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A method of lines for solving the nonlinear time- and space-fractional Schrödinger equation
via stable Gaussian radial basis function interpolation
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Abstract

The stable Gaussian radial basis function (RBF) interpolation is applied to solve the time and space-fractional

Schrödinger equation (TSFSE) in one and two-dimensional cases. In this regard, the fractional derivatives of stable
Gaussian radial basis function interpolants are obtained. By a method of lines, the computations of the TSFSE

are converted to a coupled system of Caputo fractional ODEs. To solve the resulting system of ODEs, a high-order

finite difference method is proposed, and the computations are reduced to a coupled system of nonlinear algebraic
equations, in each time step. Numerical illustrations are performed to certify the ability and accuracy of the new

method. Some comparisons are made with the results in other literature.
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1. Introduction

One of the widely used models in mathematical physics is Schrödinger equation that appears in various disciplines
such as plasma physics, nonlinear optics, quantum mechanics, dynamics of accelerators, fluid dynamics, and many
other fields. The standard (non-fractional) Schrödinger equation was derived by using the Feynman path integral
technique based on the Gaussian probability distribution in the space of all possible paths [8, 30]. In other words, in
quantum mechanics, the Schrödinger equation are used to investigate the classical Brownian motion. Laskin extended
the Feynman path integral to Lévy one, and introduced the Riesz space-fractional Schrödinger equation [14, 15]. In
quantum physics, the Caputo time-fractional Schrödinger equation was applied to model the non-Markovian evolution
[12, 21, 29]. Wang and Xu [34] considered the backgrounds of Laskin’s and Naber’s works and introduced the time
and space-fractional Schrödinger equation (TSFSE).

In the current paper, we consider the nonlinear TSFSE as follows: [13, 19]

i cDα
t ψ(x, t) + η

∂γψ(x, t)

∂|x|γ
+ q|ψ(x, t)|2ψ(x, t) = f(x, t), a ≤ x ≤ b, (1.1)

with the initial condition

ψ(x, 0) = g(x), a ≤ x ≤ b, (1.2)

and boundary conditions

ψ(a, t) = h1(t), 0 < t ≤ T, (1.3)

ψ(b, t) = h2(t), 0 < t ≤ T, (1.4)
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where f(x, t), g(x), h1(t) and h2(t) are known complex functions, i2 = −1, the parameters η and q are real constans.
cDα

t denotes the Caputo fractional derivative of order α ∈ (0, 1) defined by

cDα
t ψ(x, t) =

1

Γ(1− α)

∫ t

0

(t− ζ)−α
∂ψ(x, ζ)

∂ζ
dζ. (1.5)

Also,
∂γ

∂|x|γ
is the Riesz derivative of order γ ∈ (1, 2) defined by

∂γψ(x, t)

∂|x|γ
= −cγ

[
aD

γ
xψ(x, t) + xD

γ
bψ(x, t)

]
, (1.6)

where cγ =
1

2 cos(πγ2 )
, and

aD
γ
xψ(x, t) =

1

Γ(2− γ)

d2

dx2

∫ x

a

(x− ζ)1−γψ(ζ, t)dζ, (1.7)

xD
γ
bψ(x, t) =

1

Γ(2− γ)

d2

dx2

∫ b

x

(ζ − x)1−γψ(ζ, t)dζ. (1.8)

are respectively the left and right-sided Riemann-Liouville fractional derivatives. These fractional derivatives are linear
operators [24].

Lemma 1.1. For the Riemann-Liouville fractional derivatives, we have [24]

aD
γ
x1 =

1

Γ(1− γ)
(x− a)−γ , (1.9)

xD
γ
b 1 =

1

Γ(1− γ)
(b− x)−γ . (1.10)

Theorem 1.2. The Riemann-Liouville fractional derivatives of the power functions satisfy [24]

aD
γ
x (x− a)p =

Γ(p+ 1)

Γ(p+ 1− γ)
(x− a)p−γ , (1.11)

xD
γ
b (b− x)p =

Γ(p+ 1)

Γ(p+ 1− γ)
(b− x)p−γ , (1.12)

where n− 1 < γ < n, p > −1 and p ∈ R.

There is not any method for obtaining the exact solution of the nonlinear TSFSE. Researchers have presented
various numerical and approximating techniques for solving the nonlinear TSFSE. In [10] a domian decomposition
method, in [19] a finite difference scheme, and in [13] a finite element technique is proposed to investigate the nonlinear
TSFSE. For further study see for example [1, 9, 11, 18, 31–33, 35].

There are only a few methods for solving the nonlinear time- and space-fractional PDEs. On the other hand, in most
of the methods introduced for solving fractional PDEs, the finite difference and finite elements methods are applied
for discretizing the fractional derivatives, while the fractional derivatives are non-local differential operators and so
the radial basis functions (RBFs) method (as a non-local method) is more efficient for discretizing them. Moreover,
the RBFs methods are usually more accurate than those methods, because the interpolating of smooth data using
global, infinitely differentiable RBFs have a spectral accuracy [2, 4, 17, 20]. Also, unlike those methods, the RBFs
methods are efficient for problems with irregular domains, because no mesh generation is needed in RBFs methods
[23]. However, only a few RBFs methods have been presented to solve the fractional PDEs. Roughly speaking, no
technique has yet been introduced to solve the time- and space-fractional PDEs by the RBFs. For these reasons, we
were motivated to propose a RBF method to solve TSFSE.
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The RBFs may be applied to interpolate a function f(x) at the distinct points x1, x2, . . . , xM as

f(x) ≈
M∑
i=1

ciφi(x), x ∈ Rd, (1.13)

in which φi(x) = φ(‖x− xi‖2) is radial basis function, ci’s are scalars to be determined in such a way that Eq. (1.5)
is satisfied as equality for xj ’s, and d is the dimension of the problem. Thus a linear system of algebraic equations is
obtained as

AC = b,

in which C = (c1, c2, ..., cM )T is an unknown vector to be determined, b = [f(x1), f(x2), ..., f(xM )]T is the right-hand
side vector, and the RBF interpolation matrix is given by

A = [Φij ] = [φ(‖xi − xj‖2)]1≤i,j≤M .

The coefficients matrix, A, has usually a very large condition number i.e. A is very ill-conditioned. This is a major
problem in RBF interpolation.

In this study, we use the Gaussian basis functions

φ(r) = e−εr
2

, (1.14)

where, ε is called the shape parameter that controls the flatness of the function. As the shape parameter becomes
smaller, a better accuracy is obtained. However, the smaller shape parameter causes the condition number of the
interpolation matrix to increase rapidly. To solve this issue, Fasshauer et al. proposed a stable method to compute
and evaluate the Gaussian RBF interpolants [7]. Their method was based on Mercer’s theorem and the eigenfunction
expansion of the Gaussian RBF. They showed that the main sources of ill-conditioning are the eigenvalues of Gaussian
RBF. So, to overcome the ill-conditioning, they introduced the mentioned stable method to write the interpolant
independent of these eigenvalues. Moreover, they showed that the eigenfunctions of the Gaussian RBF can be written
in terms of Hermite polynomials. Laterally, the authors in [26] showed that these eigenfunctions can be rewritten in
terms of the shifted Chebyshev polynomials, and this can improve the stability of the Gaussian RBF interpolation. In
fact, in the stable Gaussian RBF method, while using the capabilities of the RBFs, we do not encounter their main
drawback, which is ill-conditioning.

The stable Gaussian RBF method has not yet been applied for fractional problems, although some standard (non-
fractional) ODEs and PDEs have been solved via it (e.g., see [26–28]). In this work, we apply the Gaussian RBF
interpolant with the Chebyshev polynomials type eigenfunctions for TSFSE (1.1). Since the spatial derivative is of
fractional type, for our development, we obtain the left- and right-sided Riemann-Liouville fractional derivatives of
the eigenfunctions of the Gaussian RBF. Then, by a method of lines, we reduce the problem to a coupled system of
fractional ODEs. To solve the obtained system of ODEs, we present a high-order finite difference method.

The next sections of the paper are as follows: Chebyshev polynomials and stable Gaussian RBF interpolation
are described, in section 2. In section 3, the left- and right-sided Riemann-Liouville derivatives of the eigenfunction
expansions based on Chebyshev polynomials are obtained. In section 4, we illustrate our method for solving Eq. (1.1)
and then we extend the method for the two-dimensional TSFSE. To certify the ability of the new method, several
numerical illustrations are provided in section 5.

2. Preliminaries

2.1. Chebyshev polynomials. The Chebyshev polynomial of degree n for n = 0, n = 1 and n ≥ 2, is as follows:
T0(x) = 1, T1(x) = x and

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, . . .

where x ∈ [−1, 1]. For n = 1, 2, . . ., Tn(x), has n+ 1 extrema points as

xj = cos
π(j − 1)

n
, j = 1, 2, . . . , n+ 1.
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2.2. Stable Gaussian RBF interpolation. The Gaussian RBF can be expanded in terms of eigenvalues λn > 0
and normalized eigenfunctions φn as [7, 26]

e−ε(x−z)
2

=

∞∑
n=1

λnφn(x)φn(z), (2.1)

in which the functions

φn(x) =
√
βe−δ

2x2

H̃n−1(σβx), n = 1, 2, · · · (2.2)

are the orthogonal functions with respect to the weight function w(x) = σ√
π
e−σ

2x2

, σ > 0. In (2.2), H̃n(x), n = 0, 1, , . . .

is the normalized Hermite polynomial of degree n. Moreover,

β =
(

1 +
4ε2

σ2

) 1
4

, δ2 =
σ2

2
(β2 − 1),

and

λn =

√
σ2

σ2 + ε2 + δ2

( ε2

σ2 + ε2 + δ2

)n−1
.

The Gaussian RBF interpolant of f(x) at x1, x2, · · · , xM is as

sf (x) =

M∑
j=1

cje
−ε(x−xj)2 , (2.3)

where cj ’s are scalars to be determined in such a way that the interpolation conditions sf (xi) = f(xi), i = 1, . . . ,M
are satisfied.
In practice, by choosing M terms of the series in (2.1), we approximate e−ε(x−z)

2

, and consequently, we can rewrite
(2.3) as

sf (x) =

M∑
j=1

cj

M∑
n=1

λnφn(x)φn(xj). (2.4)

Usually, the eigenvalues λn rapidly tend to zero as n increases, and this leads to ill-conditioning [22]. In [5, 26] the
authors showed that sf (x) can be written independent of eigenvalues λj and coefficients cj as

sf (x) = WT
φ (x) Φ−TX f, (2.5)

where WT
φ (x) = [φ1(x), ..., φM (x)], f = [f(x1), ..., f(xM )]T , and

ΦX =

 φ1(x1) . . . φ1(xM )
...

...
φM (x1) . . . φM (xM )

 . (2.6)

The Hermite polynomials can grow dramatically and it can lead to instability in our computations. For this reason,
in [28] the authors rebuilt the eigenfunctions as

φn(x) =
√
βe−δ

2x2

T̂n−1(x), n = 1, . . . ,M, (2.7)

in which T̂n−1’s are the shifted Chebyshev polynomials on the interval [0, 1] that are given by

T̂n(x) =


1√
M
, n = 0,√

2

M
Tn(2x− 1), n ≥ 1.
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The shifted Chebyshev polynomial of degree n can be presented by the analytical form [6]

T̂n(x) =


1√
M
, n = 0,√

2

M
n

n∑
i=0

(−1)n−i
22i(n+ i− 1)!

(2i)!(n− i)!
xi, n ≥ 1.

(2.8)

In our development, we apply the Gaussian RBF interpolant (2.5) with the eigenfunctions (2.7).

3. Fractional derivatives of φn(x)

Here, we present a method for computing the left and right-sided Riemann-Liouville derivatives of the eigenfunctions
given in (2.7).

By Eqs. (2.7) and (2.8) we have

φn(x) =


β√
M
e−δ

2x2

, n = 1,√
2β

M
(n− 1)e−δ

2x2
n−1∑
i=0

(−1)n−i−1 22i(n+ i− 2)!

(2i)!(n− i− 1)!
xi, n ≥ 2.

(3.1)

Now, we substitute the Maclaurin series expansion of e−δ
2x2

in (3.1). So, the following equations are obtained

φ1(x) =

√
β

M

∞∑
k=0

(−δ2)k

k!
x2k, (3.2)

and

φn(x) =

√
2β

M

∞∑
k=0

(−δ2)k

k!
(n− 1)

n−1∑
i=0

(−1)n−1−i 22i(n+ i− 2)!

(2i)!(n− 1− i)!
xi+2k, n = 2, 3, · · · . (3.3)

In order to obtain the left-sided Riemann-Liouville fractional derivative of φ1(x), we substitute the Taylor series
expansion of x2k about the point x = a in (3.2), and we write

φ1(x) =

√
β

M

∞∑
k=0

(−δ2)k

k!

2k∑
j=0

(
2k

j

)
a2k−j (x− a)j . (3.4)

Therefore

aD
γ
xφ1(x) =

√
β

M

∞∑
k=0

(−δ2)k

k!

2k∑
j=0

(
2k

j

)
a2k−j

aD
γ
x(x− a)j , (3.5)

and using Eqs. (1.9) and (1.11), we get

aD
γ
xφ1(x) =

√
β

M

∞∑
k=0

(−δ2)k

k!

2k∑
j=0

(
2k

j

)
a2k−j Γ(j + 1)

Γ(j + 1− γ)
(x− a)j−γ . (3.6)

In a similar way, using Eqs. (1.9), (1.11), and (3.3), aD
γ
xφn(x) for n ≥ 2 is obtained as

aD
γ
xφn(x) =

√
2β

M

∞∑
k=0

(−δ2)k

k!
(n− 1)

n−1∑
i=0

(−1)n−i−1 22i(n+ i− 2)!

(2i)!(n− i− 1)!

×
i+2k∑
j=0

(
i+ 2k

j

)
ai+2k−j Γ(j + 1)

Γ(j + 1− γ)
(x− a)j−γ . (3.7)
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In order to calculate the right-sided Riemann-Liouville fractional derivative of φ1(x), we substitute the Taylor series
expansion of x2k about the point x = b in (3.2). Thus

φ1(x) =

√
β

M

∞∑
k=0

(−δ2)k

k!

2k∑
j=0

(
2k

j

)
b2k−j(−1)j (b− x)j , (3.8)

and so using Eqs. (1.10) and (1.12) we obtain

xD
γ
bφ1(x) =

√
β

M

∞∑
k=0

(−δ2)k

k!

2k∑
j=0

(
2k

j

)
b2k−j(−1)j xD

γ
b (b− x)j

=

√
β

M

∞∑
k=0

(−δ2)k

k!

2k∑
j=0

(
2k

j

)
b2k−j(−1)j

Γ(j + 1)

Γ(j + 1− γ)
(b− x)j−γ . (3.9)

Similarly, by using Eqs. (1.10), (1.12), and (3.3), xD
γ
bφn(x) for n ≥ 2 is determined as

xD
γ
bφn(x) =

√
2β

M

∞∑
k=0

(−δ2)k

k!
(n− 1)

n−1∑
i=0

(−1)n−i−1 22i(n+ i− 2)!

(2i)!(n− i− 1)!

×
i+2k∑
j=0

(
i+ 2k

j

)
bi+2k−j(−1)j

Γ(j + 1)

Γ(j + 1− γ)
(b− x)j−γ . (3.10)

4. Solution of TSFSE

4.1. One-Dimensional case. First, we describe our method for one-dimensional TSFSE. For this purpose, we split
the unknown function ψ(x, t) into its real and imaginary parts, as follows:

ψ(x, t) = u(x, t) + iv(x, t), (4.1)

where

|ψ(x, t)|2 = u2(x, t) + v2(x, t). (4.2)

By replacing (1.6), (4.1) and (4.2) in (1.1), we get a coupled system as follows:

cDα
t u(x, t)− η cγ

[
0D

γ
xv(x, t) + xD

γ
1v(x, t)

]
+ q
(
u2(x, t) + v2(x, t)

)
v(x, t) = Im f(x, t),

cDα
t v(x, t) + η cγ

[
0D

γ
xu(x, t) + xD

γ
1u(x, t)

]
− q
(
u2(x, t) + v2(x, t)

)
u(x, t) = −Re f(x, t).

(4.3)

Also, substituting (4.1) in Eqs. (2)-(4) gives

u(x, 0) = Re g(x), v(x, 0) = Im g(x), a ≤ x ≤ b, (4.4)

u(a, t) = Re h1(t), v(a, t) = Im h1(t), 0 < t ≤ T, (4.5)

u(b, t) = Re h2(t), v(b, t) = Im h2(t), 0 < t ≤ T. (4.6)

Now, we consider the distinct points x1, x2, . . . , xM where x1 = a and xM = b, and we discretize Eqs. (4.3) in the
points x2, . . . , xM−1 as

cDα
t ui(t)− η cγ

[
0D

γ
xv(x, t) + xD

γ
1v(x, t)

]
x=xi

+ q
(
u2
i (t) + v2

i (t)
)
vi(t) = Im f(xi, t),

cDα
t vi(t) + η cγ

[
0D

γ
xu(x, t) + xD

γ
1u(x, t)

]
x=xi

− q
(
u2
i (t) + v2

i (t)
)
ui(t) = −Re f(xi, t),

(4.7)
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in which ui(t) = u(xi, t) and vi(t) = v(xi, t).
Using Eq. (2.5), we write

u(x, t) ≈WT
φ (x) Φ−TX U(t), (4.8)

v(x, t) ≈WT
φ (x) Φ−TX V (t), (4.9)

where U(t) =
[
u1(t), u2(t), . . . , uM (t)

]T
, and V (t) =

[
v1(t), v2(t), . . . , vM (t)

]T
, in which u1(t) = u(a, t), uM (t) =

u(b, t), v1(t) = v(a, t) and vM (t) = v(b, t) are given by boundary conditions (4.5) and (4.6).
Substituting (4.8) and (4.9) in the coupled system (4.7) gives

cDα
t ui(t)− η cγ

[
0D

γ
xW

T
φ (xi) Φ−TX V (t) + xD

γ
1W

T
φ (xi) Φ−TX V (t)

]
+ q
(
u2
i (t) + v2

i (t)
)
vi(t)

= Im f(xi, t),

cDα
t vi(t) + η cγ

[
0D

γ
xW

T
φ (xi) Φ−TX U(t) + xD

γ
1W

T
φ (xi) Φ−TX U(t)

]
− q
(
u2
i (t) + v2

i (t)
)
ui(t)

= −Re f(xi, t),

(4.10)

where

0D
γ
xW

T
φ (xi) =

[
0D

γ
xφ1(xi), ..., 0D

γ
xφM (xi)

]
, i = 2, . . . ,M − 1,

and

xD
γ
1W

T
φ (xi) =

[
xD

γ
1φ1(xi), ..., xD

γ
1φM (xi)

]
, i = 2, . . . ,M − 1,

are obtained by Eqs. (3.6), (3.7), (3.9), and (3.10).
Eqs. (4.10) give a coupled system of fractional ODEs in unknowns u2(t), . . . , uM−1(t) and v2(t), . . . , vM−1(t). We

obtain the structure of this system as follows: We decompose U(t) into two vectors UB(t) and UI(t) which are the
boundary and interior entries, respectively. Similarly, VB(t) and VI(t) are the boundary and interior entries of V (t).
We set

0Ψ̃T
X =

 0D
γ
xW

T
φ (x2)
...

0D
γ
xW

T
φ (xM−1)

 , 1Ψ̃T
X =

 xD
γ
1W

T
φ (x2)
...

xD
γ
1W

T
φ (xM−1)

 ,
¯̄A = [¯̄aij ] = 0Ψ̃T

X Φ−TX and Ā = [āij ] = 1Ψ̃T
X Φ−TX . So, we have

0Ψ̃T
X Φ−TX U(t) =


¯̄a1,1 ¯̄a1,M

¯̄a2,1 ¯̄a2,M

...
...

¯̄aM−2,1 ¯̄aM−2,M


︸ ︷︷ ︸

= ¯̄AB

[
u1(t)
uM (t)

]
︸ ︷︷ ︸

=UB(t)

+


¯̄a1,2 . . . ¯̄a1,M−1

¯̄a2,2 . . . ¯̄a2,M−1

... . . .
...

¯̄aM−2,2 . . . ¯̄aM−2,M−1


︸ ︷︷ ︸

= ¯̄AI

 u2(t)
...

uM−1(t)


︸ ︷︷ ︸

=UI(t)

,

and

1Ψ̃T
X Φ−TX U(t) =


ā1,1 ā1,M

ā2,1 ā2,M

...
...

āM−2,1 āM−2,M


︸ ︷︷ ︸

=ĀB

[
u1(t)
uM (t)

]
︸ ︷︷ ︸

=UB(t)

+


ā1,2 . . . ā1,M−1

ā2,2 . . . ā2,M−1

... . . .
...

āM−2,2 . . . āM−2,M−1


︸ ︷︷ ︸

=ĀI

 u2(t)
...

uM−1(t)


︸ ︷︷ ︸

=UI(t)

.
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Similarly, 0Ψ̃T
X Φ−TX V (t) = ¯̄AIVI(t)+ ¯̄ABVB(t) and 1Ψ̃T

X Φ−TX V (t) = ĀIVI(t)+ĀBVB(t) are gained and we can rewrite
(4.10) as

cDα
t UI(t)− η cγ

[
( ¯̄AI + ĀI)VI(t) + ( ¯̄AB + ĀB)VB(t)

]
+ q LV (t) = F1(t),

cDα
t VI(t) + η cγ

[
( ¯̄AI + ĀI)UI(t) + ( ¯̄AB + ĀB)UB(t)

]
− q LU (t) = −F2(t),

(4.11)

where

LV (t) =


(
U2(x2, t) + V 2(x2, t)

)
V (x2, t)

...(
U2(xM−1, t) + V 2(xM−1, t)

)
V (xM−1, t)

 ,

LU (t) =


(
U2(x2, t) + V 2(x2, t)

)
U(x2, t)

...(
U2(xM−1, t) + V 2(xM−1, t)

)
U(xM−1, t)

 ,

F1(t) =

 Im f(x2, t)
...

Im f(xM−1, t)

 ,

F2(t) =

 Re f(x2, t)
...

Re f(xM−1, t)

 .
To solve the fractional system (4.11), we discretize its equations in the time direction as

cDα
t UI(tn)− η cγ

[
( ¯̄AI + ĀI)VI(tn) + ( ¯̄AB + ĀB)VB(tn)

]
+ q LV (tn) = F1(tn),

cDα
t VI(tn) + η cγ

[
( ¯̄AI + ĀI)UI(tn) + ( ¯̄AB + ĀB)UB(tn)

]
− q LU (tn) = −F2(tn),

(4.12)

where tn = nτ for n = 0, 1, . . . , N and τ is time step size. Now, we approximate cDα
t UI(tn) and cDα

t VI(tn) for n = 1,
n = 2 and n ≥ 3 by the method presented in [3] as

cDα
t UI(t1) = µa0

(
UI(t1)− UI(t0)

)
+O(τ2−α), (4.13)

cDα
t UI(t2) = µ

[
(b0 − a1)UI(t0) + (a1 − a0 − 2b0)UI(t1) + (a0 + b0)UI(t2)

]
+O(τ3−α), (4.14)

cDα
t UI(tn) = µ

[
(bn−2 − an−1)UI(t0) + (an−1 − an−2 − 2bn−2)UI(t1) + (an−2 + bn−2)UI(t2)

+

n−1∑
k=3

(
w1,n−kUI(tk) + w2,n−kUI(tk−1) + w3,n−kUI(tk−2) + w4,n−kUI(tk−3)

)
+ w1,0UI(tn) + w2,0UI(tn−1) + w3,0UI(tn−2) + w4,0UI(tn−3)

]
+O(τ4−α), n ≥ 3 (4.15)

and

cDα
t VI(t1) = µa0

(
VI(t1)− VI(t0)

)
+O(τ2−α), (4.16)
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cDα
t VI(t2) = µ

[
(b0 − a1)VI(t0) + (a1 − a0 − 2b0)VI(t1) + (a0 + b0)VI(t2)

]
+O(τ3−α), (4.17)

cDα
t VI(tn) = µ

[
(bn−2 − an−1)VI(t0) + (an−1 − an−2 − 2bn−2)VI(t1) + (an−2 + bn−2)VI(t2)

+

n−1∑
k=3

(
w1,n−kVI(tk) + w2,n−kVI(tk−1) + w3,n−kVI(tk−2) + w4,n−kVI(tk−3)

)
+ w1,0VI(tn) + w2,0VI(tn−1) + w3,0VI(tn−2) + w4,0VI(tn−3)

]
+O(τ4−α), n ≥ 3, (4.18)

in which

µ =
τ−α

Γ(2− α)
,

aj = (j + 1)1−α − j1−α,

bj =
(j + 1)2−α − j2−α

2− α
− (j + 1)1−α + j1−α

2
,

w1,j =
1

6

[
2(j + 1)1−α − 11j1−α

]
+

1

2− α

[
(j + 1)2−α − 2j2−α

]
+

1

(2− α)(3− α)

[
(j + 1)3−α − j3−α

]
,

w2,j =
1

2

[
(j + 1)1−α + 6j1−α

]
− 1

2− α

[
2(j + 1)2−α − 5j2−α

]
− 3

(2− α)(3− α)

[
(j + 1)3−α − j3−α

]
,

w3,j =− 1

2

[
2(j + 1)1−α + 3j1−α

]
+

1

2− α

[
(j + 1)2−α − 4j2−α

]
+

3

(2− α)(3− α)

[
(j + 1)3−α − j3−α

]
,

and

w4,j =
1

6

[
(j + 1)1−α + 2j1−α

]
+

1

2− α
j2−α − 1

(2− α)(3− α)
×[

(j + 1)3−α − j3−α
]
.

By replacing (4.13) and (4.16) in (4.12), the following finite differences equations are achieved:

µUI(t1)− η cγ( ¯̄AI + ĀI)VI(t1) + q LV (t1) = η cγ( ¯̄AB + ĀB)VB(t1) + F1(t1) + µUI(t0),

µVI(t1) + η cγ( ¯̄AI + ĀI)UI(t1)− q LU (t1) = −η cγ( ¯̄AB + ĀB)UB(t1)− F2(t1) + µVI(t0),
(4.19)

in which UB(t1) and VB(t1) are obtained by boundary conditions (4.5) and (4.6), and UI(t0) and VI(t0) are given by
initial conditions (4.4). By solving the above nonlinear system, the unknowns UI(t1) and VI(t1) are obtained. Then,
the vectors U(t1) and V (t1) are formed. Finally, by substituting U(t1) and V (t1) in Eqs. (4.8) and (4.9), the real and
imaginary parts of the unknown function ψ(x, t1) are achieved.

Similarly, by substituting (4.14) and (4.17) in (4.12), we get

µ(a0 + b0)UI(t2)− η cγ( ¯̄AI + ĀI)VI(t2) + q LV (t2) = η cγ( ¯̄AB + ĀB)VB(t2) + F1(t2)

− µ
[
(b0 − a1)UI(t0) + (a1 − a0 − 2b0)UI(t1)

]
,

µ(a0 + b0)VI(t2) + η cγ( ¯̄AI + ĀI)UI(t2)− q LU (t2) = −η cγ( ¯̄AB + ĀB)UB(t2)− F2(t2)
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− µ
[
(b0 − a1)VI(t0) + (a1 − a0 − 2b0)VI(t1)

]
,

which is a nonlinear coupled system in unknown vectors UI(t2) and VI(t2), and by solving it, we can form U(t2) and
V (t2), and then we can compute u(x, t2) and v(x, t2) by Eqs. (4.8) and (4.9).
Inductively, for n ≥ 3 by Eqs. (4.12), (4.15), and (4.18), we get

µ w1,0UI(tn)− η cγ( ¯̄AI + ĀI)VI(tn) + q LV (tn) = η cγ( ¯̄AB + ĀB)VB(tn) + F1(tn)

− µ

[
(bn−2 − an−1)UI(t0) + (an−1 − an−2 − 2bn−2)UI(t1) + (an−2 + bn−2)UI(t2)

n−1∑
k=3

(
w1,n−kUI(tk) + w2,n−kUI(tk−1) + w3,n−kUI(tk−2) + w4,n−kUI(tk−3)

)
+ w2,0UI(tn−1) + w3,0UI(tn−2) + w4,0UI(tn−3)

]
,

µ w1,0VI(tn) + η cγ( ¯̄AI + ĀI)UI(tn)− q LU (tn) = −η cγ( ¯̄AB + ĀB)UB(tn)− F2(tn)

− µ

[
(bn−2 − an−1)VI(t0) + (an−1 − an−2 − 2bn−2)VI(t1) + (an−2 + bn−2)VI(t2)

+

n−1∑
k=3

(
w1,n−kVI(tk) + w2,n−kVI(tk−1) + w3,n−kVI(tk−2) + w4,n−kVI(tk−3)

)
+ w2,0VI(tn−1) + w3,0VI(tn−2) + w4,0VI(tn−3)

]
.

By solving the above system UI(tn) and VI(tn) are obtained and consequently u(x, tn) and v(x, tn) are computed.

4.2. Two-Dimensional case. Now, we generalize the presented method for solving the two-dimensional nonlinear
TSFSE as

i cDα
t ψ(x, y, t) + η

∂γψ(x, y, t)

∂|x|γ
+ η

∂γψ(x, y, t)

∂|y|γ
+ q|ψ(x, y, t)|2ψ(x, y, t) = f(x, y, t), (4.20)

with the initial and boundary conditions

ψ(x, y, 0) = g(x, y),

ψ(0, y, t) = h1(y, t),

ψ(1, y, t) = h2(y, t),

ψ(x, 0, t) = h3(x, t),

ψ(x, 1, t) = h4(x, t).

Similar to the one-dimensional case, we split the unknown function into real and imaginary parts as follows:

ψ(x, y, t) = u(x, y, t) + iv(x, y, t), (4.21)

where

|ψ(x, y, t)|2 = u2(x, y, t) + v2(x, y, t). (4.22)
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By replacing (1.6), (4.21), and (4.22) in Eq. (4.20), we get the below-coupled system

cDα
t u(x, y, t)− η cγ

[
0D

γ
xv(x, y, t) + xD

γ
1v(x, y, t) + 0D

γ
yv(x, y, t) + yD

γ
1v(x, y, t)

]
+ q
(
u2(x, y, t) + v2(x, y, t)

)
v(x, y, t) = Im f(x, y, t),

cDα
t v(x, y, t) + η cγ

[
0D

γ
xu(x, y, t) + xD

γ
1u(x, y, t) + 0D

γ
yu(x, y, t) + yD

γ
1u(x, y, t)

]
− q
(
u2(x, y, t) + v2(, yx, t)

)
u(x, y, t) = −Re f(x, y, t).

(4.23)

Also, substituting (4.21) in initial and boundary conditions gives

u(x, y, 0) = Re g(x, y), v(x, y, 0) = Im g(x, y), 0 ≤ x, y ≤ 1, (4.24)

u(0, y, t) = Re h1(y, t), v(0, y, t) = Im h1(y, t), 0 < t ≤ T, (4.25)

u(1, y, t) = Re h2(y, t), v(1, y, t) = Im h2(y, t), 0 < t ≤ T, (4.26)

u(x, 0, t) = Re h3(x, t), v(x, 0, t) = Im h3(x, t), 0 < t ≤ T, (4.27)

u(x, 1, t) = Re h4(x, t), v(x, 1, t) = Im h4(x, t), 0 < t ≤ T. (4.28)

We discretize Eqs. (4.23) in the spatial directions at the distinct points (xi, yj), i = 1, ...,M1 and j = 1, ...,M2 where
(x1, yj), (xM1

, yj), (xi, y1) and (xi, yM2
) are boundary points. Then, we approximate the real and imaginary parts by

u(x, y, t) = WT
φ (x) Φ−TX U(t)Φ−1

Y Wφ(y), (4.29)

v(x, y, t) = V Tφ (x) Φ−TX V (t)Φ−1
Y Wφ(y), (4.30)

in which Wφ(y) and ΦY are defined like Wφ(x) and ΦX , respectively, and U(t) = [ui,j(t)] and V (t) = [vi,j(t)], where
ui,j(t) = u(xi, yj , t) and vi,j(t) = v(xi, yj , t), for i = 1, ..,M1, j = 1, ...,M2.
Substituting (4.29) and (4.30) in the discretized form of (4.23), we have

cDα
t ui,j(t)− η cγ

[
0D

γ
xW

T
φ (xi) Φ−TX V (t)Φ−1

Y Wφ(yj) + xD
γ
1W

T
φ (xi) Φ−TX V (t)Φ−1

Y Wφ(yj)

+WT
φ (xi) Φ−TX V (t)Φ−1

Y 0D
γ
yWφ(yj) +WT

φ (xi) Φ−TX V (t)Φ−1
Y yD

γ
1Wφ(yj)

]
+ q
(
u2
i,jt) + v2

i,j(t)
)
vi,j(t)

= Im f(xi, yj , t), (4.31)

cDα
t vi,j(t) + η cγ

[
0D

γ
xW

T
φ (xi) Φ−TX U(t)Φ−1

Y Wφ(yj) + xD
γ
1W

T
φ (xi) Φ−TX U(t)Φ−1

Y Wφ(yj)

+WT
φ (xi) Φ−TX U(t)Φ−1

Y 0D
γ
yWφ(yj) +WT

φ (xi) Φ−TX U(t)Φ−1
Y yD

γ
1Wφ(yj)

]
− q
(
u2
i,j(t) + v2

i,j(t)
)
ui,j(t)

= −Re f(xi, yj , t), (4.32)

where 0D
γ
xW

T
φ (xi), xD

γ
1Wφ(xi), 0D

γ
yW

T
φ (yj) and yD

γ
1Wφ(yj) are obtained by Eqs. (3.6), (3.7), (3.9), and (3.10).

We generalize the structure presented in the one-dimensional case to two-dimensional as follows:

We defined ¯̄B = [¯̄bij ] = Φ−1
Y 0Ψ̃Y and B̄ = [b̄ij ] = Φ−1

Y 1Ψ̃Y where

0Ψ̃Y = [0D
γ
yWφ(y2), . . . , 0D

γ
yWφ(yM2−1)],

1Ψ̃Y = [yD
γ
1Wφ(y2), . . . , yD

γ
1Wφ(yM2−1)].

Also, we put

Φ̃Y = [Wφ(y2), . . . ,Wφ(yM2−1)], Φ̃TX =

 WT
φ (x2)

...
WT
φ (xM1−1)

 .
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The below relations are obtained easily

0Ψ̃T
X Φ−TX V (t) Φ−1

Y Φ̃Y =


¯̄a1,1 ¯̄a1,M2

¯̄a2,1 ¯̄a2,M2

...
...

¯̄aM1−2,1 ¯̄aM1−2,M2


︸ ︷︷ ︸

= ¯̄AB

[
v1,2(t) v1,3(t) . . . v1,M2−1(t)
vM1,2(t) vM1,3(t) . . . vM1,M2−1(t)

]
︸ ︷︷ ︸

=V row
B (t)

+


¯̄a1,2 . . . ¯̄a1,M2−1

¯̄a2,2 . . . ¯̄a2,M2−1

... . . .
...

¯̄aM1−2,2 . . . ¯̄aM1−2,M2−1


︸ ︷︷ ︸

= ¯̄AI

×
[

v2,2(t) v2,3(t) . . . v2,M2−1(t)
vM1−1,2(t) vM1−1,3(t) . . . vM1−1,M2−1(t)

]
︸ ︷︷ ︸

=VI(t)

,

Φ̃TX Φ−TX V (t)Φ−1
Y 0Ψ̃Y =


v2,1(t) v2,M2

(t)
v3,1(t) v3,M2

(t)
...

...
vM1−1,1(t) vM1−1,M2

(t)


︸ ︷︷ ︸

=V col
B (t)

[ ¯̄b1,1
¯̄b1,2 . . . ¯̄b1,M2−2

¯̄bM1,1
¯̄bM1,2 . . . ¯̄bM1,M2−2

]
︸ ︷︷ ︸

= ¯̄BB

+

 v2,2(t) v2,3(t) . . . v2,M2−1(t)
... . . .

...
vM1−1,2(t) vM1−1,3(t) . . . vM1−1,M2−1(t)


︸ ︷︷ ︸

=VI(t)

×


¯̄b2,1

¯̄b2,2 . . . ¯̄b2,M2−2

... . . .
...

¯̄bM1−1,1
¯̄bM1−1,2 . . . ¯̄bM1−1,M2−2


︸ ︷︷ ︸

= ¯̄BI

.

Similarly, we have

1Ψ̃T
X Φ−TX V (t) Φ−1

Y Φ̃Y = ĀIVI(t) + ĀBV
row
B (t),

0Ψ̃T
X Φ−TX U(t) Φ−1

Y Φ̃Y = ¯̄AIUI(t) + ¯̄ABU
row
B (t),

1Ψ̃T
X Φ−TX U(t) Φ−1

Y Φ̃Y = ĀIUI(t) + ĀBU
row
B (t),

Φ̃TX Φ−TX V (t)Φ−1
Y 1Ψ̃Y = VI(t)B̄I + V colB (t)B̄B,

Φ̃TX Φ−TX U(t)Φ−1
Y 0Ψ̃Y = UI(t) ¯̄BI + U colB (t) ¯̄BB,

Φ̃TX Φ−TX U(t)Φ−1
Y 1Ψ̃Y = UI(t)B̄I + U colB (t)B̄B.

Substituting the above equations in (4.31) and (4.32) gives a fractional system in the unknown matrices UI and VI .
The finite difference scheme proposed for a one-dimensional case can be easily developed for this fractional system.
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5. Numerical illustrations

In this section, we apply the mentioned method to solve four numerical illustrations. We put a positive integer ”N”
instead of ”∞” in Eqs. (3.2)-(3.10). In all examples, N = 15 is considered. Also, we utilize the Chebyshev extrema
points on interval [0, 1] as discretization points that are defined as:

xj = −1

2
cos

π(j − 1)

M − 1
+

1

2
, j = 1, 2, . . . ,M.

The numerical examples are implemented in Maple 16 and SageMath 8.8 software on a PC with an Intel(R) Core(TM)
i5-4210U CPU, a 64-bit Windows 8.1 operating system, and 6 GB internal memory. The errors are computed at t = tN

by the formulas

E∞ =
∥∥∥uexact(x, tN )− uapprox(x, tN )

∥∥∥
∞

= max
1≤i≤M

∣∣∣uexact(xi, tN )− uapprox(xi, t
N )
∣∣∣,

E2 =

[ M∑
i=1

(
uexact(xi, t

N )− uapprox(xi, t
N )
)2
] 1

2

,

RMSE =

[
1

M

M∑
i=1

(
uexact(xi, t

N )− uapprox(xi, t
N )
)2
] 1

2

.

The errors are computed with M = 101 uniform points and h = 0.01, where h = xi+1 − xi, i = 1, · · · ,M − 1.
Also, the following formula is used to compute the experimental convergence order (C −Order) of the new method

C −Order = log2

(
`(h, 2τ)

`(h, τ)

)
,

where ` can be E∞, E2 and RMSE errors. Moreover, the resulting nonlinear systems are solved by the Newton
iterative method with the stop condition

‖Xk+1 −Xk‖∞
‖Xk+1‖∞

< 10−5.

To start the Newton iteration method, for the first time step, we use the radial basis interpolation function u(x, 0)
and v(x, 0), and then, for n+ 1th time step, the nth time step information is used.

Example 5.1. We solve the nonlinear TSFSE: [19]

i cDα
t ψ(x, t) +

∂γψ(x, t)

∂|x|γ
+ 2|ψ(x, t)|2ψ(x, t) = f(x, t),

with

ψ(x, 0) = 0, 0 ≤ x ≤ 1,

ψ(0, t) = 0, 0 < t ≤ 1,

ψ(1, t) = 0, 0 < t ≤ 1,

where

f(x, t) = i
Γ(4)

Γ(4− α)
t3−αx2(1− x)2 + 2t9x6(1− x)6 − 1

Γ(5− γ)
t3x−γ

×
(( 1

1− x

)γ
(1− x)2xγ

(
12x2 − 6xγ + (−1 + γ)γ

)
+ x2

(
12(1− x)2

+ (−7 + 6x)γ + γ2
))

sec
(πγ

2

)
,

and ψ(x, t) = t3x2(1− x)2 is the exact solution.
This problem has been investigated in [19] via a finite difference scheme. In Table 1, we compare the RMSE errors
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Table 1. The RMSE errors and C−orders for the real part resulted by our method (ε = 0.15, σ = 3
and with M = 10), and method in [19], at t = 1 in Example 5.1 for α = 0.2.

Our method Method in [19]

γ τ RMSE C − order RMSE C − order
1.3

1
8 5.99740× 10−8 − 1.0967× 10−4 −
1
16 5.12219× 10−9 3.55 3.5127× 10−5 1.64
1
32 4.17589× 10−10 3.62 1.0971× 10−5 1.67
1
64 3.38902× 10−11 3.62 3.3709× 10−6 1.70

1.5
1
8 3.99647× 10−8 − 8.4755× 10−5 −
1
16 3.27360× 10−9 3.61 2.7140× 10−5 1.64
1
32 2.63262× 10−10 3.64 8.4748× 10−6 1.67
1
64 2.17271× 10−11 3.60 2.6056× 10−6 1.70

1.7
1
8 2.40138× 10−8 − 6.3801× 10−5 −
1
16 1.92259× 10−9 3.64 2.0426× 10−5 1.64
1
32 1.53749× 10−10 3.64 6.3782× 10−6 1.67
1
64 1.35151× 10−11 3.51 1.9644× 10−6 1.69

1.9
1
8 1.34096× 10−8 − 4.6971× 10−5 −
1
16 1.06322× 10−9 3.66 1.5037× 10−5 1.64
1
32 8.51438× 10−11 3.64 4.6976× 10−6 1.67
1
64 8.80514× 10−12 3.27 1.4572× 10−6 1.68

Table 2. The comparison of E∞ and E2 errors and condition number of matrix φX for different
values of M using the presented method with α = 0.2, γ = 1.7, ε = 0.15, σ = 3, τ = 0.015625 at t = 1
in Example 5.1.

Real part Imaginary part

M E∞ E2 E∞ E2 κ∞(φX)
8 2.04778× 10−8 1.10415× 10−7 5.66021× 10−10 3.93624× 10−9 8.3504
9 1.22321× 10−10 6.06866× 10−10 5.33926× 10−11 3.77159× 10−10 9.3609
10 2.32768× 10−11 1.35798× 10−10 5.29700× 10−11 3.75215× 10−10 10.372
11 1.68127× 10−11 1.21011× 10−10 5.28873× 10−11 3.74237× 10−10 11.384
12 1.68418× 10−11 1.21134× 10−10 5.29427× 10−11 3.74418× 10−10 12.396

and C − orders obtained by the present technique and method in [19] with the spatial step size h = 0.00125. Table
2 demonstrates our results for M = 8, 9, 10, 11, 12. Table 3 depicts the errors obtained by M = 10 and τ = 0.01. As
the table shows, the errors are very small even for t = 3 (300 iterations). So, we can conclude the method has a good
stability for this problem.

Example 5.2. Consider [13]

i cDα
t ψ(x, t) +

∂γψ(x, t)

∂|x|γ
+ |ψ(x, t)|2ψ(x, t) = f(x, t),

with



CMDE Vol. 13, No. 1, 2025, pp. 41-60 55

Table 3. The comparison of E2 and RMSE errors for various values of t with α = 0.2, γ = 1.3,
M = 10 and ε = 0.15, σ = 3 at τ = 0.01 in Example 5.1.

Real part Imaginary part

t E2 RMSE E2 RMSE
0.5 1.268806× 10−10 1.262509× 10−11 3.279055× 10−10 3.262782× 10−11

1 8.360364× 10−11 8.318873× 10−12 1.396291× 10−10 1.389362× 10−11

1.5 1.739737× 10−10 1.731103× 10−11 9.117031× 10−11 9.071785× 10−12

2 3.967341× 10−10 3.947652× 10−11 8.705242× 10−11 8.662039× 10−12

2.5 7.920351× 10−10 7.881044× 10−11 2.431625× 10−10 2.419558× 10−11

3 6.191609× 10−9 6.160881× 10−10 4.070811× 10−6 4.050609× 10−7

ψ(x, 0) = 10x2(1− x)2, 0 ≤ x ≤ 1,

ψ(0, t) = 0, , 0 < t ≤ 0.5,

ψ(1, t) = 0, 0 < t ≤ 0.5,

where

f(x, t) = i
20t2−α

Γ(3− α)
x2(1− x)2 + 1.0× 103.(1 + t2)3x6(1− x)6

− 10(1 + t2)x2−γ

cos(γπ2 )Γ(3− γ)
×
(

1− 6x

3− γ
+− 12x2

(3− γ)(4− γ)

)
− 10(1 + t2)(1− x)2−γ

cos(γπ2 )Γ(3− γ)
×
(

1− 6(1− x)

3− γ
+− 12(1− x)2

(3− γ)(4− γ)

)
.

The function, ψ(x, t) = 10(1 + t2)x2(1− x)2, is the exact solution.
This problem has been solved in [13] by a fully discrete finite elements method. We solve it by our technique. In Table
4, our results are compared with those presented in [13]. In Table 4, τ and h denote the temporal and spatial step sizes,
respectively. Table 4 shows that as the temporal step size (τ) decreases, the errors become smaller. Table 5 depicts the
errors and κ∞(φX) for different values of M , and confirms the convergence of our method and the well-conditioning
of the interpolation matrix.

Example 5.3. Consider the following nonlinear TSFSE:

i cDα
t ψ(x, t) +

∂γψ(x, t)

∂|x|γ
+ 2|ψ(x, t)|2ψ(x, t) = f(x, t),

with the non-smooth initial condition

ψ(x, 0) =

{
x, x < 1

2 ,
1− x, x ≥ 1

2 ,
, 0 ≤ x ≤ 1,

and boundary conditions

ψ(0, t) = 0, 0 < t ≤ 1,

ψ(1, t) = 0, 0 < t ≤ 1,

where

f(x, t) = x2t3(xt+ i).

In Table 6, we report the numerical approximations for different values of τ using the presented method. This table
confirms the efficiency of the new technique even for a nonlinear TSFSE with non-smooth initial data. Figure 1 depicts
the real and the imaginary parts of the approximate solution for M = 12 at the time t = 1.5.



56 B. SEPEHRIAN AND Z. SHAMOHAMMADI

Table 4. The comparison of both E∞ errors and C − orders between presented method (ε = 0.15,
σ = 3 and M = 10) and method in [13] with h = 10−3, for α = 0.3 and γ = 1.2, at t = 0.5 in Example
5.2.

Real part Imaginary part

τ E2 C − order E2 C − order
Our method

1
8 7.876322× 10−5 − 4.054167× 10−4 −
1
16 3.323861× 10−5 1.24 7.305892× 10−5 2.47
1
32 5.906817× 10−6 2.49 1.012731× 10−5 2.85
1
64 1.001845× 10−6 2.56 1.431507× 10−6 2.82
1

128 1.659518× 10−7 2.59 2.066758× 10−7 2.79

Method in [13]
1
8 5.088096× 10−4 − 8.277816× 10−4 −
1
16 1.634896× 10−4 1.637928 2.747536× 10−4 1.591112
1
32 5.253915× 10−5 1.637734 8.933547× 10−5 1.620833
1
64 1.700971× 10−5 1.627034 2.858752× 10−5 1.643848
1

128 5.726426× 10−6 1.570652 8.980920× 10−6 1.670450

Table 5. The comparison of E∞ and E2 errors and condition number of matrix φX for different
values of M using presented method with α = 0.3, γ = 1.6, ε = 0.2, σ = 3, τ = 0.02 at t = 1 in
Example 5.2.

Real part Imaginary part

M E∞ E2 E∞ E2 κ∞(φX)
8 1.53642× 10−6 7.47919× 10−6 1.55855× 10−7 1.09288× 10−6 8.4400
9 7.74849× 10−8 4.81321× 10−7 6.32069× 10−8 4.45266× 10−7 9.4616
10 6.73296× 10−8 4.74453× 10−7 6.29985× 10−8 4.44968× 10−7 10.484

Table 6. The numerical estimates using presented method with γ = 1.7, α = 0.15, M = 10, ε = 0.15
and σ = 3 at t = 1 in Example 5.3.

(x, t) τ = 0.02 τ = 0.01 τ = 0.005 τ = 0.0025
u(0.2, 1) −0.00387576 −0.00388277 −0.00388627 −0.00388802
u(0.4, 1) −0.01105906 −0.01106992 −0.01107534 −0.01107806
u(0.6, 1) −0.02188627 −0.02189714 −0.02190256 −0.02190527
u(0.8, 1) −0.02784189 −0.02784890 −0.02785239 −0.02785414

v(0.2, 1) −0.06431573 −0.06429290 −0.06428156 −0.06427591
v(0.4, 1) −0.10950439 −0.10946771 −0.10944950 −0.10944043
v(0.6, 1) −0.12454102 −0.12450432 −0.12448609 −0.12447701
v(0.8, 1) −0.09585389 −0.09583102 −0.09581966 −0.09581401

Example 5.4. Consider

i cDα
t ψ(x, y, t) +

∂γψ(x, y, t)

∂|x|γ
+
∂γψ(x, y, t)

∂|y|γ
+ 2|ψ(x, y, t)|2ψ(x, y, t) = f(x, y, t),
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(a) (b)

Figure 1. The graphs of the real (a) and the imaginary (b) parts of the approximate solution for
M = 12, α = 0.25, γ = 1.8, ε = 0.15, σ = 3 and τ = 0.01 at t = 1.5 in Example 5.3.

with the conditions

ψ(x, y, 0) = 0,

ψ(0, y, t) = 0,

ψ(1, y, t) = 0,

ψ(x, 0, t) = 0,

ψ(x, 1, t) = 0,

where

f(x, y, t) = i
120

Γ(6− α)
t5−α(1 + i)A(x)A(y) + 4(1 + i)t15A3(x)A3(y)

− cγt5(1 + i)A(y)

[
2

Γ(3− γ)
B(x, 2− γ)− 12

Γ(4− γ)
B(x, 3− γ) +

24

Γ(5− γ)
B(x, 4− γ)

]
− cγt5(1 + i)A(x)

[
2

Γ(3− γ)
B(y, 2− γ)− 12

Γ(4− γ)
B(y, 3− γ) +

24

Γ(5− γ)
B(y, 4− γ)

]
,

in which A(.) and B(.) are defined as

A(z) = z2(1− z)2, (5.1)

and

B(z, k) = zk + (1− z)k.

The exact solution is ψ(x, t) = (1 + i)t5x2(1− x)2y2(1− y)2.
We solved the problem by our technique with M1 = M2 = M . We list the E∞ errors and C − orders resulting by the
present method with ε = 0.1, σ = 1 and M = 9 in Table 7. As the table shows, C − order is approximately 4− α. In
Table 8, the errors E∞ and E2 together with the condition numbers of matrices φX and φY for different numbers of
Gaussian RBFs are listed. The table confirms both the convergence of the method and the well-conditioning of our
interpolation.
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Table 7. The C − orders and E∞ errors for α = 0.3 and γ = 1.85 using presented method, at t = 1
in Example 5.4.

Real part Imaginary part

τ E∞ C − order E∞ C − order
1
8 4.62964× 10−7 − 4.00842× 10−7 −
1
16 4.10012× 10−8 3.50 3.56275× 10−8 3.49
1
32 3.43238× 10−9 3.58 2.98845× 10−9 3.58
1
64 2.78974× 10−10 3.62 2.43254× 10−10 3.62
1

128 2.22503× 10−11 3.65 1.95099× 10−12 3.64

Table 8. The comparison of E∞ and E2 errors and condition number for different values of M using
presented method with α = 0.2, γ = 1.9, τ = 0.025 and ε = 0.1, σ = 1 at t = 1 in Example 5.4.

Real part Imaginary part

M E∞ E2 E∞ E2 κ∞(φX) κ∞(φY )
4 2.394723× 10−3 8.371867× 10−3 2.509691× 10−3 8.908535× 10−3 4.3014 4.3014
5 6.261892× 10−6 2.051060× 10−5 6.574005× 10−6 2.162577× 10−5 5.2903 5.2903
6 1.387267× 10−6 4.151272× 10−6 1.370691× 10−6 4.191423× 10−6 6.2861 6.2861
7 3.722687× 10−9 1.016861× 10−8 3.184190× 10−9 1.028350× 10−8 7.2853 7.2853
8 6.452195× 10−10 3.117526× 10−9 1.028044× 10−9 3.111826× 10−9 8.2866 8.2866

6. Conclusion

We developed the stable Gaussian RBF interpolation to solve nonlinear TSFSE. In this regard, we obtained the
Riesz fractional derivative of the eigenfunction Gaussian interpolants, and by a method of lines, we converted the
problem to a coupled system of fractional ODEs. To solve this system, we proposed a high-order finite difference
scheme. We included four numerical examples to certify the efficiency of the method. Numerical experiments show
that the condition number of φX is small and the accuracy of solutions is acceptable. We developed our technique
for two-dimensional TSFSE. Our method gives a closed-form approximate solution in each time step, and it can be
extended for many types of time- and space-fractional PDEs.
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