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Abstract

In this paper, an efficient high-order compact finite difference (HOCFD) scheme is introduced for solving gener-

alized Lane-Emden equations. For nonlinear types, it is shown that a combined quasilinearization and HOCFD

scheme gives excellent results, while a few quasilinear iterations are needed. Then the proposed method is de-
veloped for solving the system of linear and nonlinear Lane-Emden equations. Some numerical examples are

provided, and the obtained results of the proposed method are then compared with previous well-established
methods. The numerical experiments show the accuracy and efficiency of the proposed method.
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1. Introduction

The main objective in this paper is to find the numerical solution to generalized Lane-Emden equation

u′′(x) + p(x)u′(x) + F (u, x) = h(x), a ≤ x ≤ b, (1.1)

with boundary conditions

u(a) = ua, u(b) = ub, (1.2)

and the system of Lane-Emden equations

u′′ + p1(x)u′ + F1(u, v) = h1(x), (1.3)

v′′ + p2(x)v′ + F2(u, v) = h2(x), (1.4)

with known boundary conditions u(a1, y), u(b1, y), u(x, a2) and u(x, b2) for a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2.
The Lane-Emden equation was first studied by astrophysicists J. H. Lane and R. Emden [9] and is categorized as

a singular initial value problem. A lot of researches containing both analytical as well as numerical techniques have
been presented for the solution of Lane-Emden equations and system of Lane-Emden equations, such as Adomian
decomposition method [30, 31], series solutions [25], wavelets methods [28, 33], differential transform method [12],
Bernstein and Legendre operational matrix of differentiation [20, 21], rational Legendre pseudospectral approach [24],
Homotopy analysis method [29], modified Adomian decomposition method [8], Hermit functions collocation method
[23], B-spline expansion and collocation approach [13, 27], a Jacobi-Gauss collocation method [3],collocation method
based on cubic Hermit spline functions [18], Chebyshev neural network-based model approach [15], Picard-reproducing
kernel Hilbert space method [1], generalized Chebyshev function methods [22], compact finite difference method [4],
and Laguerre collocation method [35].

High-Order Compact Finite Difference (HOCFD) schemes [7, 14, 17] have been studied to approximate the function
derivatives in grid points. The HOCFD schemes give high and better resolution characteristics as compared to classical
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finite difference schemes for the same number of grid points. This feature brings them closer to the spectral methods
while the freedom in choosing the mesh geometry and the boundary conditions is maintained. Moreover, as compared
to classical finite difference schemes, the HOCFD schemes have a simpler stencil, less computation cost and higher
efficiency. This paper considers the HOCFD scheme for solving the generalized Lane-Emden equation and the system
of Lane-Emden equations with known boundary conditions. In order to solve boundary value problems, we need to
adjust HOCFD formulas with known boundary conditions. Hence, an HOCFD scheme is presented such that the
function derivatives are considered only in grid points while the function values are known at boundary points. We
show that applying the HOCFD scheme on a linear Lane-Emden equation leads to solving a linear system. The
quasilinearization method (QLM) is an iterative method and was originally introduced by Bellman and Kalaba [2, 11]
as a generalization of the Newton–Raphson method [5] to solve individual or systems of nonlinear ordinary and partial
differential equations. Hence, in this paper, the nonlinear Lane-Emden equation is linearized by the qausilinearization
method. Then, the proposed HOCFD method is used to solve the nonlinear Lane-Emden equations. However, the
proposed method applied on nonlinear Lane-Emden equations yields to a linear system in every QLM iteration, but it
is shown that a few iterations already provide suitable solutions. The second main goal in this paper is to extend the
proposed method for solving the system of Lane-Emden equations. The merit of the proposed method is simplicity
in implementation, high accuracy, and high convergence speed. The numerical experiments show the efficiency of the
proposed method.

2. Compact finite difference scheme

Consider the function u(x) on the interval [a, b] with grid points

a = x0 < x1 < · · · < xn−1 < xn = b, (2.1)

with equal distance h = (b− a)/n. The classical HOCFD schemes are implicit and have a form of [14, 17]

A
(k)
i

 u(k)(x0)
...

u(k)(xn)

 = B
(k)
i

 u(x0)
...

u(xn)

 , (2.2)

where A
(k)
i and B

(k)
i are corresponding (n + 1) × (n + 1) matrices to the k-th derivative of u(x) of order i. But for

solving the boundary value problems, we have to obtain the HOCFD formulas as

A
(k)
i

 u(k)(x1)
...

u(k)(xn−1)

 = B
(k)
i

 u(x1)
...

u(xn−1)

+ b
(k)
i , (2.3)

where A
(k)
i and B

(k)
i are the corresponding (n − 1) × (n − 1) matrices to the k-th derivative of u(x) of order i, and

the (n − 1) vector b
(k)
i is a known vector contain the boundary values u(x0) and u(xn). Moreover, for simplicity in

numerical computations and also the stability of the method, we can choose the coefficient matrix A
(k)
i as a symmetric

diagonally dominant Toeplitz matrix. For this purpose, we use the method of undetermined coefficients which was
introduced by Lele [14]. For first derivative of order 4 in the interior points (2.1), we have [14]

1

4
u′i−1 + u′i +

1

4
u′i+1 =

3

4h
(ui+1 − ui−1), i = 2, 3, . . . , n− 2.

For imposing the boundary conditions, we can write [7]

u′1 +
1

4
u′2 =

1

h
[a0u0 + a1u1 + a2u2 + a3u3 + a4u4] + o(h4),

1

4
u′n−2 + u′n−1 =

1

h
[bnun + bn−1un−1 + bn−2un−2 + bn−3un−3 + bn−4un−4] + o(h4).
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By matching the Taylor expansion coefficients of both sides of the above equations, we have A
(1)
4 u′ = B

(1)
4 u + b

(1)
4 ,

where

A
(1)
4 =


1 1

4
1
4 1 1

4
. . .

. . .
. . .

1
4 1 1

4
1
4 1

 , B
(1)
4 =

1

h


−1 3

2 − 1
3

1
16

− 3
4 0 3

4
. . .

. . .
. . .

− 3
4 0 3

4
− 1

16
1
3 − 3

2 1

 ,

and

b
(1)
4 =

1

h

(
− 11

48u0 0 . . . 0 11
48un

)T
.

Similar to the above scheme, for the second derivative, we can write A
(2)
4 u′′ = B

(2)
4 u + b

(2)
4 where

A
(2)
4 =


1 1

10
1
10 1 1

10
. . .

. . .
. . .

1 1 1
10

1
10 1

 , B
(2)
4 =

1

h2



− 23
15

1
4

7
15 − 11

120
6
5 − 12

5
6
5

. . .
. . .

. . .

. . .
. . .

. . .
6
5 − 12

5
6
5

− 11
120

7
15

1
4 − 23

15


,

and b
(2)
4 = 1

h2

(
109
120u0 0 . . . 0 109

120un
)T
. Also A

(1)
6 u′ = B

(1)
6 u + b

(1)
6 , where

A
(1)
6 =


1 1

3
1
3 1 1

3
. . .

. . .
. . .

1
3 1 1

3
1
3 1

 , B
(1)
6 =

1

h



− 17
12

83
36 − 11

9
2
3 − 37

180
1
36

− 7
9 0 7

9
1
36

− 1
36 − 7

9 0 7
9

1
36

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

− 1
36 − 7

9 0 7
9

1
36

− 1
36 − 7

9 0 7
9

− 1
36

37
180 − 2

3
11
9 − 83

36
17
12


,

and b
(1)
6 = 1

h

(
− 7

45u0 − 1
36u0 0 . . . 0 1

36un
7
45un

)T
. Also A

(2)
6 u′′ = B

(2)
6 u+ b

(2)
6 , where

A
(2)
6 =


1 2

11
2
11 1 2

11
. . .

. . .
. . .

1 1 2
11

2
11 1

 ,
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B
(2)
6 =

1

h2



− 129
220 − 81

44
557
198 − 69

44
111
220 − 39

1980
12
11 − 51

22
12
11

3
44

3
44

12
11 − 51

22
12
11

3
44

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
3
44

12
11 − 51

22
12
11

3
44

3
44

12
11 − 51

22
12
11

− 39
1980

111
220 − 69

44
557
198 − 81

44 − 129
220


,

and

b
(2)
6 =

1

h2

(
1481
1980u0

3
44u0 0 . . . 0 3

44un
1481
1980un

)T
.

Moreover, we have A
(1)
8 u′ = B

(1)
8 u + b

(1)
8 where

A
(1)
8 =



1 4
9

1
36

4
9 1 4

9
1
36

1
36

4
9 1 4

9
1
36

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
1
36

4
9 1 4

9
1
36

1
36

4
9 1 4

9
1
36

4
9 1


,

B
(1)
8 = 1

h



− 481
280

1103
360 − 1889

720
115
48 − 317

216
641
1080 − 239

1680
99

6466
− 26

27
7
18

2
9

65
108 − 14

45
7
54 − 2

63
1

288
− 25

216 − 20
27 0 20

27
25
216

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

− 25
216 − 20

27 0 20
27

25
216

− 1
288

2
63 − 7

54
14
45 − 65

108 − 2
9 − 7

18
26
27

− 99
6466

239
1680 − 641

1080
317
216 − 115

48
1889
720 − 1103

360
481
280


,

and

b
(1)
8 =

1

h

(
− 709

6048u0 − 1217
30240u0 0 . . . 0 1217

30240un
709
6048un

)T
.
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Also, we have A
(2)
8 u′′ = B

(2)
8 u + b

(2)
8 where

A
(2)
8 =



1 344
11799

23
2358

344
1179 1 344

1179
23

2358
23

2358
344
1179 1 344

1179
23

2358
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
23

2358
344
1179 1 344

1179
23

2358
23

2358
344
1179 1 344

1179
23

2358
344
1179 1


,

B
(2)
8 = 1

h2



7685
22008 − 1983151

424440
1630439
212220

44051
6288

1892837
424440 − 156895

84888
6197
13755 − 583309

11884320
44663
41265 − 6887

2620
89269
53055 − 12173

18864
1081
1965 − 49289

212220
2369
41265 − 2783

440160
155
786

320
393 − 265

131
320
393

155
786

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
155
786

320
393 − 265

131
320
393

155
786

− 2783
440160

2369
41265 − 49289

212220
1081
1965 − 12173

18864
89269
53055 − 6887

2620
44663
41265

− 583309
11884320

6197
13755 − 156895

84888
1892837
424440

44051
6288

1630439
212220 − 1983151

424440
7685
22008


,

and

b
(2)
8 =

1

h2

(
7525099
11884320u0

1664387
11884320u0 0 . . . 0 1664387

11884320un
7525099
11884320un

)T
.

3. Fourier analysis of error

Fourier analysis provides an effective way to analysis the error of difference schemes and is widely used to obtain
the dispersion and dissipation errors which quantifies the resolution characteristics of difference approximations [14].
We assume that u(x) is periodic over the domain [0, L], then it can be written as

u(x) =

N/2∑
k=−N/2

ûke
2πlkx
L , (3.1)

where l is imaginary unit and N is the number of mesh points with domain step size h = L/N . By defining a scaled
wave number ω = 2πkh

L = 2πk
N and a scaled coordinate s = x

h , the Fourier modes simplify to eiωs. The domain of
ω is then [0, π]. The exact first and second derivatives of (3.1) (with respect to s) provide a function with Fourier
coefficients

û′k = lωûk, û′′k = −ω2ûk, (3.2)

respectively. The difference errors of the first and second derivative schemes are obtained by comparing the Fourier
coefficients of the derivatives obtained from the differencing schemes

(û′k)fd = lω′ûk, (û′′k)fd = −ω′′ûk,

with the exact Fourier coefficients (3.2), where ω′ and ω′′ represent the modified wavenumbers for tha first and second
derivatives, respectively. The finite difference scheme for the first and second derivatives, correspond to functions
ω′(ω) and ω′′(ω), respectively. Spectral methods provide ω′ = ω for ω 6= π (ω′ = 0 for ω = π ) and also ω′′ = ω2.
Hence difference between ω′(ω) and ω, and also difference between ω′′(ω) and ω2 are two measures of errors.
The compact finite difference schemes for the first derivative is corresponded to

ω′(ω) =
a sin(ω) + (b/2) sin(2ω) + (c/3) sin(3ω)

1 + 2α cos(ω) + 2β cos(2ω)
,
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Figure 1. The modified wavenumbers for fourth, sixth and eighth order compact finite difference
schemes for first derivative approximation (a) and second derivative approximation (b).

where  α = 1
4 , β = 0, a = 3

2 , b = 0, c = 0, for fourth order compact scheme,
α = 1

3 , β = 0, a = 14
9 , b = 1

9 , c = 0, for sixth order compact scheme,
α = 4

9 , β = 1
36 , a = 40

27 , b = 25
54 , c = 0, for eighth order compact scheme,

Also for the second derivative, we can write

ω′′(ω) =
2a(1− cos(ω)) + (b/2)(1− cos(2ω)) + (2c/9)(1− cos(3ω))

1 + 2α cos(ω) + 2β cos(2ω)
,

where  α = 1
10 , β = 0, a = 6

5 , b = 0, c = 0, for fourth order compact scheme,
α = 2

11 , β = 0, a = 12
11 , b = 3

11 , c = 0, for sixth order compact scheme,
α = 344

1179 , β = 23
2358 , a = 320

393 , b = 310
393 , c = 0, for eighth order compact scheme.

Figure 1 shows the modified wavenumbers ω′ and ω′′ for the fourth, sixth and eighth compact finite difference schemes.

In the following, we use the HOCFD formulas (2.3) to solve the Lane-Emden Equation (1.1) with boundary condi-
tions (1.2).

4. Lane-Emden equations

Consider the generalized Lane-Emden equation

u′′(x) + p(x)u′(x) + F (u, x) = h(x), a ≤ x ≤ b, (4.1)

with boundary conditions

u(a) = ua, u(b) = ub. (4.2)

We discretize the interval [a, b] to (n+ 1) grid points

a = x0 < x1 < · · · < xn−1 < xn = b, (4.3)

with equal distance h = (b − a)/n. We consider the Lane-Emden Equation (4.1) in cases of linear and nonlinear
function F (u, x).
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Table 1. The maximum absolute error and CPU time for Example 4.1.

h
Order 4 Order 6 Order 8

Error CPU time Error CPU time Error CPU time
h = 1

10 6.3297e-16 0.002068 s 1.5266e-16 0.002143 s 6.4705e-16 0.002377 s

4.1. Linear Lane-Emden equations. Without loss generality, we consider the linear Lane-Emden Equation (4.1)
as

u′′(x) + p(x)u′(x) + g(x)u(x) = h(x), a ≤ x ≤ b, (4.4)

with known boundary conditions u(a) = ua and u(b) = ub. Let us U be the vector of function values u(x) in the
interior grid points (4.3) as

U =
(
u(x1), . . . , u(xn−1)

)T
. (4.5)

Then, the Equation (4.4) can be written in interior grid points (4.3) as

U ′′ + diagn−1
i=1 (p(xi))U

′ + diagn−1
i=1 (g(xi))U = diagn−1

i=1 (h(xi)), (4.6)

where

diagn−1
i=1 (f(xi)) =

 f(x1)
. . .

f(xn−1)

 . (4.7)

By using HOCFD formulas (2.3) for the first and second derivatives of U and substituting in (4.6), we have the
following linear system

M (k)U = R(k), (4.8)

where M (k) and R(k) are the matrices corresponding to approximate solution U of order k = 4, 6, 8 as

M (k) =
(
A

(k)
2

)−1

B
(k)
2 + diagn−1

i=1 (p(xi))
(
A

(k)
1

)−1

B
(k)
1 + diagn−1

i=1 (g(xi)), (4.9)

R(k) = diagn−1
i=1 (h(xi))−

(
A

(k)
2

)−1

b
(2)
k − diag

n−1
i=1 (p(xi))

(
A

(k)
1

)−1

b
(1)
k . (4.10)

The linear system (4.8) gives an approximate solution of the Lane-Emden Equation (4.4) of orders k = 4, 6, 8. Here, we
consider some linear Lane-Emden equations from the literature. Through this paper, all numerical experiments where
done using MATLAB 2018a on a computer with configuration: Intel(R) Core(TM) i5-5300U @2.30 GHz processor.
For the same spatial and time step sizes, the rate of convergence of the proposed method is defined as

Roc =
log(ErrornewErrorold

)

log(hnewhold
)

.

Example 4.1. [10, 31, 33] Consider the Lane-Emden Equation (4.4) on x ∈ [0, 1] with parameters p(x) = 8
x , g(x) = x,

h(x) = −30x+44x2−x4 +x5 and boundary conditions u0 = u1 = 0. The exact solution of this boundary-value problem
is u(x) = x4 − x3. Table 1 shows the maximum absolute error and CPU times for h = 1/10. It can be seen that the
obtained solutions by the proposed method are in excellent agreement with the exact solution (up to machine epsilon).

Example 4.2. [1, 9, 10, 20–22, 30] We consider the linear Lane-Emden equation

u′′(x) +
2

x
u′(x) + um(x) = 0, 0 ≤ x ≤ 1, (4.11)

with known boundary conditions u0 and u1. This problem is modeled in the thermal behavior of a spherical cloud of
gas action under the mutual attraction of its molecules and is subject to classical laws of thermodynamics.

For m = 0, the Equation (4.11) is a version of (4.4) with parameters p(x) = 2
x , g(x) = 0, h(x) = −1. The exact

solution for this problem is u(x) = 1 − x2

6 . Table 2 gives the maximum absolute errors, CPU times, and the rate of
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Table 2. The maximum absolute error and CPU time for m = 0 for Example 4.2 by the proposed
method for given step size h.

h
Order 4 Order 6 Order 8

Error CPU time Error CPU time Error CPU time
h = 1

10 4.8850e-15 0.000331 s 3.4417e-15 0.000348 s 8.6597e-15 0.000542 s

Table 3. The maximum absolute error and CPU time for m = 1 for Example 4.2 by the proposed
method with given step sizes h.

h
Order 4 Order 6 Order 8

Error CPU time Roc Error CPU time Roc Error CPU time Roc
h = 1

10 1.5540e-07 0.000416 s – 7.0026e-10 0.000450 s – 4.6463e-12 0.000496 s –
h = 1

20 4.5213e-09 0.000465 s 5.1 6.3736e-12 0.000468 s 6.7 4.6074e-14 0.000469 s 6.6
h = 1

40 4.3651e-10 0.000489 s 3.3 4.3077e-14 0.000611 s 7.2 4.6629e-15 0.000624 s 3.3

Table 4. Comparison of the maximum absolute error for m = 1 in Example 4.2 acquired by the
proposed the method of order 8 with step size h = 1

20 with previous works [10, 20, 21].

Proposed method BOMD [21] LOMD [20] LDG [10]
4.6074e-14 5.0e-10 3.0e-07 1e-08

convergence by the proposed method and shows that the obtained solutions are in excellent agreement with the exact
solution (up to machine epsilon). As shown in Equation (4.8), the proposed method for solving linear Lane-Emden
equations leads to a linear system. But as it can be seen in (4.9), the coefficient matrix M (k) is dependent on functions
p(x) and g(x). Hence, for any linear Lane-Emden problem, we have to consider eigenvalues of the corresponding
coefficient matrix M (k). For existing the numerical solution in this example, we plot the eigenvalues of coefficient
matrix M (k) for orders k = 4, 6, 8 in Figure 2 that show the real parts of eigenvalues are negative.

Also, for case m = 1, the Equation (4.11) is a homogeneous version of (4.4) on x ∈ [0, 1] with parameters p(x) = 2
x ,

g(x) = 1, h(x) = 0. The exact solution for this problem is sinx
x . We set the initial condition as u0 = limx−→0

sinx
x .

Table 3 shows the maximum absolute errors, CPU times, and the rate of convergence by the proposed method. Moreover,
for m = 1, comparing between the exact and approximate solutions by the proposed method for h = 1

10 is shown in
Figure 3. In Table 4, the maximum absolute error by the proposed method is compared to existing numerical methods
in literature, such as Bernstein’s operational matrix of differentiation (BOMD) method from [21], Legendre operational
matrix of differentiation (LOMD) method from [20] and the local discontinuous Galerkin (LDG) method from [10].

4.2. Non-Linear Lane-Emden equations. Consider the following nonlinear Lane-Emden equation

u′′(x) + p(x)u′(x) + F (u, x) = h(x), a ≤ x ≤ b, (4.12)

with boundary conditions u(a) = ua and u(b) = ub. Without lost of generality, we consider F (u, x) = F (u) as

F (u) = L(u) +N(u),

where L and N are linear and nonlinear operators, respectively. The quasilinearization method (QLM) was originally
introduced by Bellman and Kalaba [2, 11] as a generalization of the Newton–Raphson method [5] to solve individual
or systems of nonlinear ordinary and partial differential equations. It was shown that the difference between the
exact solution u(x) and rth iteration ur(x) of the QLM is decreasing quadratically and the QLM iterations converge
uniformly to the exact solution [16]. It is important to stress that in view of the quadratic convergence of the QLM,
convergence of two subsequent QLM iterations leads to convergence of the QLM iteration sequence to the exact
solution. Also, Once the quasilinear iteration sequence at some interval starts to converge, it will always continue to
do so. Unlike an asymptotic perturbation series, the QLM yields the required precision once a successful initial guess
generates convergence after a few steps. In order to solve the nonlinear Lane-Emden Equation (4.12), we linearize
the nonlinear operator N by QLM. Then, the HOCFD scheme is used to solve the problem. Let us assume that the
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Figure 2. The eigenvalues of coefficient matrix by the proposed method for the case m = 0 in
Example 4.2.
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Figure 3. Comparing the obtained solution by the HOCFD and exact solutions (a) and the corre-
sponding absolute errors (b) for m = 1 in Example 2 using h = 1

10 .
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Table 5. The maximum absolute error and CPU time for Example 4.3.

h
Order 4 Order 6 Order 8

Error CPU time Roc Error CPU time Roc Error CPU time Roc
h = 1

10 9.9914e-07 – 0.000487 s 4.5128e-08 0.000503 s – 9.8868e-09 0.000515 s –
h = 1

20 3.3462e-08 0.000548 s 4.9 4.7650e-10 0.000612 s 6.5 6.7806e-11 0.000621 s 7.1
h = 1

40 3.7025e-09 0.001609 s 3.1 5.1402e-12 0.002987 s 6.5 1.1535e-13 0.002998 s 9.1

Table 6. Comparison of the maximum absolute error by the proposed method of order 8 with step
size h = 1

20 for Example 4.3.

Proposed method ADM [30] BOMD [21] LOMD [20] LDG [10]
4.6074e-14 3.0000e-8 5.0e-10 3.0e-07 1e-08

difference between ur+1 − ur is small, then we can approximate the nonlinear operator N using the linear terms of
Taylor series as

N(u) ≈ N(ur) + (
∂N

∂u
)r(ur+1 − ur), (4.13)

where r and r+1 denote previous and current iterations, respectively. Hence, we can write the nonlinear Lane-Emden
Equation (4.12) in the current iteration r + 1 as

u′′r+1 + p(x)u′r+1 + g(x)L(ur+1) + g(x)N(ur+1) = h(x).

By (4.13) we have

u′′r+1 + p(x)u′r+1 + g(x)L(ur+1) + g(x)N(ur) + g(x)(
∂N

∂u
)r(ur+1 − ur) = h(x),

thus

u′′r+1 + p(x)u′r+1 + g(x)

(
L(ur+1) + (

∂N

∂u
)rur+1

)
= h(x)− g(x)N(ur) + g(x)(

∂N

∂u
)rur. (4.14)

Hence, by substituting the grid points and by using the HOCFD formulas (2.3) in the above equation, the following
linear system is derived in each iteration of QLM:

M (k)Ur+1 = R(k)
r (Ur), r = 0, 1, . . . (4.15)

where M (k) and R(k) are the matrices corresponding to approximate solution U of order k = 4, 6, 8. Hence, by using
an initial vector U0, we can obtain the solutions of (4.14) for r = 0, 1, .... However, the HOCFD scheme with QLM
for nonlinear Lane-Emden equation leads to an iterative method, but in numerical experiments, we show that a few
iterations is needed to obtain a suitable solution.

Example 4.3. [1, 9, 10, 20–22] We consider the nonlinear Lane-Emden equation

u′′(x) +
2

x
u′(x) + u5(x) = 0, 0 ≤ x ≤ 1, (4.16)

with known boundary conditions u0 and u1. The exact solution is 1√
1+ x2

3

. Table 5 shows the maximum absolute error

and CPU time by the proposed method of orders 4, 6, and 8 for given step size h and iteration numbers r = 5. In
Table 6, the maximum absolute error by the proposed method is compared to Adomian decomposition method (ADM)
from [30], BOMD [21], LOMD [20] and LDG [10].

Example 4.4. We consider the Isothermal gas spheres equation [6, 10, 20, 21, 30]

u′′(x) +
2

x
u′(x) + eu(x) = 0, 0 ≤ x ≤ 1, (4.17)



CMDE Vol. 13, No. 1, 2025, pp. 107-122 117

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

u
(x

)

Wazwaz(2001)

proposed solution

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x

0

0.5

1

1.5

2

2.5

m
a

x
|e

rr
o

r|

10-7

(b)

Figure 4. The graph of isothermal gas sphere equation in comparison with [30] (a), and correspond-
ing maximum absolute error (b).

Table 7. The maximum absolute error and CPU time for Example 4.5.

h
Order 4 Order 6 Order 8

Error CPU time Roc Error CPU time Roc Error CPU time Roc
h = 1

10 3.1187e-04 0.000972 s – 3.4750e-05 0.002730 s – 4.5614e-06 0.003461 s –
h = 1

20 1.4932e-05 0.002224 s 4.3 5.3850e-07 0.002812 s 6.0 2.3554e-08 0.004372 s 7.5
h = 1

40 5.8248e-07 0.005492 s 4.6 6.0244e-09 0.006216 s 6.4 7.6953e-11 0.006503 s 8.2

with boundary conditions u0 and u1. For this problem, the series solution using the ADM [30] is given as

u(x) ≈ −x
2

6
+

x4

5× 4!
− 8x6

21× 6!
+

122x8

81× 8!
− 61× 67x10

495× 10!
+ . . . (4.18)

The graph of isothermal gas sphere Equation (4.17) by the proposed method of order 4 for h = 1
10 and r = 5 in com-

parison with the approximate series solution (4.18) is shown in Figure 4(a). Also, Figure 4(b) shows the corresponding
absolute error.

Example 4.5. [23, 26, 34] Consider the nonlinear Lane-Emden equation

u′′(x) +
2

x
u′(x)− 6u(x) = 4u(x) ln(u(x)), 0 ≤ x ≤ 1, (4.19)

with known boundary conditions u0 = 1 and u1 = e, which has the exact solution u(x) = ex
2

. Table 7 shows the
maximum absolute error, CPU time, and the rate of convergence by the proposed method of orders 4, 6, and 8 for
given step size h and iteration numbers r = 5.

Example 4.6. This example corresponds to the following Lane-Emden equation [13, 23, 30]

u′′(x) +
2

x
u′(x) + sinh(u(x)) = 0, 0 ≤ x ≤ 1, (4.20)

with boundary conditions u0 and u1. For this problem, the series solution using the ADM [30] is given as

u(x) ≈ 1− (e2 − 1)x2

12e
+

(e4 − 1)x4

480e2
− (2e6 + 3e2 − 3e4 − 2)x6

30240e3
(4.21)

+
(61e8 − 104e6 + 104e2 − 61)x8

26127360e4
.
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Figure 5. Comparison between the solutions obtained by the proposed method and ADM [30] (a),
and corresponding maximum absolute error (b).

Table 8. The maximum absolute error and CPU time for Example 5.1.

h
For Order 4 Order 6 Order 8

Error CPU time Error CPU time Error CPU time

h = 1
10

u(x) 3.3079e-04
0.000822 s

3.6939e-05
0.001275 s

4.8520e-06
0.001279 s

v(x) 1.1231e-05 1.4332e-06 1.8836e-07

h = 1
20

u(x) 1.5354e-05
0.000773 s

5.5503e-07
0.001465 s

2.4281e-08
0.001449 s

v(x) 4.6211e-07 1.9751e-08 8.5071e-10

h = 1
40

u(x) 5.8976e-07
0.001556 s

6.1161e-09
0.002700 s

7.8109e-11
0.002973 s

v(x) 1.3063e-08 2.1111e-10 2.6114e-12

The graph of the approximate solution of Equation (4.20) by the proposed method of order 4 for h = 1
10 and r = 5

in comparison with the approximate series solution (4.21) is shown in Figure 5(a) . Also, Figure 5(b) shows the
corresponding absolute error.

In the next section, we will study the linear and nonlinear systems of Lane-Emden equations.

5. System of Lane-Emden equations

In this section, we give some examples for systems of Lane–Emden equations (linear and nonlinear) that show the
proposed method can be easily extended to solve the system of Lane-Emden equations (linear and nonlinear).

Example 5.1. We consider the non-homogeneous linear systems of Lane–Emden equations, which describes polytropes
in hydrostatic equilibrium as simple models of a star [19]

u′′ +
2

x
u′ − (4x2 + 6)u+ v = x4 − x3, (5.1)

v′′ +
8

x
v′ + xv + u = ex

2

+ x5 − x4 + 44x2 − 30x, (5.2)

where x, y ∈ [0, 1] and u0, u1, v0 and v1 are known.

The exact solutions are u(x) = ex
2

and v(x) = x4 − x3. Table 8 shows the maximum absolute error with the
corresponding CPU time by the proposed method for given step sizes of orders 4, 6, and 8. Also, comparisons between
exact and approximate solutions for u(x) and v(x) are shown in Tables 9 and 10, respectively.
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Table 9. Comparison between exact and approximate solution u(x) with h = 1
40 for Example 5.1.

x Order 4 Order 6 Order 8 Exact
0.1 1.010050236235647 1.010050169393248 1.010050167112353 1.010050167084168
0.2 1.040810851077961 1.040810776633562 1.040810774222218 1.040810774192388
0.3 1.094174371892875 1.094174286285983 1.094174283736813 1.094174283705210
0.4 1.173510976475032 1.173510873759354 1.173510871025806 1.173510870991810
0.5 1.284025548102475 1.284025419706214 1.284025416724985 1.284025416687741
0.6 1.433329584541152 1.433329417910964 1.433329414601939 1.433329414560340
0.7 1.632316447425718 1.632316223740882 1.632316220002771 1.632316219955379
0.8 1.896481193204513 1.896480883656438 1.896480879360031 1.896480879304952
0.9 2.247908432063972 2.247907991762387 2.247907986741762 2.247907986676472

Table 10. Comparison between exact and aproximate solution v(x) with h = 1
40 for Example 5.1.

x Order 4 Order 6 Order 8 Exact
0.1 -0.000899987752263 -0.000899999797720 -0.000899999997460 -0.0009
0.2 -0.006399987798657 -0.006399999801294 -0.006399999997508 -0.0064
0.3 -0.018899988027302 -0.018899999808291 -0.018899999997593 -0.0189
0.4 -0.038399988396586 -0.038399999818686 -0.038399999997721 -0.0384
0.5 -0.062499988959514 -0.062499999832999 -0.062499999997897 -0.0625
0.6 -0.086399989800275 -0.086399999851960 -0.086399999998131 -0.0864
0.7 -0.102899991050239 -0.102899999876557 -0.102899999998437 -0.1029
0.8 -0.102399992915670 -0.102399999908112 -0.102399999998832 -0.1024
0.9 -0.072899995723731 -0.072899999948388 -0.072899999999340 -0.0729

Table 11. The maximum absolute error and CPU time for Example 5.2.

h
For Order 4 Order 6 Order 8

Error CPU time Error CPU time Error CPU time

h = 1
10

u(x) 4.4490e-05
0.001405 s

1.414e-05
0.001464 s

7.5261e-06
0.001657 s

v(x) 4.4848e-05 1.4955e-05 7.84283-06

h = 1
20

u(x) 2.4205e-06
0.002059 s

7.1466e-08
0.001638 s

1.0758e-09
0.001777 s

v(x) 2.6123e-06 7.4963e-08 1.1073e-09

h = 1
40

u(x) 1.2389e-07
0.005400 s

3.5722e-10
0.005563 s

4.2613e-12
0.005691 s

v(x) 1.3539e-07 3.9147e-10 3.7076e-12

Example 5.2. Consider the nonlinear system of Lane–Emden equations [32]

u′′ +
5

x
u′ + 8(eu + 2e−

v
2 ) = 0, (5.3)

v′′ +
3

x
v′ − 8(e−v + e

u
2 ) = 0, (5.4)

where x, y ∈ [0, 1] and with known boundary conditions. The exact solutions are u(x) = −2ln(1 + x2) and v(x) =
2ln(1 + x2). Table 11 shows the maximum absolute error with corresponding CPU time by the proposed method for
r = 6 and given step sizes. Also, Figure 6 shows the convergence of the proposed method with an increase in the
iterations r of QLM for h = 1/10 for order 4. Moreover, a comparison between the exact and approximate solutions
for r = 6 and h = 1

40 for u(x) and v(x) are shown in Tables 12 and 13, respectively.
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Figure 6. Convergence of the proposed method with increase in the QLM iterations r for Example 5.2.

Table 12. Comparison between exact and approximate solution u(x) with h = 1
40 for Example 5.2.

x Order 4 Order 6 Order 8 Exact
0.1 -0.019900543321239 -0.019900662050199 -0.019900661709269 -0.019900661706336
0.2 -0.078441325283406 -0.078441426659778 -0.078441426309448 -0.078441426306563
0.3 -0.172355314327941 -0.172355392838920 -0.172355392484839 -0.172355392482105
0.4 -0.296839954615990 -0.296840010580882 -0.296840010239055 -0.296840010236547
0.5 -0.446287065352555 -0.446287102944218 -0.446287102630656 -0.446287102628420
0.6 -0.614969375024299 -0.614969399773190 -0.614969399497878 -0.614969399495921
0.7 -0.797552223180955 -0.797552240150563 -0.797552239916426 -0.797552239914736
0.8 -0.989392470901493 -0.989392483868766 -0.989392483673663 -0.989392483672214
0.9 -1.186653679338796 -1.186653690717454 -1.186653690556702 -1.186653690555469

Table 13. Comparison between exact and approximate solution v(x) with h = 1
40 for Example 5.2.

x Order 4 Order 6 Order 8 Exact
0.1 0.019900529460760 0.019900662085841 0.019900661709699 0.019900661706336
0.2 0.078441311559095 0.078441426696000 0.078441426309791 0.078441426306563
0.3 0.172355301438630 0.172355392872056 0.172355392485144 0.172355392482105
0.4 0.296839943070497 0.296840010610382 0.296840010239320 0.296840010236547
0.5 0.446287055568406 0.446287102969845 0.446287102630880 0.446287102628420
0.6 0.614969367273717 0.614969399794541 0.614969399498056 0.614969399495921
0.7 0.797552217566634 0.797552240167020 0.797552239916556 0.797552239914736
0.8 0.989392467377548 0.989392483879650 0.989392483673740 0.989392483672214
0.9 1.186653677756701 1.186653690722175 1.186653690556727 1.186653690555469

Example 5.3. Consider the nonlinear systems of Lane–Emden equations [32]

u′′ +
8

x
u′ + (18u− 4ln(v)) = 0, (5.5)

v′′ +
4

x
v′ + (4vln(u)− 10v) = 0, (5.6)

where x, y ∈ [0, 1] and with known boundary conditions. The exact solutions are u(x) = e−x
2

and v(x) = ex
2

. Table
14 shows the maximum absolute error with corresponding CPU time by the proposed method for r = 6 and given step
sizes.
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Table 14. The maximum absolute error and CPU time for Example 5.3.

h
For Order 4 Order 6 Order 8

Error CPU time Error CPU time Error CPU time

h = 1
10

u(x) 5.5210e-05
0.001422 s

1.4777e-06
0.001508 s

1.2227e-06
0.001592 s

v(x) 3.4417e-04 3.9047e-05 5.0273e-06

h = 1
20

u(x) 6.4219e-07
0.002168 s

6.8614e-08
0.003951 s

1.8672e-09
0.004517 s

v(x) 1.5732e-05 5.6870e-07 2.4940e-08

h = 1
40

u(x) 3.0090e-08
0.007460 s

7.7963e-010
0.007847 s

6.7902e-012
0.007945 s

v(x) 5.9655e-07 6.1932e-09 7.9213e-11

6. Conclusions

In this paper, we have considered an efficient high-order compact finite difference (HOCFD) scheme for solving
generalized Lane-Emden and system of Lane-Emden equations. For nonlinear types, it is shown that a combined
quasilinearization and HOCFD scheme gives excellent results while a few quasilinear iterations is needed. Some
numerical examples have been provided, and the obtained results of the proposed method have been compared with
previous well-established methods. The numerical experiments with low CPU time show the accuracy and efficiency
of the proposed method.
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