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Abstract
In this article, the exact solutions for nonlinear Drinfeld-Sokolov (DS) and generalized Drinfeld-Sokolov (gDS)
equations are established. The rational Exp-function method (EFM) is used to construct solitary and soliton

solutions of nonlinear evolution equations. This method is developed for searching exact traveling wave solutions

of nonlinear partial differential equations. Also, exact solutions with solitons and periodic structures are ob-
tained. The obtained results are not only presented numerically but are also accompanied by insightful physical

interpretations, enhancing the understanding of the complex dynamics described by these mathematical models.

The utilization of the rational EFM and the broad spectrum of obtained solutions contribute to the depth and
significance of this research in the field of nonlinear wave equations.
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1. Introduction

Drinfeld-Sokolov system was introduced by Drinfeld and Sokolov as an example of a system of nonlinear equations
possessing Lax pairs of a special form [13]. This system used by [37, 39, 41] as follows

ut + (v2)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, (1.1)

where a, b and k are constants. The main aim of the present paper is to contribute to the research in this direction. As
mentioned in [41] the term soliton was devised by Zabusky and Kruskal [44], who performed numerical studies of the
KdV equation. There has been an enormous number of examples of solitons equations [12, 20, 36, 38]. We consider a
family of generalizations of the DS system and a variant of the DS system given by [41]

ut + (vn)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, (1.2)

ut + (v−n)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, n > 2,

respectively, where a, b, n and k are constants. Here our aim is the determination of traveling wave solutions with
compact and noncompact structures for the DS system, a generalized form of the DS system, and one type different of
the DS system. Recently, the investigation of exact traveling wave solutions to nonlinear partial differential equations
plays an important role in the study of nonlinear modelling physical phenomena. The study of the traveling wave
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solutions plays an important role in nonlinear science. Meanwhile, a variety of powerful methods for seeking the
explicit and exact solutions of nonlinear evolution equations have been proposed and developed. Among them are the
Hirota’s bilinear method ([18]), homotopy analysis method ([6, 7]), variational iteration method ([8, 17]), homotopy

perturbation method ([5]), sine-cosine method ([42]), tanh-coth method ([25]), Bäcklund transformation ([33]), (G′

G )-
expansion method ([11]), Exp-function method ([9, 10, 24]), modified simple equation method ([19]) and so on.
Here, we use of two effective methods for constructing a range of exact solutions for the following nonlinear partial
differential equations that in this article we developed solutions as well. The standard tanh method is well-known
analytical method which first presented by Malfliet’s ([22]) and developed in ([22, 23]). In ([25]), we applied the
generalized tanh-coth method in for solving some nonlinear partial differential equations. Also in ([35]), the new
approach of generalized (G’/G)-expansion method to obtain exact traveling wave solutions of NLEEs is presented. In
this paper we explain methods which are called the generalized tanh–coth and generalized (G’/G)-expansion methods
are presented to look for traveling wave solutions of nonlinear evolution equations. Authors of ([26]), obtained exact
solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system by the generalized tanh–coth and
generalized (G’/G)-expansion methods. The basic idea of the Exp-function method was proposed by J. H. He [15].
Some illustrative examples in references [16, 43] show that this method is very effective to search for various solitary and
periodic solutions of nonlinear equations. The Exp-function method has successfully been applied to many situations.
For example, the Exp-function method along with Hirota’s and tanh-coth methods have been applied for solving
solitary wave solutions of the generalized shallow water wave equation by Wazwaz [40]. Abdou [1] solved generalized
solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method. Boz and
Bekir [4] applied the Exp-function method for (3+1)-dimensional nonlinear evolution equations.

Authors of [31] explained the generalized fifth-order KdV like equation with prime number p = 3 via a generalized bi-
linear differential operator. N-lump was investigated to the variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada
equation [30]. Applications of tan(φ/2)-expansion method for the Biswas-Milovic equation [27], the Gerdjikov-Ivanov
model [29], the Kundu-Eckhaus equation [28] and the fifth-order integrable equations [21] were studied. Lump solu-
tions were analyzed to the fractional generalized CBS-BK equation [45] and the (3+1)-D Burger system [14]. The
approximations of one-dimensional hyperbolic equation with non-local integral conditions were constructed by re-
duced differential transform method [34]. The generalized Hirota bilinear strategy by the number prime was used
to the (2+1)-dimensional generalized fifth-order KdV like equation [32]. The traveling wave solutions and analytical
treatment of the simplified MCH equation and the combined KdV-mKdV equations were studied [2].

Our aim of this paper is to obtain analytical solutions of the DS and generalized DS equations, and to determine
the accuracy of the EFM in solving these kind of problems. The article is organized as follows: In section 2, we briefly
give the steps of the Exp-function method. In sections 3, 4, and 5 the DS system, gDS system and a variant of the DS
system respectively will be introduced briefly and obtained exact solutions for related equations. Also, a conclusion is
given in section 6.

2. Basic idea of the Exp–function method

We first consider nonlinear equation of form

N (u,ut,ux,uxx,utt,utx, ...) = 0, (2.1)

and introduce a transformation

u(x, t) = u(η), ξ = x− ct, (2.2)

where c is constant to be determined later. Therefore Eq. (2.1) is reduced to an ODE as follows

M(u,−cu′,u′,u′′, ...) = 0. (2.3)

The EFM is based on the assumption that traveling wave solutions as in [15] can be expressed in the form

u(ξ) =

∑d
n=−c an exp(nξ)∑q

m=−p bm exp(mξ)
, (2.4)
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where c, d, p, and q are positive integers which could be freely chosen, an’s and bm’s are unknown constants to be
determined. To determine the values of c and p, we balance the linear term of highest order in Eq. (2.3) with the
highest order nonlinear term. Also to determine the values of d and q, we balance the linear term of lowest order in
Eq. (2.3) with the lowest order nonlinear term.

3. The Drinfeld-Sokolov Equation

We first consider the DS system with the EFM as follows

ut + (v2)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, (3.1)

where a, b and k are constants. Using the wave variable η = x− ct carries the system (3.1) into the system of ODE

−cu′ + (v2)′ = 0, cv′ + av′′′ − 3bu′v − 3kuv′ = 0, (3.2)

where by integrating the first equation in the system Eq. (3.2) and neglecting the constant of integration we obtain

cu = v2. (3.3)

Substituting (3.3) into the second equation of the system (3.2) and integrating we find

c2v + acv′′ − (2b+ k)v3 = 0. (3.4)

In order to determine values of c and p, we balance the linear term of the highest order v′′ with the highest order
nonlinear term v3 in Eq. (3.4), we get

v′′ =
c1 exp((c+ 3p)η) + ...

c2 exp(4pη) + ...
, (3.5)

v3 =
c3 exp(3cη) + ...

c4 exp(3pη) + ...
=
c3 exp((3c+ p)η) + ...

c4 exp(4pη) + ...
, (3.6)

respectively. Balancing highest order of the Exp–function in (3.5) and (3.6), we get

c+ 3p = 3c+ p, (3.7)

which leads to the result c = p. Similarly to determine values of d and q, for the terms v′′ and v3 in Eq. (3.4) by
simple calculation, we obtain

v′′ =
...+ d1 exp(−(d+ 3q)η)

...+ d2 exp(−4qη)
, (3.8)

v3 =
...+ d3 exp(−3dη)

...+ d4 exp(−3qη)
=
...+ d3 exp(−(3d+ q)η)

...+ d4 exp(−4qη)
, (3.9)

respectively. Balancing lowest order of the Exp–function in Eqs. (3.8) and (3.9), we have

−(d+ 3q) = −(3d+ q), (3.10)

which leads to the result d = q. For simplicity, we set p = c = 1 and d = q = 1, then (2.4) reduces to

v(η) =
a1 exp(η) + a0 + a−1 exp(−η)

b1 exp(η) + b0 + b−1 exp(−η)
. (3.11)

Substituting (3.11) into Eq. (3.4), we get an equation of the form(
[b−1 exp(−η) + b0 + b1 exp(η)]3

)−1
3∑

n=−3

Cn exp(nξ) = 0, (3.12)

where Cn(−3 ≤ n ≤ 3) are polynomial expressions in terms of a1, a0, a−1, b0, b−1 and b1, c, β. Thus, solving the
resulting system Cn = 0(−3 ≤ n ≤ 3) simultaneously, we obtain the following set of algebraic equations:
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(I) The first set is:

a1 = a1, a−1 = a−1, ac = ac, b0 = 0, b−1 = −a−1b1
a1

, b1 = b1, (3.13)

c2 = 2ac, a0 = 0, −k − 2b = −2acb21
a2

1

, c = 2a,

v1(x, t) =
a1

b1

a−1 exp(−x+ ct) + a1 exp(x− ct)
−a−1 exp(−x+ ct) + a1 exp(x− ct)

.

If we choose a1 = a−1, then the solutions (3.13) along with (3.3) give (cf. Eq. (4.12) in [3])

v1(x, t) =
2a√
k + 2b

coth(x− 2at), u1(x, t) =
2a

k + 2b
coth2(x− 2at).

(II) The second set is:

a1 = a1, a0 = a0, ac = ac, a−1 = 0, b−1 = 0, (3.14)

b1 = −b0a1

a0
, c2 =

ac

2
, b0 = b0, −k − 2b =

−1

2

acb20
a2

0

, c =
a

2
,

v2(x, t) =
a0

b0

a0 + a1 exp(x− ct)
a0 − a1 exp(x− ct)

.

If we choose a0 = a1, then the solutions (3.14) along with (3.3) give (cf. Eq. (72) in [41])

v2(x, t) =
−a

2
√
k + 2b

coth

(
2x− at

4

)
,

u2(x, t) =
a

2(k + 2b)
coth2

(
2x− at

4

)
.

(III) The third set is:

a1 = a1, b0 = b0, ac = −c2, a−1 = 0, b−1 = 0, b1 = b1, c
2 = c2, (3.15)

a0 = 0, −k − 2b = −c
2b21
a2

1

, v3(x, t) =
a1 exp(x− ct)

b0 + b1 exp(x− ct)
, c = −a.

If we choose b0 = b1, then we can obtain

v3(x, t) =
−a

2
√
k + 2b

[
1 + tanh

(
x+ at

2

)]
,

u3(x, t) =
−a

4(k + 2b)

(
1 + tanh

[
x+ at

2

])2

.

(IV) The fourth set is:

a1 = a1, b−1 = b−1, ac = −1

2

(−k − 2b)a2
1

b21
, c2 = − (−k − 2b)a2

1

b21
, (3.16)

b1 = b1, a−1 = 0, b0 = 0, −k − 2b = −k − 2b, a0 = 0, c = 2a,

v4(x, t) =
a1 exp(x− ct)

b−1 exp(−x+ ct) + b1 exp(x− ct)
.

If we choose b1 = b−1, then we can obtain

v4(x, t) =
a√

k + 2b
[1 + tanh(x− 2at)] ,

u4(x, t) =
1

2

(
a

k + 2b

)
[1 + tanh(x− 2at)]

2
.
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(V) The fifth set is:

a−1 = a−1, b−1 = b−1, ac = ac, b0 = 0, c2 = −4ac, (3.17)

−k − 2b =
4acb2−1

a2
−1

, b1 = b1, a0 = 0, a1 = 0, c = −4a,

v5(x, t) =
a−1 exp(−x+ ct)

b−1 exp(−x+ ct) + b1 exp(x− ct)
.

If we choose b1 = b−1, then we can obtain

v5(x, t) =
2a√
k + 2b

[1− tanh(x+ 4at)] ,

u5(x, t) =
−a

k + 2b
[1− tanh(x+ 4at)]

2
.

(VI) The sixth set is:

a−1 = a−1, b−1 = 0, c2 = c2, b0 = b0, c
2 = −ac, −k − 2b = 0, (3.18)

a0 = a0, b1 = −1

5

a0b0
a−1

, a1 = 0, c = −a,

v6(x, t) =
5a−1

b0

a−1 exp(−x+ ct) + a0

5a−1 − a0 exp(x− ct)
.

If we choose a0 = 5a−1, then we can obtain

v6(x, t) =
−a−1

2b0

{
csch

(
x + at

2

)[
cosh

(
3x+ 3at

2

)
− sinh

(
3x+ 3at

2

)
+ 5 cosh

(
x+ at

2

)
− 5 sinh

(
x+ at

2

)]}
,

u6(x, t) =
−a−1

4ab0

{
csch

(
x + at

2

)[
cosh

(
3x+ 3at

2

)
− sinh

(
3x+ 3at

2

)
+ 5 cosh

(
x+ at

2

)
− 5 sinh

(
x+ at

2

)]}2

.

(VII) The seventh set is:

a−1 = 0, b−1 = 0, c2 = − (−k − 2b)a2
0

b20
, b0 = b0, = a0, (3.19)

ac = −2(−k − 2b)a2
0

b20
, a0, b1 = b1, −k − 2b = −k − 2b, a1 = 0, c =

a

2
,

v7(x, t) =
a0

b1 exp(x− ct) + b0
.

If we choose b0 = b1, then we can obtain

v7(x, t) =
a

4
√
k + 2b

(
1− tanh

[
2x− at

4

])
,

u7(x, t) =
a

8(k + 2b)

(
1− tanh

[
2x− at

4

])2

.

(VIII) The eighth set is:

a−1 = 0, b−1 = b−1, c
2 = −ac, b0 = 0, ac = ac, a1 = 0, (3.20)

a0 = a0, b1 = b1, −k − 2b =
8acb1b−1

a2
0

, c = −a,



238 I. S. ABDULLAYEV, E. M. AKHMETSHIN, E. E. KRASNOVSKIY, N. S. TUGUZ, AND G. MASHENTSEVA

v8(x, t) =
a0

b1 exp(x− ct) + b−1 exp(−x+ ct)
,

If we choose b1 = b−1, then the solutions (3.20) along with (3.3) give (cf. Eqs. (28) and (30) in [41])

v8(x, t) =

√
2a√

k + 2b
sech (x+ at) , u8(x, t) =

−2a

k + 2b
sech2 (x+ at) .

(IX) The ninth set is:

a−1 = a1 = 0, b−1 = b−1, c
2 = c2, b0 = b0, ac = −c2, a0 = a0, (3.21)

b1 = 0, k + 2b =
c2b20
a2

0

, v9(x, t) =
a0

b−1 exp(−x+ ct) + b0
, c = −a.

If we choose b0 = b−1, then we can get

v9(x, t) =
a

2
√
k + 2b

[
1 + tanh

(
x+ at

2

)]
,

u9(x, t) =
−a

4(k + 2b)

[
1 + tanh

(
x+ at

2

)]2

.

It is obvious that nine pairs of solutions were obtained by using the Exp-function method, whereas two and four pairs
of solutions were obtained in [3, 41] respectively.

4. A generalized Drinfeld-Sokolov system

In this section we apply the EFM to the generalized DS system of the form

ut + (vn)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, (4.1)

where a, b, n and k are constants. Using the wave variable η = x− ct carries system (4.1) to

−cu′ + (vn)′ = 0, cv′ + av′′′ − 3bu′v − 3kuv′ = 0. (4.2)

As before by integrating the first equation in the system Eq. (4.2) and neglecting the constant of integration we obtain

cu = vn. (4.3)

Substituting (4.3) into the second equation of the system Eq. (4.2) and integrating we get

c2v + acv′′ − 3(nb+ k)

n+ 1
vn+1 = 0. (4.4)

To get a closed form solution, we use the transformation

v(η) = w(η)
1
n , (4.5)

that will carry Eq. (4.4) into an ODE

c2n2(n+ 1)w2 − 3n2(k + bn)w3 + acn(n+ 1)ww′′ − ac(n2 − 1)(w′)2 = 0, (4.6)

we set

w(η) =
ac exp(cη) + ...+ a−d exp(−dη)

bp exp(pη) + ...+ b−q exp(−qη)
. (4.7)

By the same manipulation as illustrated in the previous section, we can determine values of c and p by balancing
(ww′′) and w3 in Eq. (4.6)

ww′′ =
c1 exp((2c+ 3p)η) + ...

c2 exp(5pη) + ...
, (4.8)

w3 =
c3 exp(3cη) + ...

c4 exp(3pη) + ...
=
c3 exp((3c+ 2p)η) + ...

c4 exp(5pη) + ...
, (4.9)
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respectively. Balancing highest order of the Exp–function in (4.8) and (4.9), we have

2c+ 3p = 3c+ 2p, (4.10)

which leads to the result c = p. By a similar derivation as illustrated in above, we obtain d = q. For simplicity, we set
p = c = 1 and d = q = 1, then Eq. (4.7) reduces to

w(η) =
a1 exp(η) + a0 + a−1 exp(−η)

b1 exp(η) + b0 + b−1 exp(−η)
. (4.11)

Substituting (4.11) into Eq. (4.6), we get an equation of the form(
[b−1 exp(−η) + b0 + b1 exp(η)]4

)−1
4∑

n=−4

Cn exp(nξ) = 0, (4.12)

where Cn(−4 ≤ n ≤ 4) are polynomial expressions in terms of a1, a0, a−1, b0, b−1, b1, c, and β. Thus, solving the
resulting system Cn = 0(−4 ≤ n ≤ 4) simultaneously, we obtain the following set of algebraic equations
(I) The first set is:

a0 = a0, a1 = b1 == 0, a−1 = 0, acn(n+ 1) =
3(k + bn)n2a0

b0
, b0 = b0, (4.13)

b−1 = b−1, c =
a

n
, c2n2(n+ 1) =

3(k + bn)n2a0

b0
, ac(n2 − 1) =

6(k + bn)n2a0

b0
,

w1(x, t) =
a0

b−1 exp(−x+ ct) + b0
, .

If we choose b0 = b−1, then we can obtain

v1(x, t) = n

√
a2(n+ 1)

6(k + nb)n2

[
1 + tanh

(
nx− at

2n

)] 1
n

,

u1(x, t) =
a(n+ 1)

6(k + nb)n

[
1 + tanh

(
nx− at

2n

)]
.

(II) The second set is:

a1 = 0, a−1 = 0, acn(n+ 1) =
−3(k + bn)n2a0 + 2c2n2(n+ 1)b0

b0
, b0 = b0, (4.14)

b−1 =
1

4

b20
b1
, c2n2(n+ 1) = c2n2(n+ 1), a0 = a0, b1 = b1,

−ac(n2 − 1) =
−3(k + bn)n2a0 + 3c2n2(n+ 1)b0

b0
,

w2(x, t) =
4a0b1

b20 exp(−x+ ct) + 4b0b1 + 4b21 exp(x− ct)
, c = −2n− 1

n2
a.

If we choose b0 = 2b1, then we can obtain

v2(x, t) = n

√
(10n2 − 9n+ 2)(n+ 1)a2

6(k + nb)n4

[
sech2

(
n2x+ (2n− 1)at

2n2

)] 1
n

,

u2(x, t) = − (5n− 2)(n+ 1)a

6(k + nb)n2
sech2

(
n2x+ (2n− 1)at

2n2

)
.

(III) The third set is:

a1 = a−1 = 0, acn(n+ 1) = c2n2(n+ 1), b0 = b0, b−1 = b−1, b1 = b1, (4.15)

c2n2(n+ 1) = c2n2(n+ 1), a0 =
1

3

c2(n+ 1)b0
k + bn

, ac(n2 − 1) = 2c2n2(n+ 1),
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w3(x, t) =
1

3

c2(n+ 1)b0
(k + bn)[b−1 exp(−x+ ct) + b0 + b1 exp(x− ct)]

, c =
a

n
.

If we choose b0 = 2b1 and b1 = b−1 then can be found

v3(x, t) = n

√
a2(n+ 1)

6(k + nb)n2

[
sech2

(
nx− at

2n

)] 1
n

,

u3(x, t) =
a(n+ 1)

6(k + nb)n
sech2

(
nx− at

2n

)
.

(IV) The fourth set is:

a0 = 0, a1 = a1, a−1 = 0, acn(n+ 1) =
3

4

(k + bn)n2a1

b1
, b0 = 0, (4.16)

b−1 = b−1, b1 = b1, c =
4a

n
, c2n2(n+ 1) =

3(k + bn)n2a1

b1
,

ac(n2 − 1) =
3(k + bn)n2a1

2b1
, w4(x, t) =

a1 exp(x− ct)
b−1 exp(−x+ ct) + b1 exp(x− ct)

,

If we choose b1 = b−1, then can be found

v4(x, t) = n

√
16a2(n+ 1)

6n2(k + nb)

[
1 + tanh

(
nx− 4at

n

)] 1
n

,

u4(x, t) =
4a(n+ 1)

6n(k + nb)

[
1 + tanh

(
nx− 4at

n

)]
.

(V) The fifth set is:

a1 = a1, a−1 = 0, acn(n+ 1) =
3(k + bn)n2a1

b1
, b0 = b0, b−1 =

1

4

b20
b1
, (4.17)

b1 = b1, c
2n2(n+ 1) =

3(k + bn)n2a1

b1
,

a0 = 0, −ac(n2 − 1) = −15(k + bn)n2a1

4b1
,

w5(x, t) =
4a1b1 exp(x− ct)

b20 exp(−x+ ct) + 4b0b1 + 4b21 exp(x− ct)
, c =

a

n
.

If we choose b0 = 2b1, then we can obtain

v5(x, t) = n

√
a2(n+ 1)

12(k + nb)n2

[
1 + tanh

(
nx− at

2n

)] 2
n

,

u5(x, t) =
a(n+ 1)

12(k + nb)n

[
1 + tanh

(
nx− at

2n

)]2

.

(VI) The sixth set is:

a−1 = a−1, acn(n+ 1) =
3(k + bn)n2a−1

b−1
, b0 = b0, b−1 = b−1, (4.18)

b1 = 0, c2n2(n+ 1) =
3(k + bn)n2a−1

b−1
, a1 = a0 = 0,

−ac(n2 − 1) = −6(k + bn)n2a−1

b−1
, w6(x, t) =

a−1 exp(−x+ ct)

b−1 exp(−x+ ct) + b0
, c =

a

n
.
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If we choose b0 = b−1, then we can obtain

v6(x, t) = n

√
a2(n+ 1)

6(k + nb)n2

[
1 + tanh

(
nx− at

2n

)] 1
n

,

u6(x, t) =
a(n+ 1)

6(k + nb)n

[
1 + tanh

(
nx− at

2n

)]
.

(VII) The seventh set is:

a0 = a1 = 0, a−1 = a−1, acn(n+ 1) =
12(k + bn)n2a−1b1

b20
, b−1 =

b20
4b1

, (4.19)

c2(n+ 1) =
12(k + bn)a−1b1

b20
, −ac(n2 − 1) = −15(k + bn)n2a−1b1

b20
, b1 = b1,

w7(x, t) =
a−1 exp(−x+ ct)

1
4
b20
b1

exp(−x+ ct) + b0 + b1 exp(x− ct)
, c =

a

n
.

If we choose b0 = 2b1, then we can obtain

v7(x, t) = n

√
a2(n+ 1)

12(k + nb)n2

[
1− tanh

(
nx− at

2n

)] 2
n

,

u7(x, t) =
a(n+ 1)

12(k + nb)n

[
1− tanh

(
nx− at

2n

)]2

.

(VIII) The eighteenth set is:

a1 = a1, a−1 =
1

9

b20a
2c2(n2 − 1)2

(k + bn)2n4a1
, acn(n+ 1) = 2ac(n2 − 1), b0 = b0, (4.20)

b−1 =
1

6

b20ac(n
2 − 1)

(k + bn)n2a1
, c2n2(n+ 1) = 2ac(n2 − 1), c =

a

n
,

a0 =
−2

3

b0ac(n
2 − 1)

(k + bn)n2
, −ac(n2 − 1) = −ac(n2 − 1), b1 =

3

2

(k + bn)n2a1

ac(n2 − 1)
,

w8(x, t) =
2ac(n2 − 1)

3(k + bn)n2

[
b0ac(n

2 − 1) exp(−x+ct
2 )− 3a1(k + bn)n2 exp(x−ct

2 )
]2[

b0ac(n2 − 1) exp(−x+ct
2 ) + 3a1(k + bn)n2 exp(x−ct

2 )
]2 .

If we choose b0(n2−1)a2

3a1(k+bn)n3 = 1, then we can obtain

v8(x, t) = n

√
2a2(n2 − 1)

3(k + nb)n3
tanh

2
n

(
nx− at

2n

)
, u8(x, t) =

2a(n2 − 1)

3(k + nb)n2
tanh2

(
nx− at

2n

)
.

It is obvious that eight pairs of solutions were obtained by using the Exp-function method, whereas two pairs of
solutions were obtained in [41].



242 I. S. ABDULLAYEV, E. M. AKHMETSHIN, E. E. KRASNOVSKIY, N. S. TUGUZ, AND G. MASHENTSEVA

Figure 1. The exact traveling wave solution of the generalized Drinfeld-Sokolov system (a) Eq.
(4.15), (b) Eq. (4.17), (c) Eq. (4.19), and (d) Eq. (4.20) with a fixed values a = 1, b = 1, n = 2 and
k = 1.

5. A different type of generalized Drinfeld-Sokolov system

We next consider a different type of the DS system with negative exponent with the EFM as follows

ut + (v−n)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, n > 2, (5.1)

where a, b, n and k are constants. Using the wave variable η = x− ct carries the system (5.1) to

−cu′ + (v−n)′ = 0, cv′ + av′′′ − 3bu′v − 3kuv′ = 0, (5.2)

where by integrating the first equation in the system Eq. (5.2) and neglecting the constant of integration we obtain

cu = v−n. (5.3)

Substituting (5.3) into the second equation of the system Eq. (5.2) and integrating we find

c2v + acv′′ +
3(nb− k)

1− n
v−n+1 = 0. (5.4)
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We use of (4.5) that will carry Eq. (5.4) into the ODE

c2n2(1− n)w2 + 3n2(nb− k)w + acn(1− n)ww′′ + ac(1− n)2(w′)2 = 0. (5.5)

Substituting (4.11) into Eq. (5.5), we obtain the following sets of solutions
(I) The first set is:

a1 = 0, a−1 = 0, acn(1− n) = −3(nb− k)n2 − c2n2(1− n), b0 = b0, b−1 = b−1, (5.6)

c2n2(1− n) = c2n2(1− n), a0 = a0, ac(1− n)2 =
b0[3(nb− k)n2 − 2c2n2(1− n)]

a0
,

b1 =
1

4

b20
b−1

, w1(x, t) =
a0

b−1 exp(−x+ ct) + b0 + 1
4

b20
b−1

exp(x− ct)
.

If we choose b0 = 2b−1, then we can obtain

v1(x, t) = n

√
3(nb− k)n2 − 2c2n2(1− n)

2ac(1− n)2
sech

2
n

(
x− ct

2

)
,

u1(x, t) =
2a(1− n)2

3(nb− k)n2 − 2c2n2(1− n)
cosh2

(
x− ct

2

)
.

(II) The second set is:

a1 = 0, a−1 = 0, acn(1− n) = −6(nb− k)n2, b0 = b0, b−1 = b−1, b1 = b1, (5.7)

c2n2(1− n) = 3(nb− k)n2, a0 = a0, ac(1− n)2 = −3(nb− k)n2b0
a0

,

w2(x, t) =
a0

b−1 exp(−x+ ct) + b0 + b1 exp(x− ct))
, c = − a

2n
.

If we choose b1 = b−1 and b0 = 2b1 then can be found

v2(x, t) = n

√
3n3(nb− k)

a2(1− n)2

[
sech2

(
2nx+ at

4n

)] 1
n

,

u2(x, t) =
−2a(1− n)2

3n2(nb− k)
cosh2

(
2nx+ at

4n

)
.

(III) The third set is:

a0 = a1 = 0, a−1 = a−1, acn(1− n) = −6(nb− k)n2, b0 = 0, (5.8)

b−1 = b−1, b1 = b1, c2(1− n) = 12(nb− k), c =
−2a

n
,

ac(1− n)2 = −12(nb− k)n2b−1

a−1
, w3(x, t) =

a−1 exp(−x+ ct)

b−1 exp(−x+ ct) + b1 exp(x− ct)
,

If we choose b1 = b−1, then can be found

v3(x, t) = n

√
3(nb− k)n3

a2(1− n)2

[
1− tanh

(
nx+ 2at

n

)] 1
n

,

u3(x, t) =
−a(1− n)2

12(nb− k)n2

[
1 + cosh

(
2nx+ 4at

n

)
+ sinh

(
2nx+ 4at

n

)]
.

(IV) The fourth set is:

a1 = 0, a−1 = a−1, acn(1− n) =
15(bn− k)n2

4
, b0 = b0, b1 =

1

4

b20
b−1

, (5.9)



244 I. S. ABDULLAYEV, E. M. AKHMETSHIN, E. E. KRASNOVSKIY, N. S. TUGUZ, AND G. MASHENTSEVA

b−1 = b−1, c2n2(1− n) = 3(nb− k)n2, a0 = 0, ac(1− n)2 = −3(nb− k)n2b−1

a−1
,

w4(x, t) =
a−1 exp(−x+ ct)

b−1 exp(−x+ ct) + b0 + 1
4

b20
b−1

exp(x− ct)
, c =

4a

5n
.

If we choose b0 = 2b−1, then we can obtain

v4(x, t) = n

√
−15(nb− k)n3

16a2(1− n)2

[
1− tanh

(
5nx− 4at

10n

)] 2
n

,

u4(x, t) =
−a(1− n)2

3(nb− k)n2

[
1 + cosh

(
5nx− 4at

5n

)
+ sinh

(
5nx− 4at

5n

)]2

.

(V) The fifth set is:

a1 = a1, a−1 = 0, acn(1− n) = −6(nb− k)n2, b0 = 0, b−1 = b−1, b1 = b1, (5.10)

a0 = 0, c2n2(1− n) = 12(nb− k)n2, ac(1− n)2 = −12(nb− k)n2b1
a1

,

w5(x, t) =
a1 exp(x− ct)

b−1 exp(−x+ ct) + b1 exp(x− ct)
, c =

−2a

n
.

If we choose b1 = b−1, then can be found

v5(x, t) = n

√
3(nb− k)n3

a2(1− n)2

[
1 + tanh

(
nx+ 2at

n

)] 1
n

,

u5(x, t) =
−a(1− n)2

6(nb− k)n2
cosh

(
nx+ 2at

n

)[
cosh

(
nx+ 2at

n

)
− sinh

(
nx+ 2at

n

)]
.

(VI) The sixth set is:

a1 = a1, a−1 = 0, acn(1− n) = −15(bn− k)n2

4
, b0 = b0, b1 =

1

4

b20
b−1

, (5.11)

b−1 = b−1, c2n2(1− n) = 3(nb− k)n2, a0 = 0, ac(1− n)2 = −3

4

(nb− k)n2b20
b−1a1

,

w6(x, t) =
a1 exp(x− ct)

b−1 exp(−x+ ct) + b0 + 1
4

b20
b−1

exp(x− ct)
, c =

4a

5n
.

If we choose b0 = 2b−1, then we can obtain

v6(x, t) = n

√
15(nb− k)n3

16a2(1− n)2

[
1 + tanh

(
5nx− 4at

10n

)] 2
n

,

u6(x, t) =
−4a(1− n)2

3(nb− k)n2
cosh2

(
5nx− 4at

10n

)[
cosh

(
5nx− 4at

10n

)
− sinh

(
5nx− 4at

10n

)]2

.

(VII) The seventh set is:

a1 = −a0b1
b0

, a−1 = −1

4

a0b0
b1

, acn(1− n) = −3(nb− k)n2

2
, b0 = b0, b1 = b1, (5.12)

b−1 =
1

4

b20
b1
, c2n2(1− n) = 3(nb− k)n2, a0 = a0, ac(1− n)2 =

3(nb− k)n2b0
a0

,

w7(x, t) = −a0

b0

b20 exp(−x+ ct)− 4b0b1 + 4b21 exp(x− ct)
b20 exp(−x+ ct) + 4b0b1 + 4b21 exp(x− ct)

, c =
−2a

n
.
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Figure 2. The exact traveling wave solution a variant of the Drinfeld-Sokolov system (e) Eq. (5.7),
(f) Eq. (5.8), (g) Eq. (5.9), and (h) Eq. (5.11) with a fixed values a = 1, b = 1, n = 3 and k = 1.

If we choose b0 = 2b1, then we can obtain

v7(x, t) = n

√
3(nb− k)n3

2a2(1− n)2
tanh

2
n

(
nx+ 2at

2n

)
, u7(x, t) =

−2a(1− n)2

3(nb− k)n2
coth2

(
nx+ 2at

2n

)
.

Also, it is obvious that seven pairs of solutions were obtained by using the EFM, whereas two pairs of solutions were
obtained in [41].

Remark 5.1. We obtained analytical solutions by Exp-function method. To show the properties of the solutions for
Drinfeld-Sokolov and generalized Drinfeld-Sokolov equations, we take some solutions, as illustrative samples and draw
theirs plots (see Figures 1-3).

6. Conclusion

In this paper, we applied the Exp-function method for constructing exact traveling wave solutions of nonlinear partial
differential equations. The validity of the method was successfully applied to study three types of nonlinear equations
such as the Drinfeld-Sokolov system, generalized the Drinfeld-Sokolov system and a different type of generalized
Drinfeld-Sokolov system. We can successfully recover the previously known solitary wave solutions that were found
by other methods. In addition, this method allows us to perform complicated and tedious algebraic calculation on the
computer. Some of the results are in agreement with the results reported by others in the literature, and new results
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Figure 3. The exact traveling wave solution a variant of the Drinfeld-Sokolov system (i1) n = 3,
(i2) n = 4, (i3) n = 5 and (i4) n = 6 for Eq. (5.12) with a fixed values a = 1, b = 1, and k = 1.

were formally developed in this work. It can be concluded that the rational Exp-function method was a very powerful
and efficient technique in finding exact solutions for wide classes of problems. The solution procedure was very simple,
and the obtained solution was very concise.
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