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Abstract

In this work, we established some exact solutions for the (2+1)-dimensional Zakharov-Kuznetsov, KdV, and K(2,2)
equations which are considered based on the improved Exp-function method, by utilizing Maple software. We use

the fractional derivatives with fractional complex transform. We obtained new periodic solitary wave solutions.
The obtained solutions include three classes of soliton wave solutions in terms of hyperbolic function, trigonometric

function, and rational function solutions. The obtained solutions and the exact solutions are shown graphically,

highlighting the effects of non-linearity. Many other such types of nonlinear equations arising in fluid dynamics
and nonlinear phenomena.
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1. Introduction

Many nonlinear physical phenomena arise in various fields of engineering and science such as fluid dynamics, nuclear
reactor dynamics, plasma physics, biology, optical fibres and solid state physics. To describe these complex physical
phenomena, nonlinear differential equations play a significant role. Therefore, obtaining the solutions of these nonlinear
equations are a topic of great interest in the study of many fields of science. To better understand the workings of
the physical problem, the mathematical model came into the picture in the form of nonlinear PDEs. The solutions
of partial differential equations give the detailed summary about the nature of phenomena involved. Many numerical
and analytical methods have been derived to deal with this kind of scientific problems. We need to adopt an effective
and powerful method to investigate such type of mathematical model which gives the solutions upholding to physical
reality. In most of the analytic techniques, linearization of the system is the main topic to focus on, and also, it is
assumed that the nonlinearities are relatively insignificant. Sometimes, these assumptions made a strong affect on the
solutions with respect to the real physics of the phenomena involved. Thus, finding the solutions of nonlinear ODEs
and PDEs are still a significant problem. For this, we need new techniques to develop analytic and exact solutions.

In the past two decades, fractional calculus theory gained a great attention and popularity in various fields of science
and engineering due to its demonstrated applications. These contributions to the fields of science and engineering are
based on the mathematical analysis. It covers the widely known classical fields such as Abel’s integral equation and
viscoelasticity. Also, including the analysis of feedback amplifiers, fractional-order Chua-Hartley systems, electrode-
electrolyte interface models, fractional-order models of neurons, electric conductance of biological systems, generalized
voltage dividers, fitting of experimental data, capacitor theory, and the fields of special functions [14, 17–19, 48, 49].
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Several robust methods have been used to solve FDEs, fractional integro-differential equations and dynamic systems
containing fractional derivatives. Some of the most important methods are the Adomian’s decomposition [12, 43, 44],
the exp-function [15], the He’s the variational iteration [45, 51], the fractional sub-equation [55], the first integral [29],
the homotopy analysis [7, 8, 23], the (G’/G)-expansion [3], the generalized tanh-coth [37], the tan(φ/2)-expansion [26],
the homotopy perturbation [22, 41], spectral methods [13], the transform [25], and other methods [5, 6, 11, 40, 47, 50].

A substantial amount of research work has been directed for the study of the nonlinear fractional Zakharov-
Kuznetsov, KdV and K(2,2) equations given by
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∂x3
u2 +

1

8

∂3
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∂x3
u2 = 0. (1.4)

The ZK equation, first obtained as a description of weakly nonlinear ion-acoustic modes in a strongly magnetized
plasma, is of particular interest as it is the simplest equation that admits cylindrical and spherical solitary wave
solutions in addition to the planar KdV soliton solutions [52]. Another powerful analytical method is called the
Exp-function method (EFM), which was first presented by He [20]. The EFM has successfully been applied to many
situations. For example, He [20] solved the nonlinear wave equations via the EFM. Abdou [1] solved generalized
solitonary and periodic solutions for nonlinear partial differential equations by the EFM. For further information refer
to vigorous references therein ([4, 9, 10, 30–33]).

We will use the Jumarie’s modified Riemann-Liouville derivative [24] of order α where is defined by the following
expression:

Dα
t u(t) =


1

Γ(1−α)

∫ t
0

(
t− τ)−α (u(τ)− u(0)) dτ, if 0 < α ≤ 1,

[
u(n)(t)

](α−n)
, if n ≤ α < n+ 1, n ≥ 1.

(1.5)

The properties of the modified Riemann-Liouville derivative are given as:

(1) Dα[f(t)g(t)] = f(t)Dαg(t) + g(t)Dαf(t),
(2) Dα[f(g(t))] = f ′g(g(t))Dαg(t),
(3) Dα[f(g(t))] = Dα

g f(g(t))[g′(t)]α,

(4) Dα
t t
γ = Γ(γ+1)

Γ(1+α−γ) t
γ−α, γ > 0, where Γ denotes the Gamma function.

Authors of [39] explained the generalized fifth-order KdV like equation with prime number p = 3 via a generalized
bilinear differential operator. N-lump was invstigated to the variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada
equation [38]. Applications of tan(φ/2)-expansion method for the Biswas-Milovic equation [34], the Gerdjikov-Ivanov
model [36], the Kundu-Eckhaus equation [35] and the fifth-order integrable equations [27] were studied. Lump solu-
tions were analyzed to the fractional generalized CBS-BK equation [53] and the (3+1)-D Burger system [16]. The
approximations of one-dimensional hyperbolic equation with non-local integral conditions were constructed by re-
duced differential transform method [46]. The generalized Hirota bilinear strategy by the number prime was used
to the (2+1)-dimensional generalized fifth-order KdV like equation [39]. The traveling wave solutions and analytical
treatment of the simplified MCH equation and the combined KdV-mKdV equations were studied [2].

Our objective here is to find exact solutions of some fractional nonlinear partial differential equations (FNLPDEs)
under consideration the improved EFM for obtaining the new periodic solitary wave solutions. Discussion about the
Improved Exp-function Method is given. Application of the improved EFM on FNLPDEs are investigated and derived
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exact solutions. In the continuation, we will present graphical illustrations of some solutions of the aforementioned
models. After that, we will deal with the investigation of solutions and we will end with a conclusion.

2. Improved Exp-function Method

To illustrate the basic idea of the improved EFM, we take the following nonlinear fractional partial differential
equation in the form:

N (u,ux,uy,uxx,uyy, ...,D
α
t u,Dα

x u,Dα
xxu, ...) = 0, 0 < α ≤ 1. (2.1)

Using a transformation

u(x, y, t) = u(η), η = kx+my +
ntα

Γ(α+ 1)
, (2.2)

where k,m and n are constants to be determined later, we can rewrite equation Eq. (2.1) in the following nonlinear
ODE

M(u, ku′,mu′, k2u′′,m2u′′, ..., nu′, ...) = 0, (2.3)

where the prime denotes derivative with respect to η. If possible, integrate Eq. (2.3) term by term one or more times.
This yields constants of integration. For simplicity, the integration constants can be set to zero. Based on the to
modified Exp-function method, the final solution can be presented as

u(η) =

∑2M
n=1 an exp(nη)∑2M
n=1 bn exp(nη)

+

∑2M
n=1 a−n exp(−nη)∑2M
n=1 b−n exp(−nη)

, (2.4)

where M is integers which are unknown to be determine, an, bn, a−n and b−n are unfound constants. To determine the
value of M , we balance the linear term of highest order of Eq. (2.3) with the highest order nonlinear term. Plugging
(2.4) into the Eq. (2.3), equating the coefficients of each power to zero gives the system of the algebraic equations for
an, bn, a−n and b−n, then solve the system to determine these constants.

3. Test Problems

In this section, we offer several examples to demonstrate the applicability of improved EFM to solve FNLPDEs.

3.1. The fractional ZK(2,2,2) equation. Consider the (2+1)-dimensional ZK(2,2,2) equation of fractional order
as follows [42]
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∂tα
u+

∂

∂x
u2 +
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8

∂3

∂x3
u2 +

1

8

∂3

∂x∂y2
u2 = 0, (3.1)

by utilizing the transformation η = kx+my + ntα

Γ(α+1) , Eq. (3.1) is reduced to an ODE as

nu′ + k(u2)′ +
1

8
k3(u2)′′′ +

1

8
km2(u2)′′′ = 0. (3.2)

Integrating Eq. (3.2) once and setting the constant of integration equal to zero, results in

nu+ ku2 +
1

8
(k3 + km2)(u2)′′ = 0. (3.3)

Balancing the (u2)′′ and u by employing the homogenous principle, we get

2M + 2 = M, ⇒M = −2. (3.4)

To get a closed form solution, we use the transformation

u(η) = v(η)−2. (3.5)

Substituting (3.5) into Eq. (3.3), we get

kv2 + nv4 +
1

2
(k3 + km2)(5v′2 − vv′′) = 0. (3.6)
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Balancing the vv′′ and v4, we get

2M + 2 = 4M, ⇒M = 1. (3.7)

Then the exact solution will be as

v(η) =
a1 exp(η) + a2 exp(2η)

b1 exp(η) + b2 exp(2η)
+
a−1 exp(−η) + a−2 exp(−2η)

b−1 exp(−η) + b−2 exp(−2η)
. (3.8)

For simplicity, we set a2 = b2 = 1 and a−2 = b−2 = 1, then (3.8) reduces to

v(η) =
a1 + exp(η)

b1 + exp(η)
+
a−1 + exp(−η)

b−1 + exp(−η)
. (3.9)

Inserting (3.9) in to Eq. (3.6), we obtain(
(b1 + exp(η))

4
(b−1 + exp(−η))

4
)−1 4∑

n=−4

Cn exp(nξ) = 0, (3.10)

where Cn(−4 ≤ n ≤ 4) are polynomial statements in terms of a1, a−1,b1,b−1, k,n and m. Hence, solving the resulting
system Cn = 0(−4 ≤ n ≤ 4) simultaneously, we acquire the below set of parameters of solutions
Set I:

a1 = −b1, a−1 =
1

b1
, b−1 = − 1

b1
, b1 = b1, k =

√
1 + 2m2

2
i, n =

3

16
k, m = m. (3.11)

We, therefore, gained the following generalized solitary solution

u1(η) =

(
4b1e

η

e2η − b21

)−2

, η =

√
1 + 2m2

2
ix+my +

3

16

√
1 + 2m2

2
i

tα

Γ(α+ 1)
. (3.12)

If we choose b1 = 1, then Eq. (3.12) get to

u1(x, t) =
1

4
sinh2

(√
1 + 2m2

2
ix+my +

3

16

√
1 + 2m2

2
i

tα

Γ(α+ 1)

)
. (3.13)

3.2. The fractional ZK(3,3,3) equation. As second example, assume the ZK(3,3,3) equation of fractional order
[42] be as

∂α

∂tα
u+

∂

∂x
u3 + 2

∂3

∂x3
u3 + 2

∂3

∂x∂y2
u3 = 0, (3.14)

by using the transformation η = kx+my + ntα

Γ(α+1) , Eq. (3.14) is reduced to an ODE as

nu′ + k(u3)′ + 2k3(u3)′′′ + 2km2(u3)′′′ = 0. (3.15)

Integrating Eq. (3.15) once and setting the constant of integration equal to zero, results in

nu+ ku3 + 2(k3 + km2)(u3)′′ = 0. (3.16)

Balancing the (u3)′′ and u, we achieve to M = −1. To obtain an exact solution, we get

u(η) = v(η)−1. (3.17)

Plugging (3.17) into Eq. (3.16), we obtain

kv2 + nv4 + 6(k3 + km2)(4v′2 − vv′′) = 0. (3.18)

Balancing the vv′′ and v4, we get to M = 1. Therefore, the exact solution will be as

v(η) =
a1 exp(η) + a2 exp(2η)

b1 exp(η) + b2 exp(2η)
+
a−1 exp(−η) + a−2 exp(−2η)

b−1 exp(−η) + b−2 exp(−2η)
. (3.19)
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Figure 1. 3D and 2D plots of (3.13) (a) α = 0.5, (c) α = 0.9 when −100 < x < 100 and 0 < t < 10 and (b)
α = 0.5, (d) α = 0.9 when y = 1, m = 2, −100 < x < 100 and t = 10.

For simplicity, we set a2 = b2 = 1 and a−2 = b−2 = 1, then (3.19) transforms to

v(η) =
a1 + exp(η)

b1 + exp(η)
+
a−1 + exp(−η)

b−1 + exp(−η)
. (3.20)

Substituting (3.20) into Eq. (3.18), we acquire the below set of solutions
Set I:

a1 = −b1, a−1 =
1

b1
, b−1 = − 1

b1
, b1 = b1, k =

1

3

√
1 + 18m2

2
i, n =

1

6
k, m = m,

(3.21)

u1(x, t) =

 4b1

b21e
− 1

3

√
1+18m2

2 ix−my− 1
18

√
1+18m2

2 i tα

Γ(α+1) − e
1
3

√
1+18m2

2 ix+my+ 1
18

√
1+18m2

2 i tα

Γ(α+1)

−1

. (3.22)

If we choose b1 = 1, then Equation (3.22) achieve to

u1(x, t) =
1

4
sinh

(
1

3

√
1 + 18m2

2
ix+my +

1

18

√
1 + 18m2

2
i

tα

Γ(α+ 1)

)
. (3.23)
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Figure 2. 3D and 2D plots of (3.23) (a) α = 0.5, (c) α = 0.9 when −100 < x < 100 and 0 < t < 10 and (b)
α = 0.5, (d) α = 0.9 when y = 1, m = 2, −100 < x < 100 and t = 10.

3.3. The fractional KdV equation. As third example, we next consider (1+1)-dimensional fractional KdV equation
[7]

∂α

∂tα
u− 3

∂

∂x
u2 +

∂3

∂x3
u = 0, (3.24)

by using the transformation η = kx+ ntα

Γ(α+1) , Eq. (3.24) is reduced to an ODE as

nu′ − 3k(u2)′ + k3(u)′′′ = 0. (3.25)

Integrating Eq. (3.25) once and setting the constant of integration equal to zero, concludes

nu− 3ku2 + k3u′′ = 0. (3.26)

Balancing the u′′ and u2, we obtain M = 2. Therefore, the exact solution can be written as

u(η) =

∑4
n=1 an exp(nη)∑4
n=1 bn exp(nη)

+

∑4
n=1 a−n exp(−nη)∑4
n=1 b−n exp(−nη)

. (3.27)

For simplicity, we set a3 = b3 = a4 = b4 = 1 and a−3 = b−3 = a−4 = b−4 = 1, then (3.27) reduces to

u(η) =
a1 + a2e

η + e2η + e3η

b1 + b2eη + e2η + e3η
+
a−1 + a−2e

−η + e−2η + e−3η

b−1 + b−2e−η + e−2η + e−3η
. (3.28)



CMDE Vol. 13, No. 1, 2025, pp. 1-12 7

Plugging (3.28) into Eq. (3.26), we gain the below set of solutions as
Set I:

a−1 = a−2 =
4k2 − 3

3b1
, a1 = a2 =

1

3
(4k2 − 3)b1, b−1 = b−2 =

1

b1
, b1 = b1, k = k, n = 4k3, (3.29)

u1(x, t) =
4

3

k2

[
b21e
−2k

(
x+ 4k2tα

Γ(α+1)

)
+ e

2k
(
x+ 4k2tα

Γ(α+1)

)
+ 2b1

]
[
e
−2k

(
x+ 4k2tα

Γ(α+1)

)
b1 + 1

] [
e

2k
(
x+ 4k2tα

Γ(α+1)

)
+ b1

] . (3.30)

Set II:

a1 = a2 =
a−1

b2−1

, a−1 = a−1 = a−2, b−1 = b−1 = b−2, b1 = b2 =
1

b−1
, k = k, n =

3k(b−1 + a−1)

b−1
, (3.31)

u2(x, t) =
1

b−1

[
(a−1 + b−1)e−λ + 2b2−1 + a−1b

2
−1e

λ + b3−1e
λ

(e−λ + b−1)(b−1eλ + 1)

]
, (3.32)

where λ = 2k
b−1

(
xb−1 + 3(b−1 + a−1) tα

Γ(α+1)

)
. If we choose b−1 = a−1 = 1, then Equation (3.32) get to

u2(x, t) =
e−λ + 2 + 2eλ

e−λ + 2 + eλ
, λ = 2kx+

12ktα

Γ(α+ 1)
. (3.33)

Set III:

a−1 = a−2 =
3k2 − 3

b1
, a1 = a2 = (3k2 − 1)b1, b−1 = b−2 =

1

b1
, b1 = b1, k = k, n = 9k3, (3.34)

u3(x, t) =
3k2

[
b21e
−2k(x+9k2 tα

Γ(α+1) ) + e2k(x+9k2 tα

Γ(α+1) ) + 2b1

]
[
e−2k(x+9k2 tα

Γ(α+1) )b1 + 1
] [
e2k(x+9k2 tα

Γ(α+1) ) + b1

] . (3.35)

3.4. The fractional K(2,2) equation. The (1+1)-dimensional K(2,2) equation of fractional order is given as

∂α

∂tα
u +

∂

∂x
u2 +

∂3

∂x3
u2 = 0, (3.36)

by using the transformation η = kx+ ntα

Γ(α+1) , Eq. (3.36) is reduced to an ODE as

nu′ + k(u2)′ + k3(u2)′′′ = 0. (3.37)

Integrating Eq. (3.37) once and setting the constant of integration equal to zero, concludes

nu+ ku2 + k3(u2)′′ = 0. (3.38)

Balancing the (u2)′′ and u, we get M = −2. To get an exact solution, we obtain

u(η) = v(η)−2. (3.39)

Substituting Eq. (3.39) into Eq. (3.38), we get

kv2 + nv4 + 4k3(5v′2 − vv′′) = 0. (3.40)

Balancing the vv′′ and v4, we achieve to M = 1. Then the exact solution is as

v(η) =
a1 exp(η) + a2 exp(2η)

b1 exp(η) + b2 exp(2η)
+
a−1 exp(−η) + a−2 exp(−2η)

b−1 exp(−η) + b−2 exp(−2η)
. (3.41)
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Figure 3. 3D and 2D plots of (3.33) (a) α = 0.5, (b) α = 0.9 when 0 < x < 10 and −100 < t < 100 and (c)
α = 0.5, (d) α = 0.9 when k = 2, −100 < t < 100 and x = 0.5.

For simplicity, we set a2 = b2 = 1 and a−2 = b−2 = 1, then Eq. (3.41) reduces to

v(η) =
a1 exp(η) + exp(2η)

b1 exp(η) + exp(2η)
+
a−1 exp(−η) + exp(−2η)

b−1 exp(−η) + exp(−2η)
. (3.42)

Plugging (3.42) into Eq. (3.40), we gain the following set of solutions as
Set I:

a1 = −b1, a−1 =
1

b1
, b−1 = − 1

b1
, b1 = b1, k =

1

4
i, n =

3

64
i, (3.43)

u1(x, t) =
1

16b21

(
b1 + e

i
64 [16x+3 tα

Γ(α+1) ]
)2 (
−1 + b1e

− i
64 [16x+3 tα

Γ(α+1) ]
)2

. (3.44)

If we choose b1 = 1, then Equation (3.44) get to

u1(x, t) = −I
8

sin

[
1

64

(
16x+

3tα

Γ(α+ 1)

)]
, I =

√
−1. (3.45)

4. Physical Interpretations of the Solutions

Numerical simulations have been performed by using the Maple software. We depict some of the solutions to have
an idea on the mechanism of the original equations. Particularly, we depict solutions of the fractional ZK(2,2,2,),
ZK(3,3,3), KdV and K(2,2) equations by considering the suitable values of the parameters obtained. The graphical
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Figure 4. 3D and 2D plots of (3.45) (a) α = 0.5, (b) α = 0.9 when 0 < x < 10 and −100 < t < 100 and (c)
α = 0.5, (d) α = 0.9 when −100 < t < 100 and x = 0.5.

representations to this solution are presented in Figures 1-4, respectively. Figures 1-4 represent the variation of some
appropriated parameters. The curves 1-4 have been plotted for different values of appropriated parameters. In Figures
1-4, we plot two and three dimensional graphics of real values of (3.13), (3.23), (3.33), and (3.45), respectively.

5. Conclusion

In this paper, we employed the modified Exp-function method for deriving the exact solitary wave solutions for
some of the fractional partial differential equations. As a consequence, we gained many new exact solitary solutions for
the aforementioned equations which are expressed by a rational exponential function form. The modified Exp-function
method has many applications in the field of engineering, mathematical science, and physics for solving a large class
of non-linear partial differential equations. We then think that these results will help for conducting future research in
diverse areas of physics such as mathematical physics, nonlinear phenomena, fluid mechanics and other applied fields
and so on. The method utilized here can be applied to other nonlinear fractional partial differential equations.
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