three dimensions. The Lie symmetry analysis

of the equation is carried out step-by-step. As a result, we found symmetries from which various group-invariant
solutions arise, leading to numerous solutions of interest that satisfy the KP-BBM equation. Secured solutions

of interest include hyperbolic functions and elliptic functions, with the latter being the more general of the two

solutions. Additionally, a significant number of algebraic solutions with arbitrary functions are also obtained.
Furthermore, the dynamics of the solutions are further explored diagrammatically using computer software. In

the concluding section, various conservation laws of the underlying model are derived via the multiplier method

and the Noether theorem.
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1. Introduction

The world around us is inherently non-linear. Meanwhile, it is evident that non-linear partial differential equations
(NLPDEs) are extensively utilized as models in delineating various complex and non-complex physical phenomena.
One of the basic bottlenecks for these models has to do with the way their traveling wave solutions can be achieved.
Thus, the interest and attention given to find traveling wave solutions of NLPDEs is quite increasing and has now
turned out to be a hot topic for scientists and other various researchers. Lately, many researchers who have a keen
interest in the non-linear physical phenomena delve into examining exact solutions of NLPDEs due to their relevance
in analyzing the outcome of any given model. Therefore, it is essential that the research into closed-form solutions
to NLPDEs serves a very crucial purpose in observing certain physical circumstances. Furthermore, the diversity of
solutions of NLPDEs holds an essential position in a variety of areas of sciences inclusive of optical fibers, chemical
physics, geochemistry, biology, hydrodynamics, chemical kinetics, meteorology, heat flow, plasma physics, together
with electromagnetic theory. Given the aforementioned and for emphasis, having realized that significant scientists
have contemplated non-linear science as the most outstanding borderline for fundamental cognition of nature, we
present some pertinent models that include a 3D generalized non-linear potential Yu-Toda-Sasa-Fukuyama equation
in physics alongside pngineering, recently investigated by the authors in [3]. Moreover, the authors in [7] examined
another generalized NLPDEs called advection-diffusion equation with power law non-linearity in fluid mechanics.
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This generalized equation characterizes buoyancy-propelled plume movement embedded in a medium that is bent
on nature. Further to that, a generalized structure of Korteweg-de Vries-Zakharov-Kuznetsov model in the paper
[27] was investigated. The dilution of warm isentropic fluid alongside cold static framework species together with hot
isothermal, applicable in fluid dynamics was recounted via the use of the model. Besides, an investigation in [17]
was carried out on the modified as well as the generalized Zakharov-Kuznetsov model, delineating the ion-acoustic
meandering solitary waves resident in a magneto-plasma and possessive of electron-positron-ion observable in the
autochthonous universe. This model was utilized in representing dust-magneto-acoustic, ion-acoustic, together with
dust-ion-acoustic waves in the laboratory dusty plasmas. Additionally, the vector bright solitons, alongside their
various interaction attribute related to the coupled Fokas-Lenells system [55] were studied in the given reference. The
femto-second optical pulses embedded in a double-refractive optical fiber, modeled into an NLPDEs, were further
investigated. Furthermore, the Boussinesq-Burgers-type system recounting shallow water waves and also emerging
near ocean beaches and lakes was given attention in the paper [20]. We can continue with the list, but we mention a
few. See more of the applications of NLPDEs in the references [2, 4–6, 8–11, 16, 18, 34, 44, 47].

Now, having established the fact that no general technique in achieving various exact traveling wave results of
NLPDEs have been found, mathematicians and physicists have come up with some sound, effective, and efficient tech-
niques lately so that the seemingly nagging problem could be nipped in the bud. Some of these techniques include:
bifurcation technique [54], Painlevé expansion [50], homotopy perturbation technique [14], tanh-coth approach [49],
extended homoclinic test approach [15], Cole-Hopf transformation technique [39], Adomian decomposition approach
[46], Bäcklund transformation [22], Lie symmetry analysis [36, 38], F-expansion technique [56], rational expansion tech-
nique [53], multiple exp-function method [26], extended simplest equation approach [29], the Kudryashov’s technique

[30], Hirota technique [25], Darboux transformation [32], tanh-function technique [48], the
(
G′

G

)
-expansion technique

[43], sine-Gordon equation expansion technique [12], generalized unified technique [37], exponential function technique
[23], and so on and so forth.

In an avenue where the transversal imbalance can be safely disregarded, the Benjamin-Bona-Mahony model
(BBMahM) has been demonstrated as a well-founded conjecture for the unidirectional propagation of long waves
possessing small amplitude. The BBMahM equation reads

ut + ux + uux − uxxt = 0,

where u = u(t, x) is considered in a specified class of real non-periodic functions. The Korteweg-de Vries (KdV)
equation, along with the BBMahM equation, both have the same basis as a conjecture of waves possessing small but
finite amplitude and moderate length. It is argued that the BBMahM equation, which circumvents several problematic
aspects of the KdV equation, is in many ways the preferred model.

In 2005, Wazwaz divulged two structures of BBMahM that were orchestrated in the sense of Kadomtsev-Petviashvili.
These models are commonly referred to as the Kadomtsev-Petviashvili Benjamin-Bona-Mahony (KP-BBM) equation,
which reads [45].(

ψt + ψx − p(u2)x − qψtxx
)
x

+ sψyy = 0, (1.1)

and

(ψt + ψx − p(un)x − q(u)ntxx)x + sψyy = 0, (1.2)

with constants p, q, s, n 6= 0. The given models (1.1) and (1.2) were examined in [45] where Wazwaz obtained solutions:
periodic, solitons, and compactons, together with solitary patterns via the sin-cos and tan-hyperbolic techniques.
Besides, the finite difference technique of Crank-Nicholson was utilized in securing approximate results [33]. Abdou
in [1] invoked the extended mapping approach to fetch periodic solutions of (1.1) and (1.2). Furthermore, in [40, 41],
the theory of dynamical systems via bifurcation techniques was employed in attaining various traveling waves of the
models. Hoque investigated three types of rogue wave solutions by selecting dissimilar test functions [24]. Recently,
consideration was given to a 3-D KP-BBM model expressed as:

utx + auxx + b (uux)x − cutxxx + duyy + euzz = 0, (1.3)
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with parameters:

a = L2
x, b = ∆/D, c = (DLx/L)

2
, d = L2

y, e = L2
z, and L =

√
L2
x + L2

y + L2
z,

where Lz, Ly, and Lx connote wavelengths z, y along with x path, separately. Moreover, u(t, x, y, z) portrays function
of involved wave amplitude, possessing t temporal coordinate alongside propagation distance labeled z, y, and x.
Meanwhile, ∆ stands for the wave amplitude alongside the depth of water D [52].

This equation models fluid movement on an offshore structure [42]. The Kadomtsev-Petviashvili model, whose
emergence in diverse modeling scenarios has been found for non-linear dispersive waves propagating primarily in the
x-axis direction, with fragile dispersive effects running in a parallel direction to the y-axis. Additionally, the movement
navigates normally to the basic direction of propagation, referred to as the Kadomtsev-Petviashvili-Benjamin-Bona-
Mahony model (KP-BBM). Tian [13, 52] obtained breather wave results as well as lump wave outcomes using the
Hirota technique in accordance with symbolic computation. Despite the above, Liu further employed the Hirota
approach to derive the first, second, and third-order rogue wave solutions to (1.3) based on a symbolic computation
approach that does not require a Hirota bilinear structure [31]. Furthermore, in [19], Guo calculated auto-Bäcklund
as well as non-auto-Bäcklund transformations alongside some soliton results for a generalized system of long-wave-
containing-dispersion model and a two-dimensional system of the Boussinesq-Burgers model.

This research paper presents a generalized 3-D KP-BBM model to be investigated [51].

utx + αuyuxx + βuxuxy − butxxx + auxx + cuyy + duzz = 0, (1.4)

with non-zero constants α, β, a, b, c, and d. Xie and Li [51] investigated a generalized 3-D KP-BBM model (1.4), in
which they selected uxuy as the non-linear convection term which can be used to connote more dispersive effects.
This ensures the equation possesses more meaningful and functional characteristics than the case of two dimensions.
Moreover, having learned that multiple-order rogue wave solutions comprising breathers with symmetric peaks, as well
as capable of scattering into various kinds of breathers, were yet to be examined for (1.4), the authors in [51] took it
up. Therefore, they searched for such a rogue wave that satisfies Equation (1.4). In addition, the authors engaged in
some variable transformations to reduce the equation and then constructed its bilinear structure derived by potential
transformation. Subsequently, they secured the first, second, third, and fourth-order rogue waves through symbolic
computation. Furthermore, the scattering behaviors of the results are investigated. Comparing their research outcome
to Hoque’s [24] of the two-dimensional case, the soliton gained consists of independent breathers, obviously different
from the multi-lump soliton (that is from first to third order) constructed by Hoque.

However, in this research, we employ the Lie symmetry method to identify all of the related Lie point symmetries
to the model under consideration. Thus, our investigation in the paper is organized as follows: Section 1 presents
the introduction and literature review of the model under study, while section 2 reveals the stepwise procedure in
obtaining the symmetries of KP-BBM (1.4) and then uses them to carry out symmetry reductions. Furthermore,
we obtain some non-linear differential equations (NODE), which are later solved via direct integration alongside the
simplest technique to produce their analytical solutions. Additionally, in section 3, we compute the conservation laws
of the understudy model using the two methods, namely Noether’s theorem and the multiplier method. Thereafter,
concluding remarks are provided.

2. Exact solutions of (1.4)

This section provides the closed-form solutions of (1.4) by applying Lie group theory.

2.1. Lie point symmetries of KP-BBM model (1.4). Determination of Lie point symmetries related to KP-BBM
(1.4) is first ensured. Thus, the group of symmetries is computed for the model via the vector field

X = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ ψ

∂

∂y
+ φ

∂

∂z
, (2.1)
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with functions τ, ξ, η, ψ, and φ dependent on t, x, y, z along-side u. Therefore, X as given in (2.1) is referred to as a
point symmetry of model (1.4), if we have

X [4]Ξ
∣∣∣
Ξ=0

= 0, (2.2)

with

Ξ ≡ utx + αuyuxx + auxx + βuxuxy + cuyy − butxxx + duzz.

In this instance, X [4] portrays the fourth extension of X. This can be calculated by invoking the general relation

X [4]Ξ =X + ηx∂/∂ux + ηy∂/∂uy + ηtx∂/∂utx + ηxx∂/∂uxx + ηyy∂/∂uyy + ηzz∂/∂uzz + ηtxxx∂/∂utxxx. (2.3)

where the ζs are defined as

ηx = Dx(η)− utDx(τ)− uxDx(ξ)− uyDx(ψ)− uzDx(φ),

ηy = Dy(η)− utDy(τ)− uxDy(ξ)− uyDy(ψ)− uzDy(φ),

ηxy = Dy(ηx)− utxDy(τ)− uxxDy(ξ)− uxyDy(ψ)− uyzDy(φ),

ηtx = Dx(ηt)− uttDx(τ)− utxDx(ξ)− utyDx(ψ)− utzDt(φ),

ηxx = Dx(ηx)− utxDx(τ)− uxxDx(ξ)− uxyDx(ψ)− uxzDx(φ),

ηyy = Dy(ηy)− utyDy(τ)− uxyDy(ξ)− uyyDy(ψ)− uyzDy(φ),

ηzz = Dz(η
z)− utzDz(τ)− uxzDz(ξ)− uyzDz(ψ)− uzzDz(φ),

ηtxxx = Dx(ηtxx)− uttxxDx(τ)− utxxxDx(ξ)− utxxyDx(ψ)− utxxzDx(φ),

with operators Dz, Dy, Dt, and Dx connoting the complete derivatives written as

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ · · · ,

Dy =
∂

∂y
+ uy

∂

∂u
+ uyy

∂

∂uy
+ uty

∂

∂ut
+ · · · , (2.4)

Dz =
∂

∂z
+ uz

∂

∂u
+ utz

∂

∂ut
+ uxz

∂

∂ux
+ · · · .

Substituting the respective ζ’s and decomposing the result on various involved-derivatives of u, furnish the determining
partial differential equations (PDEs)

τz = 0, τx = 0, τy = 0, τu = 0, (2.5)

ξz = 0, ξx = 0, ξt = 0, ξy = 0, ξu = 0, (2.6)

φy = 0, φt = 0, φx = 0, φu = 0, (2.7)

ψz = 0, ψt = 0, ψt = 0, ψu = 0, (2.8)

φzz = 0, (2.9)

ψy = φz, (2.10)

τt = 2φz, (2.11)

ηu = −φz, (2.12)

ηx = 0, (2.13)

ηzz = 0, (2.14)

αηy + 2aφz = 0. (2.15)
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On solving the determining equations given in (2.5)–(2.15), the infinitesimals of (1.4) are calculated as

τ =2c2t+ c5 ξ = c1, φ = c2z + c3, ψ = c2 y + c4,

η =− c2 u−
2

α
a c2 y + F (t)z +H(t).

We invoke the vector field (2.1) to determine Lie point symmetries of Equation (1.4)

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 =

∂

∂z
, X5 = 2αt

∂

∂t
+ αy

∂

∂y
+ αz

∂

∂z
− (2a y + αu)

∂

∂u
,

XH = H(t)
∂

∂u
, XF = zF (t)

∂

∂u
.

(2.16)

2.2. Symmetry reductions and solutions of (1.4). We utilize the secured Lie point symmetries to gain various
exact solutions of (1.4) through symmetry reduction process.

2.2.1. Reductions using G1 = X1 + XH . We first take into account the symmetry G1 = X1 + XH . We solve its
Lagrangian system and obtain group invariant calculated as

u(t, x, y, z) = Q(ξ, η, ζ) +

∫
H(t)dt, where ξ = x, η = y, ζ = z.

Inserting the value of u in (1.4), we achieve a NLPDE computed as

aQξξ + cQηη + αQηQξξ + βQξQξη + dQζζ = 0. (2.17)

We secure a solution of KP-BBM (1.4) via (2.17) as

u(t, x, y, z) = A3 +A4 (A0x+A1y +A2z +A3) +

∫
H(t)dt, (2.18)

where Aj = j = 0, . . . , 4 are arbitrary constants. The symmetries of (2.17) are

J1 =
∂

∂ξ
, J2 =

∂

∂η
, J3 =

∂

∂ζ
, J4 = ζ

∂

∂Q
, J5 =

∂

∂Q
,

J6 = ξ
∂

∂ξ
+

(
2a

α
η + 2Q

)
∂

∂Q
, J7 = η

∂

∂η
+ ζ

∂

∂ζ
−
(

2a

α
η +Q

)
∂

∂Q
.

From symmetry generator J1, we have the invariant Q(ξ, η, ζ) = E(r, s), r = η and s = ζ. Using the results, we reduce
(2.17) to cErr + dEss = 0 and it solves to give

u(t, x, y, z) = f1

(
z −

√
−d
c
y

)
+ f2

(
z +

√
−d
c
y

)
+

∫
H(t)dt. (2.19)

Repeating the same process for J2, we have invariant Q(ξ, η, ζ) = E(r, s), r = ξ and s = ζ that yields a similar
equation aErr + dEss = 0 which when solved gives

u(t, x, y, z) = f1

(
z −

√
−d
a
x

)
+ f2

(
z +

√
−d
a
x

)
+

∫
H(t)dt. (2.20)

Next, we engage J3 and secure Q(ξ, η, ζ) = E(r, s), r = ξ and s = η. Eventually, we transform Equation (2.17) further
to NLPDE

aErr + cEss + αEsErr + βErErs = 0. (2.21)

The equation then occasions a solution of KP-BBM (1.4) as

u(t, x, y, z) = C2 + C4 (C0x+ C1y + C2) +

∫
H(t)dt, (2.22)
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with arbitrary constants Ck, k = 0, 1, 2, 3. Lie symmetries admitted by (2.21) are

L1 =
∂

∂s
, L2 =

∂

∂r
, L3 =

∂

∂E
, L4 = s

∂

∂s
−
(

2a

α
s+ E

)
∂

∂E
,

L5 = r
∂

∂r
+ 2

( a
α
s+ E

) ∂

∂E
.

We first take a linear combination of L1 − L3, whose characteristic equations solve to secure E(r, s) = W (p) + r,
p = s− r. Inserting the result into (2.21), we have

aW ′′(p) + cW ′′(p)− βW ′′(p) + αW ′(p)W ′′(p) + βW ′(p)W ′′(p) = 0. (2.23)

Solving the nonlinear ordinary differential equation (NORDE) (2.23), we get

u1 =A0 + x− 1

α+ β
(a+ c− β) (y − x) +

∫
H(t)dt, (2.24)

u2 =B0 + x+
1

α+ β

{
β − a− c+

√
β2 + a2 + c2 − 2αB2 + Ω0

}
(y − x) +

∫
H(t)dt, (2.25)

u3 =C0 + x− 1

α+ β

{
a− β + c+

√
β2 + a2 + c2 − 2αB2 + Ω0

}
(y − x) +

∫
H(t)dt, (2.26)

which are the solutions of (1.4), with Ω0 = 2ac − 2βB2 − 2aβ − 2βc as well as A0, B0, and C0 arbitrary constants.
Now, we make do with L4 and so we have invariant E(r, s) = 1

αs (αW (p) + r) − as2, where p = r. Putting this in
(2.21) purveys NORDE

2cW (p)− βW ′(p)2 − αW (p)W ′′(p) = 0, (2.27)

which solves to give the integral relation which we present as∫ W (p)

0

± α+ 2β√
(α+ 2β)

{
4cw + exp

(
1
α [ln (w−2βC0) + 2iπ]

)}dw − p− C1 = 0, (2.28)

where constants C0 and C1 are arbitrary. Lastly under J3, we consider L5 which furnishes E(r, s) = 1
α

(
αr2W (p)− as

)
,

p = s. Thus we have a transformed NORDE

cW ′′(p) + 2αW (p)W ′(p) + 4βW (p)W ′(p) = 0, (2.29)

which solves to produce a solution of Equation (1.4) as

u(t, x, y, z) =x2

{√
c (α+ 2β)C0

(α+ 2β)
tanh

(
y + C1

c

√
c (α+ 2β)C0

)}
− a

α
y +

∫
H(t)dt, (2.30)

where constants C0 and C1 are arbitrary. On invoking J = J1 + J2 + · · ·+ J5 and adopting the usual procedure, we
have a more condensed NLPDE furnished as

aErr − βErr + cErr + αErErr + βErErr + 2αErErs + βErErs + αErEss + dEss

+ βEsErr − βsErr + βEsErs − βsErs − αEr + 2aErs − βErs + aEss − a = 0. (2.31)

Equation (2.31) produces the four Lie symmetries which we present as

I1 =
∂

∂r
, I2 =

∂

∂E
, I3 =

∂

∂s
+ s

∂

∂E
, I4 =

(
2

3
r +

1

3
s

)
∂

∂r

+ s
∂

∂s
+

1

3αβ

(
β
(
(s2 − s+ 4E)α+ 2(r − s)(a+ d)

)
− 2αds

) ∂

∂E
.

We linearly combine Lie generators I1, I2 and I3. So we secure invariant

E(r, s) = −1

2
r2 + rs+ r +W (p), with p = s− r. (2.32)
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On using (2.32) in (2.31), we achieve an ordinary differential equation (ORDE) cW ′′(p) + dW ′′(p) − c = 0. Solving
the equation gives a solution of (1.4) as

u(t, x, y, z) =
1

2(c+ d)

{
d
(
(2(z − x)− 2C1 + 2)(y − x)− (y − x)2 + 2C1(z − x)

+2C2)− 2c

[
(C1 − 1) (y − x)− 1

2
(z − x)2 − C1(z − x)− C2

]}
− 1

2
x2 + xz + x+

∫
H(t)dt. (2.33)

Now, we engage I4 and consequently achieve the invariant

Q(ξ, η, ζ) =
1

αβ

{
2αβs4/3W (p) + αβs2 − 2aβr + 2aβs+ 2αβs

+ 4αds− 2βdr + 2βds
}
, where p =

r − s
s2/3

. (2.34)

Hence, using the achieved relation (2.34) in Equation (2.31), we gain

9cW ′′(p) + 9dW ′′(p) + 4αp2W ′(p)W ′′(p) + 4βp2W ′(p)W ′′(p)− 6αpW ′(p)2

− 4βpW ′(p)2 − 8βpW (p)W ′′(p) + 4αpW (p)W ′(p) + 8βW (p)W ′(p) + 9d = 0. (2.35)

It is now the turn of J6 whose invariant gives Q(ξ, η, ζ) = 1
α

(
αξ2E(r, s)− aη

)
, r = η and s = ζ. On lodging the new

function in (2.17) one achieves the reduced NLPDE

cErr + dEss + 2αEEr + 4βEEr = 0. (2.36)

In this case, we secure a solution of (1.4) in this regard as

u(t, x, y, z) = x2

{
cB2

1 + dB2
2

B1 (α+ 2β)
tanh (B1y +B2z +B0)

}
− a

α
y +

∫
H(t)dt, (2.37)

where constants B0 and B1 are arbitrary. Besides, (2.36) admits Lie symmetries

L1 =
∂

∂r
, L2 =

∂

∂s
, L3 = s

∂

∂s
+ r

∂

∂r
− E ∂

∂E
.

Exploring L = c0L1 + c1L2 furnishes E(r, s) = W (p), where p = s − (c1/c0) r. Putting the new function into (2.36)
we secure the second order NORDE

2αc0c1W (p)W ′(p) + 4βc0c1W (p)W ′(p)− cc21W ′′(p)− c20dW ′′(p) = 0. (2.38)

Consequently, solution to KP-BBM (1.4) in this instance purveys

u(t, x, y, z) =x2

{
∆0

c0c1 (α+ 2β)
tan

(
∆0

(cc21 + dc20)
[A0 + z − (c1/c0) y]

)}
− a

α
y +

∫
H(t)dt, (2.39)

with ∆0 =
√
c0c1A1 (α+ 2β) (cc21 + dc20) and arbitrary constants A0 and A1. In the case of L3, we have invariant

E(r, s) = 1
rW (p), where p = s/r. Substituting the new relation in (2.36), we compute a reduced form of Equation

(1.4) as

4cpW ′(p) + 2cW (p) + dW ′′(p)− 2αpW (p)W ′(p)− 4βpW (p)W ′(p) + cp2W ′′(p)− 2αW ′(p)2 − 4βW ′(p)2 = 0. (2.40)

Finally, in the case of J7, we have Q(ξ, η, ζ) = 1
αη

(
αE(r, s)− aη2

)
, r = η and s = ζ/η. Putting the current function

in (2.36), one achieves the NLPDE

2cE + dEss − βE2
r − αsEsErr − βsErErs + 4csEs + cs2Ess − αEErr = 0. (2.41)

In this instance, we achieve the solution to KP-BBM (1.4) as

u(t, x, y, z) =
1

y

{
f1(x)f2

(
z

y

)}
− a

α
y +

∫
H(t)dt. (2.42)
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Additionally, one secures two symmetries of (2.41) as I1 = ∂r and I2 = r∂r + 2E∂E . Combining the two symmetry

generators linearly gives the invariant E(r, s) = (1 + r)
2
W (p), where p = s. Using the relation reduces (2.41) to

NORDE

4βW ′(p)2 + 2αpW (p)W ′(p)− 4cpW ′(p)− dW ′′(p) + 4βpW (p)W ′(p)

− 2cW (p)− cp2W ′′(p) + 2αW ′(p)2 = 0. (2.43)

2.2.2. Reductions of (1.4) using G2 = X2 +XF . Now, we explore G2 = X2 +XF in order to reduce (1.4) and so G2

gives invariant

u(t, x, y, z) = xzF (t) +Q(ξ, η, ζ), where ξ = t, η = y, ζ = z.

Inserting the new relation in KP-BBM (1.4) gives the partial differential equation (PADE)

cQηη + dQζζ + ζF (t) = 0. (2.44)

Consequently, we obtain two possible solutions of KP-BBM (1.4) as

u(t, x, y, z) = f1(t) + f2(y) + f3(z) + xzF (t), (2.45a)

u(t, x, y, z) =
1

cdA0

{
cdH1

(
1

2
y − cz

2
√
−cd

)
+ cdH2

(
z +

√
−cd
c

y

)
−1

8
A0

(
cz2 + dy2

)
z

}
F ′(t) + xzF (t),

where constant A0 as well as functions f1(t), f2(t), f3(z), H1(t), and H2(t) are arbitrary with the functions depending
on their various arguments.

2.2.3. Reductions of (1.4) using G3 = X3 + XH . In this part of the reduction task, we compute the invariant of
G3 = X3 +XH as

u(t, x, y, z) = yH(t) +Q(ξ, η, ζ), where ξ = t, η = x, ζ = z.

Inserting the new value of u(t, x, y, z) in (1.4) furnishes equation

Qξη + αH(t)Qηη − bQξηηη + aQηη + dQζζ = 0. (2.46)

Eventually, one succeeds in obtaining two solutions of KP-BBM (1.4) here as

u(t, x, y, z) = f1(t) + f2(z)− 1

2
x

(
2αc1

∫
H(t)dt+ 2ac1t+ 2dc2t− c1x− 2A1 − 2A2

)
, (2.47a)

u(t, x, y, z) =H(t)y + f3(t) +
1

2
c3x

2 + (B1 − ac3t− dc4t)x+
1

2
c4z

2 +B1z +B2(x+ 1)− αc3x
∫
H(t)dt,

where constants cj , j = 1, 2, 3, 4 and Ai, Bi, i = 1, 2 as well as functions fk, k = 1, 2, 3, depending on their arguments
are all arbitrary. Now in order to have more interesting solutions of (1.4), we take a special case of (2.46) with
H(t) = 1. Therefore, we obtain four symmetries of model (1.4) which are explicated as

J1 =
∂

∂ξ
, J2 =

∂

∂η
, J3 =

∂

∂ζ
, J4 = Q

∂

∂Q
.

We take a look at J1 and so we achieve invariant Q(ξ, η, ζ) = E(r, s), r = η, and s = ζ. Plugging the new function in
(2.46) gives (a+ α)Err + dEss = 0, yielding

u(t, x, y, z) = y + f1

(
z −

√
−d
a+ α

x

)
+ f2

(
z +

√
−d
a+ α

x

)
, (2.48)

with arbitrary functions f1 and f2. In the case of J2, Q(ξ, η, ζ) = E(r, s), r = ξ, and s = ζ which reduces (1.4) to
Ess = 0. Thus, we have a solution of KP-BBM (1.4) as

u(t, x, y, z) = y + zf3(t) + f4(t), (2.49)
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where f3(t) and f4(t) are arbitrary functions of t. Next, we look at J3. Hence, we have Q(ξ, η, ζ) = E(r, s), r = ξ,
and s = η. Invoking the new function in (2.46) yields the NLPDE expressed as

Ers + αEss − bErsss + aEss = 0. (2.50)

We secure a solution of KP-BBM model (1.4) in this instance as

u(t, x, y, z) = y + f5(t) +
1

∆1

{
C0C1 exp

(
c1t+

[
1

2bc1

√
4bc21 + α2 + 2aα+ α2 +

a

2bc1
+

α

2bc1

]
x

)

+ C0C2 exp

(
c1t−

[
1

2bc1

√
4bc21 + α2 + 2aα+ α2 +

a

2bc1
+

α

2bc1

]
x

)}
, (2.51)

with ∆1 = a
2bc1

+ α
2bc1

+ 1
2bc1

√
4bc21 + α2 + 2aα+ α2 and arbitrary constants c1, C0, C1, C2 as well as function f5(t) which

is depending on t. We consider symmetry L = c0∂r + c1∂s of Equation (2.50) which yields invariant E(r, s) = W (p),
where p = s− (c1/c0) r. Inserting the new function into (2.50) we secure the second order NORDE

αc0W
′′(p) + ac0W

′′(p) + bc1W
′′′′(p)− c1W ′′(p) = 0. (2.52)

Solving the obtained Equation (2.52), we achieve a solution of (1.4) as

u(t, x, y, z) = A0 sin

(√
ac0 + αc0 − c1

bc1

[
x−

(
c1
c0

)
t

])
+A1 cos

(√
ac0 + αc0 − c1

bc1

×
[
x−

(
c1
c0

)
t

])
+A2

[
x−

(
c1
c0

)
t

]
+ y +A3, (2.53)

where constants Aj , j = 0, 1, 2, 3 are arbitrary. We contemplate linear combinations of J1, . . . , J4 as J = a0J1 +a1J2 +
a2J3 + J4, thereby furnishing the invariant

Q(ξ, η, ζ) = exp

(
1

a0
ξ

)
E(r, s), r = η −

(
a1

a0

)
ξ, and s = ζ −

(
a2

a0

)
ξ. (2.54)

Exchanging the function with that obtainable in (2.46) produces

Er + a0dEss + aa0Err + αa0Err − a1Err − a2Ers − bErrr + a1bErrrr + a2bErrrs = 0. (2.55)

Application of Lie theoretic approach to (2.55) purveys four Lie symmetries

I1 =
∂

∂r
, I2 =

∂

∂s
, I3 =

∂

∂E
, I4 = E

∂

∂E
.

From symmetry generators I1, I2, and I3, we obtain E(r, s) = exp
(

1
c0
r
)
W (p), where p = s−

(
c1
c0

)
r and the obtained

result further reduces (2.55) to equation

aa0c
2
0W (p) + αa0c

2
0W (p)− a1c

2
0c

2
1W
′′(p) + a2c

3
0c1W

′′(p)− 4a1bc
3
1W
′′′(p)

+ 6ba1c
2
1W
′′(p)− 3bc0c

2
1W
′′(p) + 2a1c

2
0c1W

′(p)− 4ba1c1W
′(p) + ba2c0W

′(p)

+ 3bc0c1W
′(p) + da0c

4
0W
′′(p) + ba1c

4
1W
′′′′(p)− a2c

3
0W
′(p)− c30c1W ′(p)

− a1c
2
0W (p) + a1bW (p)− bc0W (p) + c30W (p) + aa0c

2
0c

2
1W
′′(p) + αa0c

2
0c

2
1W
′′(p)

− a2bc0c
3
1W
′′′′(p)− 2aa0c

2
0c1W

′(p)− 2αa0c
2
0c1W

′(p) + 3a2bc0c
2
1W
′′′(p)

+ bc0c
3
1W
′′′(p)− 3a2bc0c1W

′′(p) = 0. (2.56)

Finally, we consider I = ν0I1 + ν1I2 + I3 + I4, and so we have invariant E(r, s) = exp
(

1
ν0
r
)
W (p) − 1, where

p = s−
(
ν1
ν0

)
r. Using the relation reduces Equation (2.55) to NORDE

aa0ν
2
0W (p) + αa0ν

2
0W (p)− a1ν

2
0ν

2
1W

′′(p) + a2ν
3
0ν1W

′′(p)− 4a1bν
3
1W

′′′(p)

+ 6ba1ν
2
1W

′′(p)− 3bν0ν
2
1W

′′(p) + 2a1ν
2
0ν1W

′(p)− 4ba1ν1W
′(p) + ba2ν0W

′(p)
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+ 3bν0ν1W
′(p) + da0ν

4
0W

′′(p) + ba1ν
4
1W

′′′′(p)− a2ν
3
0W

′(p)− ν3
0ν1W

′(p)

− a1ν
2
0W (p) + a1bW (p)− bν0W (p) + ν3

0W (p) + aa0ν
2
0ν

2
1W

′′(p) + αa0ν
2
0ν

2
1W

′′(p)

− a2bν0ν
3
1W

′′′′(p)− 2aa0ν
2
0ν1W

′(p)− 2αa0ν
2
0ν1W

′(p) + 3a2bν0ν
2
1W

′′′(p)

+ bν0ν
3
1W

′′′(p)− 3a2bν0ν1W
′′(p) = 0. (2.57)

2.2.4. Reductions of (1.4) using G4 = X4 + XF . Now, we focus on symmetry generator G4 = X4 + XF . We then
solve the related characteristic equation and get the mathematical relation

u(t, x, y, z) = Q(ξ, η, ζ) +
1

2
z2F (t), where ξ = t, η = x, ζ = y.

Substituting the value of u here in (1.4), we achieve a NLPDE calculated as

Qξη + aQηη + cQζζ + αQζQηη + βQηQηζ − bQξηηη + dF (t) = 0. (2.58)

Thus, we obtain two solutions of KP-BBM (1.4) via (2.58) as

u(t, x, y, z) = f1(x)− c

αc2
exp

(
−αc2

c
y
)
f2(t)− d

αc2
yF (t)− a

α
y +

1

2
z2F (t) + f3(t), (2.59a)

u(t, x, y, z) =
1

2αc2

{(
αc2z

2 − 2dy
)
F (t)− 2c2

[
ay − αf4(t)− 1

2
αc2x

2 −α (C1x+ C2)

]
− 2c exp

(
−αc2

c
y
)
f5(t)

}
, (2.59b)

with constant C1, C2, and c2 as well as f1(x) and fj(t), j = 2, . . . , 5, arbitrary functions depending on x and t
respectively. Moreover, in order to obtain more results of interest for (1.4) using G4, we adopt the same assumption
as earlier done in the case of G3. As a result, we have three symmetry generators given as

J1 =
∂

∂ξ
+ F1(ξ)

∂

∂Q
, J2 =

∂

∂η
+ F2(ξ)

∂

∂Q
, J3 =

∂

∂ζ
+ F3(ξ)

∂

∂Q
.

We take Fi(ξ) = 0, i, 1, 2, 3 and so, following the usual steps we obtain for J1, invariant Q(ξ, η, ζ) = E(r, s), r = η and
s = ζ, which reduces NLPDE (2.58) to

aErr + cEss + αEsErr + βErErs + d = 0. (2.60)

Consequently, we secure a solution of (1.4) in this situation as

u(t, x, y, z) =
1

2
z2 + f1(x) + f2(y). (2.61)

Besides, we compute the symmetries admitted by (2.60) as

L1 =
∂

∂r
, L2 =

∂

∂s
, L3 =

∂

∂E
, and L4 =

3

2
r
∂

∂r
+ s

∂

∂s
+
( a
α
s+ 2E

) ∂

∂E
.

We take a look at L = e1L1 + e2L2 +L3 and so we achieve invariant E(r, s) = 1
e1

(e1W (p) + r), where p = s−
(
e2
e1

)
r.

Substituting the function in (2.60) purveys

ae2
2W
′′(p) + ce2

1W
′′(p)− βe2W

′′(p) + αe2
2W
′(p)W ′′(p) + βe2

2W
′(p)W ′′(p) + de2

1 = 0. (2.62)

Integration of Equation (2.62) yields the relation∫
∓ 1

e2
2 (α+ β)

{
βe2 − ae2

2 − ce2
2 +

√
β2e2

2 − 2βce2
1e2 − 2βde2

1e
2
2p+ Ω1

}
dp+A0, (2.63)

where both A0 and A1 are integration constants with Ω1 = c2e4
1 − 2aβe3

2 + 2ace2
1e

2
2 + a2e4

2 − 2αde2
1e

2
2p− 2A1βde

2
1e

2
2 −

2A1αde
2
1e

2
2. Now, we explore L4 and as we usual do, following a certain known procedure, we obtain E(r, s) =

1
α

(
αr4/3W (p)− as

)
, where p = s

r2/3
. Invoking the new result in (2.60) gives us the second order NORDE

9cW ′′(p) + 8βW (p)W ′(p) + 4αW (p)W ′(p)− 4βpW ′(p)2 − 6αpW ′(p)2
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− 8βpW (p)W ′′(p) + 4βp2W ′(p)W ′′(p) + 4αp2W ′(p)W ′′(p) + 9d = 0. (2.64)

Next, we do J2 so Q(ξ, η, ζ) = E(r, s), r = ξ and s = ζ, thus reducing NLPDE (2.58) to cEss + d = 0. We solve the
equation and get a solution of (1.4) as

u(t, x, y, z) =
1

2
z2 − d

2c
y2 + f1(t)y + f2(t). (2.65)

For J3, we have Q(ξ, η, ζ) = E(r, s), r = ξ and s = η, thus reducing (1.4) to

Ers − bErsss + aEss + d = 0. (2.66)

We solve the linear partial differential equation (LNPADE) (2.66) and get

u(t, x, y, z) =
1

2
z2 + f(t) +

1

∆2

{
B0B1 exp

(
c1t+

[
a

2bc1
+

1

2bc1

√
a2 + 4bc21

]
x

)

+B0B2 exp

(
c1t+

[
a

2bc1
− 1

2bc1

√
a2 + 4bc21

]
x

)}
− d

2a
x2 − dB1

aB0
x, (2.67)

with ∆2 = a
2bc1

+ 1
2bc1

√
a2 + 4bc21, arbitrary constants c1, B0, B1, B2 and function f(t) which is depending on t. Further,

(2.66) admits the symmetries calculated as

I1 =
∂

∂r
, I2 =

∂

∂s
, and I3 =

(
d

2a
s2 + E

)
∂

∂E
.

Firstly, we do I = e0I1 + e1I2 so we get E(r, s) = W (p), where p = s−
(
e1
e0

)
r. Substituting the expression of E(r, s)

in (2.66), we have the fourth order ORDE

ae0W
′′(p)− e1W

′′(p) + be1W
′′′′(p) + de0 = 0, (2.68)

which solves to yield a solution of KP-BBM (1.4) as

u(t, x, y, z) =
1

2
z2 − 1

ae0 − e1

{
C0be1 sin

(√
ae0 − e1

be1

[
x−

(
e1

e0

)
t

])
+ C1be1 cos

(√
ae0 − e1

be1

[
x−

(
e1

e0

)
t

])
+
de0

2
C2

[
x−

(
e1

e0

)
t

]}
+ C3

[
x−

(
e1

e0

)
t

]
+ C4, (2.69)

where constants Cj , j = 0, 1, 2, 3, 4 are arbitrary. Now, we combine the three symmetries and obtain an invariant
E(r, s) = 1

2a

(
2aerW (p)− ds2 − 2ds− 2d

)
, where p = s − r. Invoking the new function in (2.66), gives the linear

ORDE (LORDE)

W ′(p)−W ′′(p) + aW ′′(p)− bW ′′′(p) + bW ′′′′(p) = 0. (2.70)

Now, we consider J = J1 +J2 +J3 so we have invariant Q(ξ, η, ζ) = E(r, s), r = η−
(
a1
a0

)
ξ and s = ζ−

(
a2
a0

)
ξ, which

transforms NLPDE (2.58) to

a0cEss − a1Err − a2Ers + aa0Err + αa0EsErr + βa0ErErs + a1bErrrr + a2bErrrs + a0d = 0. (2.71)

Therefore, we calculate the translation symmetries admitted by (2.71) as

L1 =
∂

∂r
, L2 =

∂

∂s
, and L3 =

∂

∂E
.

We consider L = e0L1 + e1L2 + L3 so we achieve invariant E(r, s) = 1
e0

(e0W (p) + r), where p = s−
(
e1
e0

)
r. Putting

the function in (2.71) gives

a2e
3
0e1W

′′(p)− a1e
2
0e

2
1W
′′(p)− a0e

2
0e1βW

′′(p) + αa0e
2
0e

2
1W
′(p)W ′′(p)
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+ aa0e
2
0e

2
1W
′′(p) + ca0e

4
0W
′′(p) + a1be

4
1W
′′′′(p)− a2be0e

3
1W
′′′′(p)

+ βa0e
2
0e

2
1W
′(p)W ′′(p) + a0e

4
0d = 0. (2.72)

2.2.5. Reductions of (1.4) using G5 = X5. Finally, we explore G5 = X5 in order to reduce (1.4) so we have invariant

u(t, x, y, z) =
1

α
√
t

(
αQ(ξ, η, ζ)− ay

√
t
)
, where ξ = x, η =

y√
t
, ζ =

z√
t
.

Inserting the new relation in KP-BBM (1.4) gives the PADE

2cQηη + 2dQζζ − ζQξζ −Qξ + 2αQηQξξ + 2βQξQξη − ηQξη + bQξξξ + bζQξξξζ + bηQξξξη = 0. (2.73)

Thus, Lie symmetry analysis of NLPDE (2.73) yields three symmetries

J1 =
∂

∂ξ
, J2 =

∂

∂η
, J3 =

∂

∂Q
.

We examine J1 and get invariant Q(ξ, η, ζ) = E(r, s), r = η and s = ζ, which reduces (1.4) to 2cErr + 2dEss = 0.
Solving the PADE yields a solution of (1.4) as

u(t, x, y, z) =
1

α
√
t

{
α

[
f1

(
z√
t
− i
√
d

ct
y

)
+ f2

(
z√
t

+

√
−d
ct
y

)]
− ay

√
t

}
, (2.74)

where f1 and f2 are arbitrary functions. We study linear combination of the translation symmetries and get Q(ξ, η, ζ) =
E(r, s) + ξζ + ξ, r = η and s = ζ. On applying the function in (1.4), we have 2cErr + 2dEss− 2s− 1 = 0, which solves
to give the solution of (1.4)

u(t, x, y, z) =
1√
t

{
f1

(
1

2

y√
t
− c

2
√
−cd

z√
t

)
+ f2

(
z√
t

+
1

c

√
−cd y√

t

)
− 1

8cd

√
−cd

×
(
z√
t

+
1

c

√
−cd y√

t

)2(
1

2

y√
t
− c

2
√
−cd

z√
t

)
− 1

4c

(
z√
t

+
1

c

√
−cd y√

t

)
×
(

1

2

y√
t
− c

2
√
−cd

z√
t

)2

− 1

4cd

√
−cd

(
z√
t

+
1

c

√
−cd y√

t

)
×
(

1

2

y√
t
− c

2
√
−cd

z√
t

)}
− a

α
y + x

(
z√
t

+ 1

)
, (2.75)

where f1 and f2 are arbitrary functions of their respective arguments. Further exploration gives no results of impor-
tance.

Case1. We contemplate the translation symmetries X1, X2, X3 together with X4 combination, achieved as

X = X1 +X2 +X3 + µX4,

where µ is a constant. From the linear combination we get the invariants q = y − t, k = z − µt p = x− t, which yield
group invariant result viz; G(p, q, k) = u(t, x, y, z). This further transforms (1.4) to the NLPDE

aGpp − µGkp −Gpq + βGpGpq + bµGpppk + αGqGpp + bGpppq + bGpppp −Gpp + cGqq + dGkk = 0. (2.76)

Equation (2.76) have five symmetries namely,

Γ1 =
∂

∂p
, Γ2 =

∂

∂q
, Γ3 =

∂

∂k
, Γ4 =

∂

∂G
, Γ5 = k

∂

∂G
.

Similarly, characteristic equations from combination of translation symmetries yield,

Γ = Γ1 + Γ2 + γΓ3,

with γ 6= 0 a constant. This provides the invariant solutions: g = k− γp f = q− p, and U(f, g) = G(p, q, k). Equation
(2.76) reduces to

2αγUfUfg + αγUfUgg + βγUfUfg + βγUgUff + βγ2UgUfg − 3bµγUffgg (2.77)
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− 3bµγ2Ufggg − bµγ3Ugggg − γ2Ugg + µUfg + aUff − γUfg + cUff + dUgg

+ bγ4Ugggg + aγ2Ugg + βUfUff + 2aγUfg + µγUgg + αUfUff + 3bγ2Uffgg

+ bγUfffg + 3bγ3Ufggg − bµUfffg = 0.

Equation (2.77) gives three symmetries, namely

R1 =
∂

∂f
, R2 =

∂

∂g
, R3 =

∂

∂U
.

Furthermore, combination of R1 + θR2, where θ is a constant gives invariant solution g− θf = r, and H(r) = U(f, g).
Finally, invoking H(r) = U(f, g) into (2.77), transforms the NLNPADE to an NODE

2αγθ2H ′H ′′ − αγ2θH ′H ′′ + 2βγθ2H ′H ′′ − βγ2θH ′H ′′ − 3bµγθ2H ′′′′ (2.78)

+ 3bµγ2θH ′′′′ − bµγ3H ′′′′ − γ2H ′′ − µθH ′′ + a θ2H ′′ + γθH ′′ + c θ2H ′′

+ dH ′′ + bγ4H ′′′′ + aγ2H ′′ − βθ3H ′H ′′ − 2aγθH ′′ + µγH ′′ − αθ3H ′H ′′

+ 3bγ2θ2H ′′′′ − bγθ3H ′′′′ − 3bγ3θH ′′′′ + bµθ3H ′′′′ = 0.

Equation (2.78) simplifies into

(2αγθ2 − αγ2θ + 2βγθ2 − βγ2θ − βθ3 − αθ3)H ′H ′′ (2.79)

+ (aγ2 + µγ − 2aγθ + a θ2 + d− γ2 − µθ + γθ + c θ2)H ′′

+ (bγ4 + 3bµγ2θ − bµγ3 − 3bµγθ2 + 3bγ2θ2 − bγθ3 − 3bγ3θ + bµθ3)H ′′′′ = 0.

Hence, we then have

RH ′′′′ + PH ′H ′′ +QH ′′ = 0, (2.80)

in which

P = 2αγθ2 − αγ2θ + 2βγθ2 − βγ2θ − βθ3 − αθ3,

Q = aγ2 − 2aγθ + µγ + d− γ2 − µθ + a θ2 + γθ + c θ2,

R = bγ4 + 3bµγ2θ − bµγ3 − 3bµγθ2 + 3bγ2θ2 − bγθ3 − 3bγ3θ + bµθ3.

2.3. Solution of KP-BBM (1.4) using direct integration. This section seeks to reveal the approach to securing
the general solution of the KP-BBM Equations (1.4) by examining NODE (2.80). Integrating (2.80) regarding r yields

P
2
H ′2 +QH ′ +RH ′′′ +K0 = 0, (2.81)

with K0 an arbitrary integration constant. Suppose Φ(r) = H ′(r), then (2.81) becomes

P
2

Φ2 +QΦ +RΦ′′ +K0 = 0. (2.82)

To perform the integration of (2.82), we multiply it first by Φ′(r) to get

P
2

Φ2Φ′ +QΦΦ′ +RΦ′′Φ′ +K0Φ′ = 0. (2.83)

Integrating (2.83) with respect to r gives

R
2

Φ′2 +
P
6

Φ3 +
Q
2

Φ2 +K0Φ +K1 = 0, (2.84)

where K1 is an arbitrary constant. Then,

Φ′2 +
P

3R
Φ3 +

Q
R

Φ2 +
2

R
K0Φ +

2

R
K1 = 0. (2.85)
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Suppose that m1,m2 and m3 are real roots (m1 > m2 > m3) of a cubic equation

Φ3 +
3Q
P

Φ2 +
6

P
K0Φ +

6

P
K1 = 0. (2.86)

and satisfies the conditions

m1m2m3 = − 6

P
K1, m1m2 + m1m3 + m2m3 =

6

P
K0, m1 + m2 + m3 = −3Q

P
.

Then equation (2.85) is written as

Φ′
2

= − P
3R

(Φ−m1)(Φ−m2)(Φ−m3),

and has the solution

Φ(r) = m2 + (m1 −m2)cn2

{√
P(m1 −m3)

12R
(r − r0)

∣∣∣∣K2

}
, K2 =

m1 −m2

m1 −m3
, (2.87)

with r0 a constant as well as cn denoting the Jacobi cosine function. Thus by retro-grading to the fundamental
variables, one gains the result of KP-BBM (1.4) as [28]

u(t, x, y, z) =Q0

[
EllipticE

{
sn(Q1(r − r0),K2),K2

}]
+

{
m2 − (m1 −m2)

1−K4

K4

}
× (r − r0) + k1, (2.88)

where

Q0 =

√
12R(m1 −m2)2

(m1 −m3)PK8
, Q1 =

√
P(m1 −m2)

12R
,

where we have an integration constant k1, and variable r = (γ − µ)t+ (θ − γ)x− θy + z, while EllipticE[r,k] depicts
the incomplete elliptic integral [21, 28].

2.4. Analytic solutions of (1.4) via simplest equation approach. The simplest equation approach is engaged
in this subsection in solving the NODE (2.80).

2.4.1. Solutions of (1.4) via the Riccati equation as the simplest equation. Balancing procedure furnishes term M = 1.
Then solutions of (2.80) purvey the form,

H(r) = a0 + a1Y (r).

Putting this secured value of H(r) into (2.80), also invoking Riccati equation, secures the system calculated in terms
of a0, a1:

Aa1
2l3 + 12 Ca1l

4 = 0,

Aa1
2l2m+ 12 Ca1l

3m = 0,

Aa1
2mn2 + 8 Ca1lmn

2 + Ca1m
3n+ Ba1mn = 0,

6Aa1
2lmn+Aa1

2m3 + 60 Ca1l
2mn+ 15 Ca1lm

3 + 3Ba1lm = 0,

2Aa1
2l2n+ 2Aa1

2lm2 + 20 Ca1l
3n+ 25 Ca1l

2m2 + Ba1l
2 = 0,

2Aa1
2ln2 + 2Aa1

2m2n+ 16 Ca1l
2n2 + 22 Ca1lm

2n+ Ca1m
4 + 2Ba1ln+ Ba1m

2 = 0.

On the engagement of Maple, solution to the gained-system furnishes

a0 = a0, a1 = −12
Cl
A
, B = 4 C(ln−m2). (2.89)

One establishes the fact that the outcome associated to model (1.4) via Ricatti equation given, can be expressed as

u(t, x, y, z) = a0 + a1

{
−m

2l
− ω

2l
tanh

[
−1

2
ω(r +D)

]}
, (2.90)
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and

u(t, x, y, z) = a0 + a1

{
−m

2l
− ω

2l
tanh

(ω r
2

)
+

sech
(
ωr
2

)
D cosh

(
ωr
2

)
− 2 l

ω sinh
(
ωr
2

)} , (2.91)

with ω =
√
m2 − 4ln and D is an integration constant.

2.4.2. Solutions of (1.4) via the Bernoulli equation as the simplest equation. This case yields balancing term M = 1
and just as earlier presented gives the result of (2.80) in the structure

H(r) = a0 + a1Y (r).

On inserting this expression of H(r) into (2.80) and applying Bernoulli equation earlier-given furnishes the system in
terms of a0, a1 presented as

Aa1
2m3 + 12 Ca1m

4 = 0,

Ca1l
4 + Ba1l

2 = 0,

Aa1
2lm2 + 12 Ca1lm

3 = 0,

2Aa1
2l2m+ 25 Ca1l

2m2 + Ba1m
2 = 0,

Aa1
2l3 + 15 Ca1l

3m+ 3Ba1lm = 0,

thus resulting via the use of Maple to values

a0 = a0, a1 = − 12Cm
A

, B = −Cl2, (2.92)

Hence, solutions of the KP-BBM (1.4) are

u(t, x, y, z) = a0 + a1l

{
cosh [l(r +D)] + sinh [l(r +D)]

1−m cosh [l(r +D)]−m sinh [l(r +D)]

}
, (2.93)

with D taken as an arbitrary integration constant and r = (γ − µ)t+ (θ − γ)x− θy + z.

3. Graphical depictions of some of the solutions

Here, we present the graphical descriptions of some of the obtained solutions in the previous section. The findings
comprise various solutions of interest ranging from trigonometry, and hyperbolic, to Jacobi elliptic functions. Addi-
tionally, a number of algebraic solutions consisting of arbitrary functions were achieved. These arbitrary functions can
assume any possible mathematical functions with the result satisfying (1.4). Therefore, using computer software, we
present some graphical displays of solitary waves in the form of three-dimensional (3D), two-dimensional (2D), and
density plots.

In the first place, we consider algebraic solution (2.19) and let f1(x, z) = sech(x, z), f2(x, z) = sin(x, z), H(t) =
− sin(t) where parameters a = 10, d = −5, t = 0.02, y = 0 and −9 < x, z < 9. Using the listed data, Figure 1 is
plotted. Furthermore, we explore the solution with the same parametric values but allowing a decrease in time to
t = 0.03 and t = 0.05 but expanding the given interval by two and three units. Thus, we accordingly achieve Figures
2 and 3. We observe that the Figures reveal a steady decrease in the number of periods which forms the background,
with a corresponding increase in time t. Next, we contemplate hyperbolic-algebraic function solution (2.30) furnishing
Figure 4 with unalike parameter values α = 100, β = 1, a = 10, c = 0.1, C0 = 200, C1 = 700 where x = 0.1, z = 0 and
−9 < t, y < 9. In addition using the same constant values and setting z = 0 with x = 0.4 and −13 < t, y < 13, we
plot Figure 5. Now, we shift attention to trigonometric solution (2.53). In exhibiting Figure 6, we utilize dissimilar
constant values α = 10, c0 = 1, c1 = 1, a = 10, b = 1, A0 = 0.02, A1 = 0.7, A2 = 0.3, A3 = 0, where y = 10, z = 0 and
−6 < t, x < 6. In Figure 7, we adopt parametric values α = 10, c0 = 1, c1 = 1, a = 10, b = 4, A0 = 0.02, A1 = 0.9,
A2 = 0.06, A3 = 0.06, where y = 10, z = 0 and −6 < t, x < 6. In addition, we use α = 10, c0 = 1, c1 = 1, a = 10,
b = 10, A0 = 0.02, A1 = 0.9, A2 = 0.06, A3 = 10, with y = 10 as well as z = 0 such that −6 < t, x < 6, to plot Figure
8. It is observed that at fixed values of y and z the periodicity changes. Hence, we can infer that the movement of
the wave particles can still occur based on other parameters in the solution beside that of the variables.
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Figure 1. Wave profile exhibiting algebraic solution (2.19) at t = 0.02 and y = 0.
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Figure 2. Wave profile exhibiting algebraic solution (2.19) at t = 0.03 and y = 0.

We contemplate solution (2.59) which gives the plot in Figures 9 and 10 where we let f1(x) = cosh(x), f2(t) = sin(t),
f3(t) = cos(t), F (t) = Si(t). The involved parameters are allocated values for the Figures respectively as a = 100,
α = 0.3, c = 0.6, c2 = 0.001, d = 100 where y = 2, z = 1 using the interval −11 < t, x < 11 and a = 1, α = 0.3,
c = 0.4, c2 = 0.001, d = 1000 where y = 0.2, z = 10 with the interval −14 < t, x < 14. Next, we focus on the wave
depictions of periodic solution (2.69). In Figure 11, we assign e0 = 1, e1 = 0.1, a = 10, b = 100, A0 = 0.02, A1 = 0.7,
A2 = 0.3, A3 = A4 = 0, where y = 0, z = 0.02 and −9 < t, x < 9. In the case of Figure 12, we allocate parameter
values as e0 = 1, e1 = 0.1, a = 10, b = 100, A0 = 0.2, A1 = 0.9, A2 = 0.1, A3 = A4 = 0, where y = 0.1, z = 0.01,
using the interval −11 < t, x < 11. Additionally, to plot Figure 13, we engage the previous values with the change in
constants A0 = 10, A1 = 1.4, A2 = 0.1, A3 = 0.02, A4 = 0.2, with y = 0.3, z = 0.2 and −16 < t, x < 16.

Figure 14 exhibits solution (2.88) for the parameter values θ = 0.6, µ = 0.2, γ = −4, t = −14, k1 = 1,m1 = 100,m2 =
50.05,m3 = −60,R = 1,P = 0.287 and r0 = 0. Figure 15 portrays solution (2.90) for parameters γ = 0.2, µ = 0.3, θ =
1.9, t = 6, C = 1.9,A = 2, D = 0.9,m = 2, a0 = 10, ω = 2, z = 1. Figure 16 demonstrates the solution (2.91) for the
values θ = 1.9, µ = 0.3, γ = 0.2, C = 1.9,A = 2, D = 0.9,m = 2, a0 = 10, ω = 2, t = 6, z = −1. Figure 17 depicts
solution (2.93) for the values θ = 1.9, µ = 0.3, γ = 0.2, C = 1.9,A = 2, D = 0.8,m = 2, a0 = 10, t = 6, z = 1.

4. Conserved vectors of (1.4)

We give conserved vectors of the KP-BBM (1.4) by using two variant methods. They are the multiplier approach
[36] and Noether’s theorem [35].
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Figure 3. Wave profile exhibiting algebraic solution (2.19) at t = 0.05 and y = 0.
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Figure 4. Graphical display of hyperbolic-algebraic solution (2.30) at x = 0.1 and z = 0.
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Figure 5. Graphical display of hyperbolic-algebraic solution (2.30) at x = 0.4 and z = 0.

4.1. Conservation laws via the multiplier method. We seek multipliers M that depend on t, x, y and u only.
The determining relation is expressed, viz;

δ

δu
{M (αuyuxx + βuyuxy − butxxx + auxx + cuyy + duzz + utx )} = 0, (4.1)
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Figure 6. Graphical exhibition of solitary wave solution (2.53) at y = 10 and z = 0.
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Figure 7. Graphical exhibition of solitary wave solution (2.53) at y = 10 and z = 0.
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Figure 8. Graphical exhibition of solitary wave solution (2.53) at y = 10 and z = 0.
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Figure 9. Graphical depiction of alg-exponential function solution (2.59) at y = 2 and z = 1.
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Figure 10. Graphical depiction of alg-exponential function solution (2.59) at y = 0.2 and z = 10.
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Figure 11. Graphical depiction of solitary wave solution (2.69) at x = 0.

with Euler operator δ/δu, given by

δ

δu
=

∂

∂u
−Dy

∂

∂uy
−Dx

∂

∂ux
+DtDx

∂

∂utx
+D2

x

∂

∂uxx
+D2

y

∂

∂uyy
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Figure 12. Graphical depiction of solitary wave solution (2.69) at x = 0.
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Figure 13. Graphical depiction of solitary wave solution (2.69) at x = 0.

Figure 14. Three and two dimensional together-with density plots for (2.88).

+D2
z

∂

∂uzz
+DxDy

∂

∂uxy
+DtD

3
x

∂

∂utxxx
(4.2)

with total derivative operators (Dt, Dx, Dy, Dz) as explicated in (2.4). Simplification of (4.1) and decomposing on
the derivatives of u furnishes

Mx = 0, My = 0, Mzz = 0, Mu = 0,
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Figure 15. Three and two dimensional together-with density plots of (2.90).

Figure 16. Three and two dimensional together-with density plots of (2.91).

Figure 17. Three and two dimensional together-with density plots of (2.93).

whose solution is

M = A(t)z +B(t),

with A and B being functions dependent on t. The conserved currents of model KP-BBM (1.4) are achieved by
invoking divergence identity

DtT
t +DyT

y +DxT
x +DzT

z =M
[
δ

δu
{M (βuyuxy + αuyuxx − butxxx + cuyy + auxx + utx + duzz )}

]
,

(4.3)
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with spatial fluxes T x, T y , T z, and T t being conserved density. Invoking (4.3), one achieves conserved vectors related
to the two secured multipliers in the subsequent manner:

Case 1. For M1 = A(t)z, the related components of its conserved vector are

T t =
1

2
zuxA(t)− 1

4
bzuxxxA(t),

T x =
1

2
αzA(t)uxuy −

1

2
αzA(t)uuxy −

1

4
βzA(t)uuyy +

1

4
βzA(t)u2

y

+
1

4
bzF ′(t)uxx −

3

4
bzA(t)utxx + azA(t)ux −

1

2
zF ′(t)u+

1

2
zA(t)ut,

T y =
1

2
αzA(t)uuxx + c zA(t)uy +

1

4
βzA(t)uxuy +

1

4
βzA(t)uuxy,

T z = dzA(t)uz − dA(t)u.

Case 2. For M2 = B(t), associated components of its conserved vector are

T t =
1

2
uxB(t)− 1

4
buxxxB(t),

T x =
1

2
αB(t)uxuy −

1

2
αB(t)uuxy −

1

4
βB(t)uuyy +

1

4
βB(t)u2

y +
1

4
bG′(t)uxx

− 3

4
bB(t)utxx + aB(t)ux −

1

2
G′(t)u+

1

2
B(t)ut,

T y =
1

2
αB(t)uuxx + cB(t)uy +

1

4
βB(t)uxuy +

1

4
βB(t)uuxy,

T z = dB(t)uz.

4.2. Conservation laws via the Noether’s theorem. The fourth-order KP-BBM (1.4) doesn’t own a Langrangian.
However, we consider a condition β = 2α and Equation (1.4) becomes

utx + αuyuxx + 2αuxuxy − butxxx + cuyy + auxx + duzz = 0. (4.4)

We already gave Euler operator δ/δu in (4.2), (see also [3, 27, 36]). Now, δL/δu = 0 for

L = −1

2
au2

x −
1

2
buxxutx −

1

2
cu2
y −

1

2
du2

z −
1

2
utux −

1

2
αu2

xuy, (4.5)

therefore L is the Lagrangian for (4.4).

X = τ
∂

∂t
+ ξ

∂

∂x
+ φ

∂

∂y
+ ψ

∂

∂z
+ η

∂

∂u
, (4.6)

with the coefficients τ, ξ, φ and ψ being function of the variables t, x, y, z and u. Thus, Lie-Bäcklund operator given
as X and explicated in (4.6) is a Noether operator interrelated to L provided

L [Dt(τ) +Dy(φ) +Dx(ξ) +Dz(ψ)] +X [2](L) =Dx(B2) +Dt(B
1) +Dy(B3) +Dz(B

4), (4.7)

is satisfied where B1, B2, B3, and B4 depending on (t, x, y, z) are gauge functions. Expanding (4.7) and disintegrating
the outcome on u derivatives, yields a system of linear PDEs, whose solutions gives

X1 =
∂

∂t
, B1 = 0, B2 = 0, B3 = 0, B4 = 0,

X2 =
∂

∂x
, B1 = 0, B2 = 0, B3 = 0, B4 = 0,

X3 =
∂

∂y
, B1 = 0, B2 = 0, B3 = 0, B4 = 0,

X4 =
∂

∂z
, B1 = 0, B2 = 0, B3 = 0, B4 = 0,
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X5 = 2αt
∂

∂t
+ αy

∂

∂y
+ αz

∂

∂z
− (αu+ 2ay)

∂

∂u
, B1 = 0, B2 = 0, B3 = 2acu, B4 = 0,

XG =G(t)
∂

∂u
, B1 = 0, B2 = −1

2
vG′(t), B3 = 0, B4 = 0,

XF = zF (t)
∂

∂u
, B1 = 0, B2 = −1

2
vzF ′(t), B3 = 0, B4 = −duF (t).

In relation to the above Noether symmetries, one gains the following conserved vectors:

T t1 = − 1

4
butuxxx −

1

2
au2

x −
1

4
buxxutx −

1

2
cu2
y −

1

2
αu2

xuy −
1

2
du2

z,

T x1 = autux −
3

4
butu, txx +

1

2
bu2
tx +

1

4
buttuxx + αutuxuy +

u2
t

2
,

T y1 = cutuy +
1

2
αutu

2
x,

T z1 = dutuz;

T t2 =
1

4
bu2
xx −

1

4
buxxxux +

u2
x

2
,

T x2 =
1

2
au2

x +
1

4
buxxutx −

3

4
buxutxx −

1

2
cu2
y −

1

2
du2

z +
1

2
αu2

xuy,

T y2 = cuxuy +
1

2
αu3

x,

T z2 = duxuz;

T t3 =
1

4
buxxuxy −

1

4
buxxxuy +

1

2
uxuy,

T x3 = auxuy −
3

4
buyutxx +

1

4
buxxuty +

1

2
butxuxy +

1

2
utuy + αuxu

2
y,

T y3 =
1

2
cu2
y −

1

2
au2

x −
1

2
buxxutx −

1

2
du2

z −
1

2
utux,

T z3 = duyuz;

T t4 =
1

4
buxxuxz −

1

4
buxxxuz +

1

2
uxuz,

T x4 = auxuz +
1

4
buxxutz +

1

2
butxuxz −

3

4
buzutxx +

1

2
utuz + αuxuyuz,

T y4 = cuyuz +
1

2
αu2

xuz,

T z4 =
1

2
du2

z −
1

2
au2

x −
1

2
buxxutx −

1

2
cu2
y −

1

2
utux −

1

2
αu2

xuy;

T t5 =
1

2
zαuxuz − dtαu2

z −
1

4
bzαuxxxuz − ctαu2

y − atαu2
x −

1

2
btαuxxutx

+ ayux − tα2uyu
2
x +

1

2
αuux +

1

2
yαuyux +

1

4
bαuxuxx +

1

4
bzαuxzuxx

+
1

4
byαuxyuxx −

1

2
abyuxxx −

1

4
bαuuxxx −

1

4
byαuyuxxx −

1

2
btαuxxxut,

T x5 = 2yuxa
2 + αuuxa+ zαuzuxa+ 3yαuyuxa+ yuta+ 2tαuxuta
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+ tαu2
t −

3

2
byutxxa+ btαu2

tx + yα2u2
yux + α2uuyux + zα2uzuyux

+
1

2
αuut +

1

2
zαuzut +

1

2
yαuyut + 2tα2uyuxut +

3

4
bαuxxut +

1

4
bzαuxxutz

+
1

4
byαuxxuty +

1

2
bαuxutx +

1

2
bzαuxzutx +

1

2
byαuxyutx −

3

4
bαuutxx

+
1

2
btαuxxutt −

3

4
bzαuzutxx −

3

4
byαuyutxx −

3

2
btαututxx,

T y5 =
1

2
zα2u2

xuz −
1

2
dyαu2

z + czαuyuz +
1

2
cyαu2

y +
1

2
ayαu2

x +
1

2
α2uu2

x

+ 2acyuy + cαuuy + tα2u2
xut + 2ctαuyut −

1

2
yαuxut −

1

2
byαuxxutx,

T z5 =
1

2
dzαu2

z + 2adyuz + dαuuz + dyαuyuz −
1

2
czαu2

y

+ 2dtαutuz −
1

2
azαu2

x −
1

2
zα2uyu

2
x −

1

2
zαuxut −

1

2
bzαuxxutx;

T tG =
1

4
bG(t)uxxx −

1

2
G(t)ux,

T xG =
3

4
bG(t)utxx − aG(t)ux − αG(t)uxuy −

1

2
G(t)ut −

1

4
bG′(t)uxx,

T yG = − cG(t)uy −
1

2
αG(t)u2

x,

T zG = − dG(t)uz;

T tF = − 1

2
zF (t)ux +

1

4
bzF (t)uxxx,

T xF = − azF (t)ux +
3

4
bzF (t)utxx − αzF (t)uxuy −

1

4
bzF ′(t)uxx −

1

2
zF (t)ut,

T yF = − czF (t)uy −
1

2
αzF (t)u2

x,

T zF = − dzF (t)uz.

5. Conclusion

This research work examines the 3D KP-BBM Equation (1.4), which recently appeared in [51] and has numerous
applications. Firstly, Lie point symmetries of the equation were computed and then these were used to transform (1.4)
to nonlinear ordinary differential equations. Direct integration of one of the ordinary differential equations provided
us with an exact solution in terms of the incomplete elliptic integral. We further engage in a detailed reduction
process to transform the KP-BBM equation as much as possible into solvable differential equations from which di-
verse solutions of interest were achieved. These solutions include trigonometric, hyperbolic, algebraic-trigonometric,
algebraic-exponential, algebraic-hyperbolic, and complex-algebraic functions. Furthermore, the simplest equation ap-
proach was utilized via the Riccati and Bernoulli equations, and solutions to (1.4) were secured. The solutions obtained
were presented graphically with an adequate choice of parametric values. Finally, the multiplier method was utilized to
generate conserved vectors for (1.4). Moreover, Noether’s theorem was invoked, and conserved vectors were obtained
for β = 2α.
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