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Abstract
In this work, we study a hypersurface immersed in specific types of cylindrically symmetric static space-times,

then we identify the gauge fields of the Lagrangian that minimizes the area beside the Noether symmetries. We
show that these symmetries are part of the Killing algebra of cylindrically symmetric static space-times. By using

Noether’s theorem, we construct the conserved vector fields for the minimal hypersurface.
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1. Introduction

The geodesic equations describe the path of a particle moving along a curve in a Riemannian manifold, with the curve
being defined as the shortest path between two points. These equations have symmetries, which refer to the invariance
of the equations under certain transformations. Symmetries play a crucial role in understanding the properties of the
geodesic equations, such as conserved quantities, stability, and singularities. One important type of symmetry is the
Noether symmetry, which is associated with the existence of a conserved quantity along the geodesic. Studying the
symmetries of the geodesic equations can provide valuable insight into the underlying geometry of the Riemannian
manifold and can also have important implications in physics and engineering. Numerous authors have studied the
geodesic equations’ symmetries and the classification results have been extensively disseminated [1, 2, 4]. Noether
symmetries are a type of symmetry that arise in the context of Lagrangian mechanics. They are named after the
mathematician Emmy Noether, who showed that for every continuous symmetry of a Lagrangian system, there exists
a corresponding conserved quantity. In other words, if a physical system is invariant under certain transformations,
then the corresponding Noether symmetry generates a conserved quantity. This conserved quantity can often be
interpreted as a physical quantity, such as energy, momentum, or angular momentum. Noether symmetries have
important applications in physics and engineering, as they provide a tool for understanding the underlying structure
of physical systems and for making predictions about their behavior. Additionally, the study of Noether symmetries can
provide insight into the geometric structure of the underlying space and can lead to the discovery of new phenomena.

Symmetries of action integrals are linked to Noether symmetries, and thus they can be applied to any problem
involving action integrals, regardless of their connection to the geodesic equation. Aslam and Qadir [3] attempted to
establish the geometric technique for PDEs and investigate several specific spaces based on this intriguing idea more-
over, discovered the Noether symmetries of the minimal hypersurfaces. The minimal hypersurface equations are the
Euler-Lagrange equations for the area-minimizing action. Additionally, the Noether symmetries of the area-minimizing
surface Lagrangian with constant volume in some spaces have been studied [14].
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Here, we will continue the same idea of [3, 9, 14] to provide the Noether symmetries that arise from minimal
Lagrangian of cylindrically symmetric static space-time. We will also present the relevant conservation laws. These
space-times, which are translationally symmetric and axis symmetric, have been thoroughly studied in the cosmology
literature. To implement the geodesic Lagrangian method over this space led to the discovery of the Noether symmetries
and accompanying conservation laws [2, 13]; hence, here via intriguing generalization, we will focus on the minimum
Lagrangian to illustrate the isometries of these space-times.

This article is devised as follows: In section 2, some definitions and explanation of minimal Lagrangian hypersurface
along with an overview of the mathematical framework and tools used in the analysis, are discussed. Section 3 deals
with the study of the isometries of minimal Lagrangian hypersurfaces under the constraint of fixed volume, and
discussion of the results and insights gained from the analysis. In section 4, classification of Noether symmetry is
investigated. Discussion of the conserved field associated with the Noether symmetry is considered in section 5. The
last section, contains some conclusions and final remarks.

2. Preliminaries

Here, we review the Noether symmetries’fundamental definitions and prerequisites from [6, 7, 10]. Let the de-
pendent variable $A depend on variables xi, $A

(.) represents the partial derivative of arbitrary order of $A and

H(xi, $A, $A(1), . . . , $A(r)) = 0 be a partial differential equation. The n-th order extension of a symmetry Γ =

ξi(xK , $B)
∂

∂xi
+ ηA(xK , $B)

∂

∂$A
is formulated by

Γ[r] = Γ +
∑

1≤s≤r

ηAi1...is
∂

∂$A
i1...is

,

where

ηAi = Di(η
A − ξj$A

j ) + ξj$A
ij ,

ηAi1...is = Di1 · · ·Dis(ηA − ξj$A
j ) + ξj$A

ji1...is , s > 1,

where Di =
∂

∂xi
+$A

i

∂

∂$A
+$A

ij

∂

∂$A
j

+ · · · .

Assume that Υ(xi, $A, $A
(1), . . . , $

A
(r)) is a Lagrangian related to H(xi, $A, $A

(1), . . . , $
A
(r)) = 0. If Euler-Lagrange

operator
δ

δ$A
is given by

δ

δ$A
=

∂

∂$A
+
∑
s≥1

(−1)sDi1 · · ·Dis

∂

∂$A
i1...is

,

then the Lagrangian Υ has to satisfy the following Euler-Lagrange equation

δΥ

δ$A
= 0.

Examining the invariance of the variational integral I =
∫

Υ(xi, $A, $A(1) . . . , $A(r)) under the influence of a gauge

vector field A = Ai∂i = Ai(xk, $A)
∂

∂xi
results in the definition of a Noether symmetry Γ of the Lagrangian Υ. For

Γ to be considered a Noether symmetry with respect to gauge field A, it must meet the following requirements:

Γ[r−1]Υ + ΥDiξ
i = DiA

i. (2.1)

The components of the conserved vector field T = T i∂i are specified as follows:

T i = Ai + (ξk$,k − η)
∂Υ

∂$,i
− ξiΥ. (2.2)
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Killing fields generates the infinitesimally small continuous isometries. If the Lie derivative of the metric tensor g
respect to Γ is equal to zero, then vector field Γ = xi ∂

∂xi is a Killing field, i.e.

∓Γg = 0,

so, we have

gab,cx
c + gbcx

c
,a + gacx

c
,b = 0. (2.3)

3. Isometries of minimal Lagrangian hypersurface with fixed volume

Suppose that the hypersurface p = p(t, θ, z) embedded in the following cylindrical symmetric static space-time
(CSSS)

ds2 = eυ(p)dt2 − dp2 − eλ(p)a2dθ2 − eµ(p)dz2, (3.1)

where the constant a has units of length. The Lagrangian for an area-minimizing hypersurface p = p(t, θ, z) with a
fixed volume is described as follows [3]:

Υ = a
√
|h|
√
e−νp2

,t − (e−λ/a2)p2
,θ − e−µp2

,z − 1 + aγ

∫ √
|h|dp, (3.2)

where |h| = eν+λ+µ. Consequently, the Noether symmetry Γ = ξ1∂t + ξ2∂θ + ξ3∂z + η∂p satisfying the condition (2.1)
respect to the Lagrangian (3.2) gives:

E1 : η(e−νp2
,t(|h|,p − |h|ν′)− |h|,p) + 2|h|e−νp,t(η,t + p,tη,p − ξ1

,tp,t − ξ2
,tp,θ − ξ3

,tp,z

−ξ1
,pp

2
,t − ξ2

,pp,tp,θ − ξ3
,pp,tp,z) + 2(|h|e−νp2

,t − |h|)(ξ1
,t + ξ2

,θ + ξ3
,z + p,tξ

1
,p

+p,θξ
2
,p + p,zξ

3
,z) = 0,

E2 : η(
1

a2
e−λp2

,θ(λ
′|h| − |h|,p)− |h|,p)−

2

a2
e−λp,θ(η,θ + p,θη,p − ξ1

,θp,t − ξ2
,θp,θ

−ξ3
,θp,z − ξ1

,pp,θp,t − ξ2
,pp

2
,θ − ξ3

,pp,θp,z)− 2|h|(1 +
1

a2
e−λp2

,θ)(ξ
1
,t + ξ2

θ + ξ3
,z

+p,tξ
1
,p + p,θξ

2
,p + p,zξ

3
,p) = 0,

E3 : η(e−µp2
,z(µ

′|h|−|h|,p)− |h|,p)− 2e−µp,z(η,z + p,zη,p − ξ1
,zp,t − ξ2

,zp,θ − ξ3
,zp,z

−ξ1
,pp,zp,t − ξ2

,pp,zp,θ − ξ3
,pp

2
,z)− 2|h|(1 + e−µp2

,z)(ξ
1
,t + ξ2

,θ + ξ3
,z + p,tξ

1
,p + p,θξ

2
,p

+p,zξ
3
,p) = 0,

E4 : −η|h|,p+|h|e−νp,t(η,t + p,tη,p − ξ1
,tp,t − ξ2

,tp,θ − ξ3
,tp,z − ξ1

,pp
2
,t − ξ2

,pp,tp,θ

−ξ3
,pp,tp,z)−

1

a2
e−λp,θ(η,θ + p,θη,p − ξ1

,θp,t − ξ2
θp,θ − ξ3

,θp,z − ξ1
,pp,tp,θ − ξ2

,pp
2
,θ

−ξ3
,pp,θP,z)− 2|h|(ξ1

,t + ξ2
,θ + ξ3

,z + p,tξ
1
,p + p,θξ

2
,p + p,zξ

3
,p) = 0,

E5 : −η|h|,p+e−ν |h|p,t(η,t + p,tη,p − ξ1
,tp,t − ξ2

,tp,θ − ξ3
,tp,z − ξ1

,pp
2
,t − ξ2

,pp,tp,θ − ξ3
,pp,tp,z)

−e−µ|h|p,z(η,z + p,zη,p − ξ1
,zp,t − ξ2

,zp,θ − ξ3
,zp,z − ξ1

,pp,tp,z − ξ2
,pp,θp,z − ξ3

,pp
2
,z)

−2|h|(ξ1
,t + ξ2

,θ + ξ3
,z + p,tξ

1
,p + p,θξ

2
,p + p,zξ

3
,p) = 0,

E6 : η|h|,p+
1

a2
e−λ|h|p,θ(η,θ + p,θη,p − ξ1

θp,t − ξ2
,θp,θ − ξ3

,θp,z − ξ1
,pp,tp,θ − ξ2

,pp
2
,θ

−ξ3
,pp,θp,z) + e−µ|h|p,z(η,z + p,zη,p − ξ1

,zp,t − ξ2
,zp,θ − ξ3

,zp,z − ξ1
,pp,tp,z − ξ2

,pp,θp,z

−ξ3
,pp

2
,z) + 2|h|(ξ1

,t + ξ2
,θ + ξ3

,z + p,tξ
1
,p + p,θξ

2
,p + p,zξ

3
,p) = 0,

E7 : γη
√
|h|+ γ

∫ √
|h|dp(ξ1

,t + ξ2
,θ + ξ3

,z + p,tξ
1
,p + p,θξ

2
,p + p,zξ

3
,p) = A1

,t +A2
,θ +A3

,z

+p,tA
1
,p + p,θA

2
,p + p,zA

3
p.
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Now we find that the following relations by equating the constant coefficients and the coefficients of p,t, p,θ, p,z into
the expressions E1, . . . , E7

|h|,pη + 2|h|(ξ1
,t + ξ2

,θ + ξ3
,z) = 0, (3.3a)

e−νη,t − ξ1
,p = 0, (3.3b)

1

a2
e−λη,θ + ξ2

,p = 0, (3.3c)

e−µη,z + ξ3
,p = 0. (3.3d)

Also, by Comparing the 2nd power coefficients of p,t, p,θ, p,z in the phrases E1, . . . , E7 and applying the formula
(3.3a), we get that

2η,p − 2ξ1
,t − ν′η = 0, (3.4a)

λ′η − 2η,p + 2ξ2
,θ = 0, (3.4b)

µ′η − 2η,p + 2ξ2
,z = 0, (3.4c)

η,p(e
−ν − 1

a2
e−λ)− e−νξ2

,t +
1

a2
e−λξ1

,θ = 0, (3.4d)

η,p(e
−ν − e−µ)− e−νξ3

,t + e−µξ1
,z = 0, (3.4e)

η,p(
1

a2
e−λ + e−µ)− 1

a2
e−λξ3

,θ − e−µξ2
,z = 0. (3.4f)

Adding the Equations (3.4b) and (3.4c) together then subtracting with (3.4a), we get that

|h|,pη − 6|h|η,p + 2|h|(ξ1
,t + ξ2

,θ + ξ3
,z) = 0.

According to the above equation and relation (3.3a) we get that η,p = 0, in other words η isn’t a function of p.
Consequently, we find the following determining equations by rewriting the relations (3.3a)-(3.4f)

η,p = 0, η,t − eνξ1
,p = 0, η,θ + a2eλξ2

,p = 0, η,z + eµξ3
,p =0,

ν′η + 2ξ1
,t = 0, λ′η + 2ξ2

,θ = 0, µ′η + 2ξ3
,z = 0, e−λξ1

,θ − a2e−νξ2
,t = 0,

e−µξ1
,z − e−νξ3

,t = 0, e−λξ3
,θ + a2e−µξ2

,z = 0.

Now by applying (2.3), we can easily deduce that the Noether symmetry Γ = ξ1∂t + ξ2∂θ + ξ3∂z + η∂p is Killing field.
Similarly, gauge vector field satisfies the following relations by comparing the coefficients of the condition E7,

A = A1(t, θ, z, p)∂t +A2(t, θ, z, p)∂θ +A3(t, θ, z, p)∂z:

γ
√
|h|η + γ

∫ √
|h|dp(ξ1

,t + ξ2
,θ + ξ3

,z) = A1
,t +A2

,θ +A3
,z, (3.5a)

γξ1
,p

∫ √
|h|dp = A1

,p, (3.5b)

γξ2
,p

∫ √
|h|dp = A2

,p, (3.5c)

γξ3
,p

∫ √
|h|dp = A3

,p. (3.5d)

4. Classification of Noether symmetry

Here, we obtain the Killing fields of some particular types of the CSSS metric by solving the determining equations.
Then, assuming that some gauge fields satisfy the Eqs. (3.5a)-(3.5d), we may derive the Noether symmetries and
related gauge vector fields for minimal Lagrangian with fixed volume among these isometries.

Case I: µ = ν = λ = 0.
The first interesting case of the CSSS metric is called wrapped Minkowski space ( see [8] ). In this case, all of

the Killing fields ΓI1−10 are accepted as the Noether symmetries. Since the maximum number of linearly-independent
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Killing vectors is equal to 1
2n(n+ 1) = 10, where n = 4 is the dimension of the CSSS, the wrapped Minkowski space

is maximally symmetric, so it has the constant curvature [14].

ΓI1 = ∂t, with zero gauge field,

ΓI2 = ∂θ, with zero gauge field,

ΓI3 = ∂z, with gauge field AI
3 = γp∂z,

ΓI4 = ∂p, with gauge field AI
4 =

γ

3
(t∂t + θ∂θ + z∂z),

ΓI5 = θ∂t +
t

a2
∂θ, with zero gauge field,

ΓI6 = z∂t + t∂z, with zero gauge field,

ΓI7 = θ∂z −
z

a2
∂θ, with zero gauge field,

ΓI8 = p∂t + t∂p, with gauge field AI
8 =

γ

2
(p2 + t2)∂t,

ΓI9 = − p

a2
∂θ + θ∂p, with gauge field AI

9 =
γ

2
(θ2 − p2

a2
)∂θ,

ΓI10 = −p∂z + z∂p, with gauge field AI
10 =

γ

2
(z2 − p2)∂z.

In the following the constant p0 has units of length.
Case II: µ = ln( pp0 )2, ν = λ = 0.

The Lagrangian for a minimal hypersurface with a fixed volume exhibits the following six-dimensional algebra of
Noether symmetries in the given metric.

ΓII1 = ∂t, with zero gauge field,

ΓII2 = ∂θ, with zero gauge field,

ΓII3 = ∂z, with zero gauge field,

ΓII4 =
t

a2
∂θ + θ∂t, with zero gauge field,

ΓII5 = − cos(
z

p0
)∂p +

p0

p
sin(

z

p0
)∂z, with gauge field AII

5 = −γp
2

sin(
z

p0
)∂z,

ΓII6 = sin(
z

p0
)∂p +

p0

p
cos(

z

p0
)∂z, with gauge field AII

6 = −γp
2

cos(
z

p0
)∂z.

The rest of Killing fields do not satisfy the relations (3.5a)-(3.5d) so they are not Noether symmetries. They are listed
below:

ΓII7 =
p0t

p
cos(

z

p0
)∂z + t sin(

z

p0
)∂p + p sin(

z

p0
)∂t,

ΓII8 =
p0t

p
sin(

z

p0
)∂z − t cos(

z

p0
)∂p − p cos(

z

p0
)∂t,

ΓII9 =
p

a2
cos(

z

p0
)∂θ − θ cos(

z

p0
)∂p +

p0θ

p
sin(

z

p0
)∂z,

ΓII10 =
p

a2
sin(

z

p0
)∂θ − θ sin(

z

p0
)∂p −

p0θ

p
cos(

z

p0
)∂z.

So we have a ten of linearly-independent Killing vectors, therefore the space is maximally symmetric.
Case III: µ = ν = λ = ln( pp0 )2l, where l is real constant and (l 6= 0, 1).
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The third case gives the Segrá type [1,(11)1], Petrov type D which renders a tachyonic fluid and we can exegesis again
as an anisotropic fluid with a proper cosmological constant [12]. All of the following Killing fields are accepted as the
strict Noether symmetries of Lagrangian that minimizes the area. Therefore, we obtain the following six-dimensional
algebra of strict Noether symmetry

ΓIII1 = ∂t, with zero gauge field,

ΓIII2 = ∂θ, with zero gauge field,

ΓIII3 = ∂z, with zero gauge field,

ΓIII4 =
t

a2
∂θ + θ∂t, with zero gauge field,

ΓIII5 = t∂z + z∂t, with zero gauge field,

ΓIII6 =
z

a2
∂θ − θ∂z, with zero gauge field.

Case IV: ν = ln( pp0 )2, µ = λ = 0.

The Lagrangian for a minimal hypersurface with a constant volume has been shown to admit a six-dimensional
algebra of Noether symmetry within this metric.

ΓIV1 = ∂t, with zero gauge field,

ΓIV2 = ∂θ, with zero gauge field,

ΓIV3 = ∂z, with zero gauge field,

ΓIV4 = θ∂z − z

a2
∂θ, with zero gauge field,

ΓIV5 = cosh(
t

p0
)∂p −

p0

p
sinh(

t

p0
)∂t, with gauge field AIV

5 =
γp

2
sinh(

t

p0
)∂t,

ΓIV6 = sinh(
t

p0
)∂p −

p0

p
cosh(

t

p0
)∂t, with gauge field AIV

6 =
γp

2
cosh(

t

p0
)∂t.

The rest of Killing fields do not satisfy the relations (3.5a)-(3.5d) so they are not Noether symmetries. They are listed
below:

ΓIV7 = z sinh(
t

p0
)∂p −

p0z

p
cosh(

t

p0
)∂t − p sinh(

t

p0
)∂z,

ΓIV8 = z cosh(
t

p0
)∂p −

p0z

p
sinh(

t

p0
)∂t − p cosh(

t

p0
)∂z,

ΓIV9 = θ cosh(
t

p0
)∂p −

p

a2
cosh(

t

p0
)∂θ −

p0θ

p
sinh(

t

p0
)∂t,

ΓIV10 = θ sinh(
t

p0
)∂p −

p

a2
sinh(

t

p0
)∂θ −

p0θ

p
cosh(

t

p0
)∂t.

So we have a ten of linearly-independent Killing vectors, therefore the space is maximally symmetric.
The Lagrangian for a minimal hypersurface with a constant volume has been determined to accept all four Killing

fields as strict Noether symmetries in each of the four cases considered. As a result, in each case, we obtain a 4-
dimensional algebra with strict Noether symmetry. The first two cases give the Segrá type [1,111], Petrov type D
space, the third case gives the Segrá type [(1,1)(11)], Petrov type D space and the last case gives the Segrá type
[1,(11)1], Petrov type D space [12].
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Case V: ν = ln( pp0 )2, µ = 0, λ = ln( pa )2.

ΓV1 = ∂t, with zero gauge field,

ΓV2 = ∂θ, with zero gauge field,

ΓV3 = ∂z, with zero gauge field,

ΓV4 =
t

p2
0

∂θ + θ∂t, with zero gauge field.

Case VI: ν = µ = ln( pp0 )2, λ = 0.

ΓV I1 = ∂t, with zero gauge field,

ΓV I2 = ∂θ, with zero gauge field,

ΓV I3 = ∂z, with zero gauge field,

ΓV I4 = t∂z + z∂t, with zero gauge field.

Case VII: ν = 0, µ = λ = ln( pa )2.

ΓV II1 = ∂t, with zero gauge field,

ΓV II2 = ∂θ, with zero gauge field,

ΓV II3 = ∂z, with zero gauge field,

ΓV II4 = θ∂z −
z

a2
∂θ, with zero gauge field.

Case VIII: ν = ln( pp0 )2l, µ = λ = ln( pp0 )2r (l 6= r, l, r 6= 0, 1).

ΓV III1 = ∂t, with zero gauge field,

ΓV III2 = ∂θ, with zero gauge field,

ΓV III3 = ∂z, with zero gauge field,

ΓV III4 = θ∂z −
z

a2
∂θ, with zero gauge field.

5. Conserved field

In this section, we will use the (2.2), formula to find the conserved field T = T 1∂t+T 2∂θ+T 3∂z for various Noether
symmetries with non-zero gauge fields.

• For the Noether symmetry ΓI4 = ∂p with gauge field AI
4 =

γ

3
(t∂t + θ∂θ + z∂z), we find the following conserved

field:

TI
4 = (

γ

3
t− ap,t

ΥI
)∂t + (

γ

3
θ − p,θ

aΥI
)∂θ + (

γ

3
z − ap,z

ΥI
)∂z,

where ΥI =

√
p2
,t +

1

a2
p2
,θ − p2

,z − 1.

• For the Noether symmetry ΓI8 = p∂t + t∂p with gauge field AI
8 =

γ

2
(p2 + t2)∂t, the following conserved field

resulted:

TI
8 =

(γ
2

(p2 + t2) +
ap,t
ΥI

(pp,t − t)− p(aΥI + γp)
)
∂t +

p,θ
aΥI

(pp,t − t)∂θ −
ap,z
ΥI

(pp,t − t)∂z.
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• For the Noether symmetry ΓII5 =
p0

p
sin(

z

p0
)∂z − cos(

z

p0
)∂p with gauge field AII

5 = −γ
2
p sin(

z

p0
)∂z, we have the

following conserved field:

TII
5 =

app,t
p0ΥII

(
p0

p
sin(

z

p0
)p,z + cos(

z

p0
)

)
∂t +

pp,θ
ap0ΥII

(
p0

p
sin(

z

p0
)p,z + cos(

z

p0
)

)
∂θ(

−γ
2
p sin(

z

p0
) +

p0p,z
pΥII

(
p0

p
sin(

z

p0
) + cos(

z

p0
)

)
+ a(ΥII +

γ

2
p) sin(

z

p0
)

)
∂z,

where ΥII =

√
p2
,t +

1

a2
p2
,θ − (

p0

p
)2p2

,z − 1.

• For the Noether symmetry ΓIV5 = cosh(
t

p0
)∂t−

p0

p
sinh(

t

p0
)∂t with gauge field AIV

5 =
γ

2
p sinh(

t

p0
)∂t, we get that:

TIV
5 =

(
γ

2
p sinh(

t

p0
)− ap0p,t

pΥIV

(
p0p,t
p

sinh(
t

p0
) + cosh(

t

p0
)

)
+ a(ΥIV +

γ

2
p) sinh(

t

p0
)

)
∂t

− pp,θ
ap0ΥIV

(
p0p,t
p

sinh(
t

p0
) + cosh(

t

p0
)

)
∂θ +

app,z
p0ΥIV

(
p0p,t
p

sinh(
t

p0
) + cosh(

t

p0
)

)
∂z,

where ΥIV =

√
(
p0

p
)2p2

,t +
1

a2
p2
,θ − p2

,z − 1.

6. Conclusion

We have shown the area-minimizing hypersurface Lagrangian in cylindrically symmetric static space-time and shown
that the related Lagrangian’s Noether symmetries are components of the Killing algebra in CSSS space. By reducing
the order of the differential equation, Noether symmetries are useful tools for identifying conservation laws that can be
utilized to obtain the solution of the area-minimizing hypersurface equation. For example, if we choose the first case of

CSSS, the area-minimizing hypersurface equation which follows from the Lagrangian Υ = a(
√
p2
t + 1

a2 p
2
θ − p2

z − 1+γp)

is a PDE of order two with independents variables {t, θ, z}. By choosing ∂t, ∂z as the Noether symmetries and the
reduction of the equation by these symmetries, we find that the following ODE

aq,θθ − γ(q2
,θ − a2)

√
q2
,θ − a2 = 0,

where p(t, θ, z) = q(θ). To convert the aforementioned equation to quadratures, one might use the remaining Noether
symmetries in case I. For further information on how to reduce the area-minimizing hypersurface equation, see [5, 11].
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