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Abstract
COVID-19 was declared a pandemic on March 11, 2020, after the global cases and mortalities in more than

100 countries surpassed 100 000 and 3 000, respectively. Because of the role of isolation in disease spread and
transmission, a system of differential equations were developed to analyse the effect of isolation on the dynamics

of COVID-19. The validity of the model was confirmed by establishing the positivity and boundedness of its

solutions. Equilibria analysis was conducted, and both zero and nonzero equilibria were obtained. The effective
and basic reproductive ratios were also derived and used to analyze the stability of the equilibria. The disease-

free equilibrium is stable both locally and globally if the reproduction number is less than one; otherwise, it is

the disease-endemic equilibrium that is stable locally and globally. A numerical simulation was carried out to
justify the theoretical results and to visualise the effects of various parameters on the dynamics of the disease.

Results from the simulations indicated that COVID-19 incidence and prevalence depended majorly on the effective

contact rate and per capita probability of detecting infection at the asymptomatic stage, respectively. The policy
implication of the result is that disease surveillance and adequate testing are important to combat pandemics.
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1. Introduction

A fatal viral eruption is known as coronavirus disease 2019 (COVID-19), formerly called 2019- novel coronavirus
(2019-nCoV) ushered in the year 2020. The disease, which is instigated by SARS-CoV-2, appeared from Wuhan, the
commercial hub and capital of Hubei, China towards the end of December 2019 [34]. Within short time, COVID-19
invaded China leading to upsurge in reported cases and mortalities. The World Health Organisation (WHO) declared
COVID-19 a pandemic on March 11, 2020, having infected over 118,000 and claimed almost 4,300 lives in more than
100 countries worldwide [12]. The pandemic spread to more than 210 countries and established itself a major burden
to health systems and economies across the globe [20]. In less than a year precisely on 1st October 2020 (10:31 GMT),
the confirmed cases and mortalities of COVID-19 rose to 34,192,734 and 1,019,242 respectively worldwide [4].

Symptoms and sign of COVID-19 usually develop within two weeks. When the symptoms are fully developed,
infected individuals may exhibits cough, fever or respiratory syndromes such as breathing disorders and shortness of
breath [47]. Infected individuals with acute symptoms may manifest acute respiratory distress syndrome (ARDs) or
worse respiratory tract disorders, such as bronchitis and pneumonia. These difficulties are more noticeable in infants
and the elderly as well as individuals with comorbidities or underlying health challenges such as immune-compromised
patients and cardiopulmonary disorders [10]. Effective and safe vaccines against COVID-19 infections in humans were
not in existence at the start of the outbreak. As a result, the mitigation and control measures against the spread of the
disease were based on employing non-pharmaceutical measures, such as contact tracing, social distancing, community
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lockdown, quarantine, isolation, and face masks usage in public [16, 32]. Social distancing is about keeping 2-meters
distance from individuals in public gatherings. Community lockdown involves applying the closure of non-vital services
and businesses and schools, preventing large gatherings and enforcing the stay-at-home [20].

Mathematical models have become important tools for providing insights into the dynamics of contagious diseases,
right from the 1900s when the groundbreaking works of Ross and Kermack-McKendrick appeared [5, 15, 24, 33, 35–
37]. Interestingly, numerous studies have contributed to the investigation of the dynamics and control of COVID-19
in several human populations. [17] formulated an agent-based model for COVID-19 to evaluate the effect of non-
pharmaceutical interventions (NPIs) on COVID-19 deaths. The model was among the early COVID-19 models and
the results of the study suggested an increasingly-high estimate for the aggregate deaths in the United States (2.2
million mortalities) and the United Kingdom (510 000 mortalities) if no interventions are implemented. A study
conducted in [16] adopted a multi-group epidemic model of Kermack-Mckendrick type to examine the effect of masks
usage in checking COVID-19 transmission in the US. Their work indicates that face masks usage is of high benefit
in reducing community spread of the pandemic. The study however reveals that the community-wide impact of face
masks usage depends on the general compliance as well as the applications of other NPIs (such as contact tracing,
social distancing, etc.).

A model for evaluating the effect of NPIs on mitigating and checking the spread of COVID-19 was formulated by
[32]. Their study reveals that a second outbreak of COVID-19 is possible if enforcement and applications of NPIs
(contact tracing, face masks usage, lockdown, social distancing etc.) are relaxed early. The researchers therefore
advocate for the extension of the period of NPIs to significantly minimise the mortality of COVID-19 in the US. The
dynamics of COVID-19 in Wuhan city for the months of January and February 2020 was investigated by [26] via a
stochastic model. It was revealed the implementation of strict travel restrictions could instigate massive reduction
in COVID-19 spread and transmission across Chinese provinces. The mechanisms of COVID-19 in other countries
have also been the subject of intense mathematical studies [2, 3, 21, 25, 31, 39]. For instance, the impact of non-
pharmaceutical interventions on the spread of COVID-19 were examined in Saudi Arabia in [1] and in South Afirca
in [29]. Recent studies on the impact of non-pharmaceutical interventions on the spread of COVID-19 could also be
accessed in [22, 30, 46].

Isolation and quarantine are two epidemiological terms that are closely related but have different interpretations.
Isolation takes place when individuals who have been infected with a disease whether asymptomatically or symp-
tomatically are confined to a close space to prevent further infections. Quarantine, on the other hand, occurs when
individuals who are thought to have been exposed to a disease are confined to a close space and placed under close
watch to see whether they progress to become infectious or not. Individuals who are found to be infectious during
quarantine or at the end of quarantine do progress to isolation. Isolation is usually come about through testing but
quarantine is achieved through contact tracing or from arrivals of people from other territories. The main distinc-
tion between isolation and quarantine is that while treatment is introduced to individuals in isolation immediately,
treatment becomes necessary only if individuals in quarantine turn out to be infectious. Furthermore, while suspected
cases of infections go to quarantine, confirmed cases progress to isolation.

Apart from the work of [19] where a stochastic model was used to examine the dynamics of COVID-19 and where
the result of the study affirmed the possibility of eradicating COVID-19 in a population within 3 months if effective
contact tracing and isolation policies are implemented, studies on the effect of isolation on the dynamics of COVID-19
are rare in the literature especially with the use of a mathematical model. It is on this ground that this work is
motivated to use a mathematical modeling approach to analyse the effect of isolation on the transmission of COVID-
19. Besides, although COVID-19 is gradually dying off at present, and some countries have started relaxing mitigation
measures, while other countries have completely relaxed all measures, this study would provide important information
about isolation strategies to adequately equip various communities for future outbreaks of infectious diseases.

2. Model Formulation and Basic Properties

The sum of the population at any given time t, represented by N(t), is split into sub-populations comprising
susceptible individuals S(t) (people who are at risk of infection), exposed individuals E(t) (people who carry the
pathogen without exhibiting any clinical signs but can spread the virus), infected individuals I(t) (people who carry
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Figure 1. The model transfer diagram.

the virus, manifest the symptoms and are more contagious), treatment class T (t) (consists of individuals who have
been isolated whether before they are symptomatic E(t) or after they are symptomatic I(t) and placed in a close space
for treatment) and recovered individuals R(t) (people who have been treated and cured of the disease). Our model
mimics the reality that during the hot period of COVID-19, individuals were encouraged to undergo COVID-19 tests
and through the exercise, many asymptomatic individuals were discovered and isolated for treatment. This method
played a significant role and altered the dynamics of COVID-19 in many parts of the world. It is also assumed that
individuals in the compartment R(t) remain in the compartment throughout the analysis and do not contract the
virus again. The flow between the compartments of the model is displayed in Figure 1.

The total population N(t) is given by

N(t) = S(t) + E(t) + I(t) + T (t) +R(t). (2.1)

The influx into the population either by births or from other territories is denoted by p, and the mortality rate unrelated
to COVID-19 in all compartments is denoted by µ (day−1). The per capita probabilities that a susceptible contracts the
virus from a symptomatic infected individual, an asymptomatic infected individual and an isolated infected individual
are εIβ (day−1), εEβ (day−1) and εTβ (day−1) respectively, where εI , εE and εT are the parameters that are reducing
the rates of infection. Since disease transmission is usually not linear [8], parameters εI , εE and εT denote various
protective measures (e.g. lockdown, social distancing, handwashing, use of face masks, environmental sanitation,
etc.) that affect disease transmission. The proportion α (day−1) of the asymptomatic infectious individuals who are
detected through testing are isolated for treatment at rate φ while the remaining individuals (1 − α) (day−1) move
to the symptomatic infectious class at the same rate φ. Mortality due to COVID-19 is assumed nonexistent at the
asymptomatic infectious phase. The parameters d1 and d2, measured per day, denote COVID-19- mortality rates in
the symptomatic and treatment compartments, respectively. ρ (day−1) is the rate of moving symptomatic infected
individuals into the treatment class while τ (day−1) is the recovery rate. Following the assumptions, notations and
the compartmental structure of Figure 1, the following equations are derived for COVID-19 dynamics.

dS

dt
= p− (εIβI + εEβE + εTβT )S − µS, (2.2)

dE

dt
= (εIβI + εEβE + εTβT )S − (µ+ φ)E, (2.3)

dI

dt
= (1− α)φE − (µ+ ρ+ d1)I, (2.4)

dT

dt
= αφE + ρI − (µ+ τ + d2)T, (2.5)

dR

dt
= τT − µR. (2.6)
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Table 1. Symbols, definitions and values for system parameters.

parameters definitions values

p human recruitment rate 273 day−1

β effective contact rate 0.422 day−1

εI reduction factor in the spreading rate of infections by I(t) 0.3996
εE reduction factor in the spreading rate of infections by E(t) 0.1899
εT reduction factor in the spreading rate of infections by T (t) 0.1193
α proportion of the infective who are detected and isolated 0.1501 day−1

for treatment at asymptomatic phase
φ progression rate from asymptomatic phase 0.212 day−1

ρ isolation rate of symptomatic infected individuals into treatment class 0.1702 day−1

τ successful rate of treatment 0.0475 day−1

d1 COVID-19 induced mortality for symptomatic infected individuals 0.0294 day−1

d2 COVID-19 induced mortality for individuals under treatment 0.0227 day−1

µ mortality rate unrelated to COVID-19 0.000039 day−1

The initial conditions for the system are

S(0) = S0, E(0) = E0, I(0) = I0, T (0) = T0, R(0) = R0. (2.7)

Notice that S0 > 0 is the total population before the COVID-19 outbreak, and E0, I0, T0, and R0 are the positive
initial human populations. Generally, it is assumed that S0 = N(0) > 0, for which there exists only susceptibility
at the beginning of the epidemic while other human populations disappear. However, positive initial populations are
allowed for all the variables for generality sake and, further, N(0) = S0 + E0 + I0 + T0 + R0 such that Eq. (2.1) is
valid at t = 0. A brief description of the system parameters is provided in Table 1.

COVID-19 has an incubation period of 2-14 days [11, 28]. Given the natural mortality rate µ and a life expectancy

period of 70 years then µ = 0.000039 per day. When COVID-19 does not exist, the population N =
p

µ
= 7 million

and p = 273. This implies that 273 susceptible individuals are added to the population per day. The influx p consists
of births and net migration from the outside. The remaining values for the parameters, which are a set of logical
data mostly from [4], are displayed in Table 1. Lastly, the total mortalities due to COVID-19 were derivable in the
expression

D(t) =

∫ t

0

(d1I(η) + d2T (η))dη, (2.8)

subject to the initial condition D(0) = 0.

2.1. Boundedness and positivity of solutions.

Boundedness of solutions. The model is biologically and mathematically meaningful in the region

Ω =

{
(S,E, I, T,R) ∈ R5

+ : N ≤ p

µ

}
.

It is to be established that the solutions of the model that initiate in the region Ω remain in Ω and are bound in Ω.
From Eq.(2.1)

N(t) = S(t) + E(t) + I(t) + T (t) +R(t).

Obtaining the rate of change in the total population N w.r.t t by summing up Eqs. (2.2)-(2.6) then,

dN

dt
= p− µ(S(t) + I(t) + I(t) +R(t))− φE − (d1 + d2)I ≤ p− µN(t). (2.9)
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dN

dt
is clearly bounded by p− µN(t). Following standard comparison theorem applied in [6],

0 ≤ N(t) ≤ p

µ
+

(
N0 −

p

µ

)
e−µt (2.10)

As t → ∞, the population converges and N → p

µ
which indicates that 0 ≤ N(t) ≤ p

µ
. Therefore, the feasible set

of solutions for the system remains in Ω. Hence, the model is well-posed and the dynamics of the disease can be
sufficiently studied in Ω.

Nonnegativity of solutions. It is also of equal importance to show that aside from being bounded; the solutions
of the model remain nonnegative for all t > 0. The proof is established by the following lemmas.

Lemma 2.1. if S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0 and R(0) ≥ 0. Then, the model solutions (S(t),E(t),I(t),T(t),R(t))
are positive for t ≥ 0.

Proof. The lemma shall be proved via a contradiction knowing fully that N(t) 6= 0 for all t ≥ 0. Assuming there exists
the times, (t1, t2, t3, t4, t5) such that for S(t) > 0, S(t1) = 0 is assumed. Then,

dS(t1)

dt
< 0, E(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0, R(0) ≥ 0, 0 ≤ t ≤ t1.

∴
dS(t1)

dt
< 0⇒ dS(t1)

dt
|t=t1 = p− (εIβI + εEβE + εTβT + µ)S(t1) = p ≤ 0,

which is a contradiction since p > 0. Therefore, it follows that S(t) ≥ 0,∀ t ≥ 0.

For E(t) > 0 : Suppose E(t2) = 0,
dE(t2)

dt
< 0, S(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0, R(0) ≥ 0, 0 ≤ t ≤ t2.

dE(t2)

dt
< 0⇒ dE(t2)

dt
|t=t2 = (εIβI + εEβE + εTβT )S(t2)− (µ+ φ)E(t2)

= (εIβI + εEβE + εTβT )S(t2) ≤ 0,

a contradiction as well. Therefore, E(t) ≥ 0,∀ t ≥ 0.

For I(t) > 0 : Assuming I(t3) = 0,
dI(t3)

dt
< 0, S(0) ≥ 0, E(0) ≥ 0, T (0) ≥ 0, R(0) ≥ 0, 0 ≤ t ≤ t3.

dI(t3)

dt
< 0⇒ dI(t3)

dt
|t=t3 = (1− α)φE(t3)− (µ+ ρ+ d1)I(t3)

= (1− α)φE(t3) ≤ 0,

a contradiction which implies that I(t) ≥ 0,∀ t ≥ 0.

For T (t) > 0 : Suppose T (t4) = 0,
dT (t4)

dt
< 0, S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, 0 ≤ t ≤ t4.

dT (t4)

dt
< 0⇒ dT (t4)

dt
|t=t4 = αφE(t4) + ρI(t4)− (µ+ τ + d2)T (t4)

= αφE(t4) + ρI(t4) ≤ 0,

a contradiction since all the parameters are nonnegative. Therefore, T (t) ≥ 0,∀ t ≥ 0.

Lastly, for R(t) > 0 : Suppose R(t5) = 0,
dR(t5)

dt
< 0, S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0, 0 ≤ t ≤ t5.

dR(t5)

dt
< 0⇒ dT (t5)

dt
|t=t5 = τT (t5)− µR(t5) = τT (t5) ≤ 0,

a contradiction since τ is nonnegative. Hence, R(t) ≥ 0,∀ t ≥ 0. Consequently, the solutions S(t), E(t), I(t), T (t) and
R(t) remain nonnegative for all t > 0. �
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3. Equilibria and Stability

The model consists of two equilibria zero and nonzero equilibria when the population is free from COVID-19 and
when it is invaded by the virus respectively. The stability of the two equilibria is studied next.

3.1. Stability Analysis of the Zero Equilibrium. Zero equilibrium is obtained when the rate of change of all the
compartments w.r.t. t, infection terms, infection compartments as well as recovered compartments are reduced to zero
such that

N = S = S0, S = S0 =
p

µ
and E = I = T = R = 0.

After deriving the zero equilibrium, the parameter that governs the transmission potential of the disease, the
reproduction number, is derived by following the approach in [14]. Two reproduction numbers are obtained - the basic
reproduction number, R0, that governs the stability behavior of the zero equilibrium and the control reproduction
number, Rc, that determines the stability of the nonzero equilibrium as in [18]. Let x = (E, I, T,R, S)T , such that

dx

dt
= F − V, (3.1)

where

F = ((εIβI + εEβE + εTβT )S0, 0, 0, 0, 0)T ,

and,

V =


(µ+ φ)E

−(1− α)φE + (µ+ ρ+ d1)I
−αφE − ρI + (µ+ τ + d2)T

−τT + µR
−p+ (εIβI + εEβE + εTβT )S0 + µS0

 .

The matrices F and V are derived by considering only the infective compartments and

F =

εEβS0 εIβS0 εTβS0

0 0 0
0 0 0

 , (3.2)

V =

 (µ+ φ) 0 0
−(1− α)φ (µ+ ρ+ d1) 0
−αφ −ρ (µ+ τ + d2)

 . (3.3)

The inverse of V is obtained as

V−1 =


1

(µ+ φ)
0 0

(1− α)φ

(µ+ φ)(µ+ ρ+ d1)

1

(µ+ ρ+ d1)
0

ρ(1− α)φ+ (µ+ ρ+ d1)αφ

(µ+ φ)(µ+ ρ+ d1)(µ+ τ + d2)

ρ

(µ+ ρ+ d1)(µ+ τ + d2)

1

(µ+ τ + d2)

 , (3.4)

and, the product of F and V −1 is obtained as

FV −1 =


εEβS0

k1
+
εIβ(1− α)φS0

k1k2
+
εTβk4S0

k1k2k3

εIβS0

k2
+
εTβρS0

k2k3

εTβS0

k3
0 0 0
0 0 0

 , (3.5)

where

k1 = µ+ φ, k2 = µ+ ρ+ d1, k3 = µ+ τ + d2, and k4 = ρ(1− α)φ+ (µ+ ρ+ d1)αφ.
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The eigenvalues of Eq. (3.5) are:

λ1 =
εEβS0

k1
+
εIβ(1− α)φS0

k1k2
+
εTβk4S0

k1k2k3
, λ2 = λ3 = 0 and the control reproduction number, Rc, is the largest

eigenvalue.

∴ Rc = λ1 =
εEβS0

k1
+
εIβ(1− α)φS0

k1k2
+
εTβk4S0

k1k2k3
. (3.6)

Generally, when control measures are not on ground, disease transmission is discussed in terms of the basic reproduction
number, which in the present analysis means ρ = α = 0. Therefore, R0 is derived from Rc by setting ρ = α = 0 and

R0 =
εEβS0

k1
+
εIβφS0

k1k2
. (3.7)

The two results in Eqs. (3.6) and (3.7) are crucial and are used to investigate the stability of the nonzero and zero
equilibria respectively as in [18]. When ρ = α = 0, there is no new infections that enter the treatment class. However,
the treatment class cannot be empty since the analysis is around the origin which implies that some individuals might
have been infected and isolated for treatment initially.

Theorem 1. The zero equilibrium of the model is locally asymptotically stable if Rc < 1 but is unstable if Rc > 1.

Proof. The variational matrix of the system evaluated at the zero equilibrium, W0 =

(
p

µ
, 0, 0, 0, 0

)
is given by

J(W0) =


−µ −εEβS0 −εIβS0 −εTβS0 0
0 −(µ+ φ) + εEβS0 εIβS0 εTβS0 0
0 (1− α)φ −(µ+ ρ+ d1) 0 0
0 αφ ρ −(µ+ τ + d1) 0
0 0 0 τ −µ

 . (3.8)

The matrix in Eq. (3.8) has double negative eigenvalues (i.e. -µ). The three other eigenvalues can be obtained from
sub matrix A, given as

A =

−(µ+ φ) + εEβS0 εIβS0 εTβS0

(1− α)φ −(µ+ ρ+ d1) 0
αφ ρ −(µ+ τ + d2)

 . (3.9)

In Eq. (3.9),

tr(A) = −(φ+ ρ+ τ + 3µ+ d1 + d2) + εEβS0, (3.10)

and,

det(A) = (µ+ ρ+ d1)(µ+ τ + d2)(εEβS0 − µ− φ) + εIβS0(µ+ τ + d2)(1− α)φ

+ εTβS0(ρ(1− α) + αφ(µ+ ρ+ d1)).
(3.11)

The remaining eigenvalues of the Jacobian matrix J(W0) are all negative if tr(A) < 0 and det(A) > 0. Therefore,
Rc < 1 and zero equilibrium W0 is locally asymptotically stable if tr(A) < 0 and det(A) > 0. If any of the conditions
tr(A) < 0 or det(A) > 0 is not satisfied then Rc > 1 and zero equilibrium W0 is unstable. �

3.2. Existence and Stability of Nonzero Equilibrium. Nonzero equilibrium exists when the population is invaded
with the virus such that each compartment is nonempty. Given the force of infection as

λ∗ = εEβE
∗ + εIβI

∗ + εTβT
∗. (3.12)
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The population in each compartment is obtained when Eqs. (2.2)-(2.6) are set to zero and solved such that

S∗ =
p

µ+ λ∗
, (3.13)

E∗ =
pλ∗

(µ+ λ∗)(µ+ φ)
, (3.14)

I∗ =
(1− α)φ

(µ+ ρ+ d1)
E∗, (3.15)

T ∗ =
[αφ(µ+ ρ+ d1) + ρ(1− α)φ]E∗

(µ+ ρ+ d1)(µ+ τ + d2)
, (3.16)

R∗ =
τ [αφ(µ+ ρ+ d1) + ρ(1− α)φ]E∗

µ(µ+ ρ+ d1)(µ+ τ + d2)
. (3.17)

Putting Eqs. (3.13)-(3.17) into Eq. (3.12), reduces to

(λ∗)2 + λ∗
[
µ− p

{
εEβS0

k1
+
εIβ(1− α)φS0

k1k2
+
εTβk4S0

k1k2k3

}]
= 0, (3.18)

where

k1 = µ+ φ, k2 = µ+ ρ+ d1, k3 = µ+ τ + d2, and k4 = ρ(1− α)φ+ (µ+ ρ+ d1)αφ.

In view of Eq. (3.6), Eq. (3.18) becomes

λ∗[λ∗ + µ− pRc] = 0. (3.19)

From Eq. (3.19), there exists two roots,

λ∗1 = 0 and λ∗2 = µ

(
p

µ
Rc − 1

)
.

The coordinates of the endemic equilibrium W ∗ = (S∗, E∗, I∗, T ∗, R∗) can therefore be derived by putting the result
of λ∗2 into Eqs. (3.13)-(3.17) to obtain

S∗ =
1

Rc
,

E∗ =
pRc − µ
k1Rc

,

I∗ =
(1− α)φ

k2

[
pRc − µ
k1Rc

]
,

T ∗ =
k4
k2k3

[
pRc − µ
k1Rc

]
,

R∗ =
τk4
µk2k3

[
pRc − µ
k1Rc

]
.

(3.20)

Theorem 3.1. The zero equilibrium of the model is globally asymptotically stable if the time derivative of the Lyapunov
function V is negative definite.
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Proof. Consider a time derivative Lyapunov function V defined as

V̇ = A1Ė +A2İ +A3Ṫ such that

V̇ = A1[(εIβI + εEβE + εTβT )S − (µ+ φ)E]

= +A2[(1− α)φE − (µ+ ρ+ d1)I] +A3[αφE + ρI − (µ+ τ + d2)T ],

⇒V̇ ≤ (εEβE + εIβI + εTβT )S − (µ+ φ)E,

⇒V̇ ≤ (µ+ φ)

[
εEβS0

k1
+
εIβ(1− α)φS0

k1k2
+
εTβk4S0

k1k2k3
− 1

]
E,

⇒V̇ ≤ (µ+ φ)[Rc − 1]E

If Rc < 1, the time derivative of the Lyapunov function is negative definite and the zero equilibrium of the model is
globally asymptotically stable but if Rc > 1, the zero equilibrium becomes unstable because V̇. �

Theorem 3.2. The nonzero equilibrium W∗ of the model is locally asymptotically stable if Rc > 1.

Proof. Assuming S = x1, E = x2, I = x3, T = x4, R = x5 such that the model Eqs. (2.2)-(2.6) is rewritten as

dx

dt
= f = (f1, f2, f3, f4, f5),

where f is given as

dx1
dt

= f1 = p− β∗(εEx2 + εIx3 + εTx4)x1 − µx1, (3.21)

dx2
dt

= f2 = β∗(εEx2 + εIx3 + εTx4)x1 − k1x2, (3.22)

dx3
dt

= f3 = (1− α)φx2 − k2x3, (3.23)

dx4
dt

= f4 = αφx2 + ρx3 − k3x4, (3.24)

dx5
dt

= f5 = τx4 − µx5 (3.25)

The variational matrix of Eqs. (3.21)-(3.25) evaluated at the zero equilibrium is obtained as

J∗ = J(W0)|β=β∗ =


−µ −εEβ∗S0 −εIβ∗S0 −εTβ∗S0 0
0 −k1 + εEβ

∗S0 εIβ
∗S0 εTβ

∗S0 0
0 −(1− α)φ −k2 0 0
0 φα ρ −k3 0
0 0 0 τ −µ.

 . (3.26)

Taking β = β∗ and Rc = 1, as the bifurcation parameter and bifurcation point respectively. Expressing β∗ in terms
of other parameters when Rc = 1 in Eq. (3.6) then,

β∗ =
k1k2k3

k2k3εES0 + k3εI(1− α)φS0 + εT k4S0
. (3.27)

The centre manifold theory in [13] can be used to analyze the local asymptotic stability of the nonzero equilibrium
of the model Eqs. (3.21)-(3.25) in the neighborhood of β = β∗ The right eigen vector of the variational matrix
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J(W0)|β=β∗ in terms of w2 > 0 is obtained as

w1 = −β
∗S0[k3(k2εE + εI(1− α)φ) + εT k4]

µk2k3
w2, (3.28)

w2 = w2 > 0, (3.29)

w3 =
(1− α)φ

k2
w2 > 0, (3.30)

w4 =
k4
k2k3

w2 > 0, (3.31)

w5 =
τk4
µk2k3

w2 > 0. (3.32)

Also, the left-eigenvector of the variational matrix J(W0)|β=β∗ at the zero equilibrium W0 in terms of v2 is obtained
as

2v2w1w2
∂2f2
∂x1∂x2

(0, 0) = 2v2w1w2εEβ
∗, (3.33)

2v2w1w3
∂2f2
∂x1∂x3

(0, 0) = 2v2w1w3εIβ
∗, (3.34)

2v2w1w4
∂2f2
∂x1∂x4

(0, 0) = 2v2w1w4εTβ
∗. (3.35)

Since the right and left eigenvector have been determined, the coefficients of bifurcation a and b are given by the
article (iv) in [[13] Theorem 4.1] as

a =

5∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

= 2v2w1β
∗[w2εE + w3εI + εT ].

In Eqs. (3.28)-(3.32), w1 < 0 but w2 > 0, w3 > 0, and w4 > 0. Hence,

a = −2v2w1β
∗[w2εE + w3εI + εT ] < 0 (3.36)

and,

b =

5∑
k,i=1

vkwi
∂2fk
∂xi∂β∗

1

(0, 0),

= v2w2S0.

(3.37)

According to item (iv), Theorem 4.1 in [13] and the fact that a < 0 and b > 0 in Eqs. (3.36) and (3.37), it follows
that the model has a unique nonzero equilibrium near W0 that is locally asymptotically stable if Rc > 1. �

3.3. Global Stability Analysis of the Non-Zero Equilibrium. The analysis for the stability of the nonzero
equilibrium becomes global when it is extended beyond the neighborhood of W0, the zero equilibrium. The following
result for global stability of the nonzero equilibrium is therefore claimed.

Theorem 3.3. The nonzero equilibrium of the system is globally asymptotically stable if Rc > 1.

Proof. The popular nonlinear Lyapunov function in [9, 40–42] shall be applied to verify the global stability of the
nonzero equilibrium of the system.
Suppose

V (S,E, I, T,R) = S − S∗ + c1(E − E∗ lnE) + c2(I − I∗ ln I)

+ c3(T − T ∗ lnT ) + c4(R−R∗ lnR),
(3.38)

where c1, c2, c3, c4 are nonnegative Lyapunov constants.
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Eq. (3.38) satisfies

dV

dt
=
∂V

∂S

dS

dt
+
∂V

∂E

dE

dt
+
∂V

∂I

dI

dt
+
∂V

∂T

dT

dt
+
∂V

∂R

dR

dt
,

which becomes

V̇ (S,E, I, T,R) =

(
1− S∗

S

)
Ṡ + c1

(
1− E∗

E

)
Ė + c2

(
1− I∗

I

)
İ

+ c3

(
1− I∗

I

)
İ + c4

(
1− R∗

R

)
Ṙ

=

(
1− S∗

S

)
[p− (εIβIS + εEβES + εTβTS + µS)]

+ c1

(
1− E∗

E

)
[εIβIS + εEβES + εTβTS − (µ+ φ)E]

+ c2

(
1− I∗

I

)
[(1− α)φE − (µ+ ρ+ d1)I]

+ c3

(
1− T ∗

T

)
[αφE + ρI − (µ+ τ + d2)T ]

+ c4

(
1− R∗

R

)
[τT − µR].

(3.39)

At endemic equilibrium, the system (2.2)-(2.6) can be written as

p = εIβI
∗S∗ + εEβE

∗S∗ + εTβT
∗S∗ + µS∗,

(µ+ φ) =
εIβI

∗S∗ + εEβE
∗S∗ + εTβT

∗S∗

E∗ ,

(µ+ ρ+ d1) =
(1− α)φ

I∗
,

(µ+ τ + d2) =
αφE∗ + ρI∗

T ∗ ,

µ =
τT ∗

R∗ .

Appropriate substitution of the values of p, (µ + φ), (µ + ρ + d1), (µ + τ + d2) and µ into Eq. (3.39) and ample
simplification gives

V̇ (S,E, I, T,R) = µS∗
(

2− S

S∗ −
S∗

S

)
+A1

(
1− S∗

S

)
+A2

(
1− S

S∗

)
+A3

(
1− E∗

E

)
+A4

(
1− E

E∗

)
+A5

(
1− I∗

I

)
+A6

(
1− I

I∗

)
+A7

(
1− T ∗

T

)
+A8

(
1− T

T ∗

)
+A9

(
1− R∗

R

)
+A10

(
1− R

R∗

)
,

(3.40)

where A1, · · · , A10 are nonnegative constants.

Since arithmetic mean exceeds geometric mean [23, 43],

(
2− S

S∗ −
S∗

S

)
≤ 0. Also, sinceW∗ = (S∗, E∗, I∗, T ∗, R∗)

is a point in W0 = (S0, E0, I0, T0, R0) then

(
1− S∗

S

)
> 0,

(
1− E∗

E

)
> 0,

(
1− I∗

I

)
> 0,

(
1− T ∗

T

)
> 0, and
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Table 2. Sensitivity indices of the major system parameters.

Parameters Definitions

β 1.0000
εI 0.4167
εE 0.2194
εT 0.3639
α -0.1268
τ -0.2461

(
1− R∗

R

)
> 0 but

(
1− S

S∗

)
< 0,

(
1− E

E∗

)
< 0,

(
1− I

I∗

)
< 0,

(
1− T

T ∗

)
< 0, and

(
1− R

R∗

)
< 0. One can

therefore see from Eq. (3.40) that V̇ consists of both positive and negative terms. Suppose V̇ is written in terms of

B1 and B2 where B1 denotes all the positive terms and B2, all the negative terms then V̇ = B1 + B2. Hence, V̇ < 0
if B1 < B2. Also, V̇ = 0 provided that S∗ = S,E∗ = E, I∗ = I, T ∗ = T and R∗ = R. The singleton W∗ is therefore
the largest compact invariant set in [(S,E, I, T,R) ∈ Ω : V̇ = 0, ] where W∗ is the endemic equilibrium. It therefore
follows from LaSalle invariance principle [27] that W∗ is globally asymptotically stable in the interior Ω. �

3.4. Sensitivity Analysis. The relative importance of the key system parameters to the dynamics of the disease is
derived analytically via the normalised forward sensitivity index formula in [7, 38, 44] thus

∂Rc
∂β

=
εE
k1
S0 +

εI(1− α)φ

k1k2
S0 +

εT k4
k1k2k3

S0 ×
β

Rc
, (3.41)

∂Rc
∂εE

=
β

k1
S0 ×

εE
Rc
, (3.42)

∂Rc
∂εI

=
β(1− α)φ

k1k2
S0 ×

εI
Rc
, (3.43)

∂Rc
∂εT

=
βk4

k1k2k3
S0 ×

εT
Rc
, (3.44)

∂Rc
∂α

= −φβ [εIk3 + εT ρ]

k1k2k3
S0 ×

α

Rc
, (3.45)

∂Rc
∂τ

= − εTβk4
k1k2(k3)2

S0 ×
τ

Rc
. (3.46)

4. Results and Discussion

Numerical simulation is needed for the confirmation of the strength of theoretical results. Using parameter values
in Table 1, the numerical values for the relative contributions of the major model parameters are given in Eqs.
(3.41)-(3.46) are computed in Table 2. In Table 2, the most important parameter to COVID-19 transmission is
the effective contact rate with infective agents while the most important parameter to COVID-19 management is
the successful rate of treatment. Unprotected contacts with COVID-19 patients, particularly the asymptomatic
individuals who spread the virus unintentionally, could escalate COVID-19 transmission while effective treatment could
reduce the spread and deaths of COVID-19. Also, various enlightenment campaigns, particularly the encouragement
of COVID-19 test, increased α, the proportion of infective who were detected and isolated for treatment at the
asymptomatic phase of infection. Therefore, the parameter α was equally important in stemming the spread of
COVID-19 and played significant roles in the control of the COVID-19 pandemic. COVID-19 transmission could not
be linear because individuals took various protective and preventive measures against COVID-19 infections which
brought about reduction factors εI , εE , and εT , the rate at which one prevented oneself from contracting COVID-
19 from visibly infected individuals, all individuals generally and individuals who were under COVID-19 treatment
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(A) Effect of decrease in α on the population of sympto-
matic individuals.

(B) Effect of decrease in α on the population of individ-
uals under COVID-19 treatment.

(C) Effect of decrease in α on the population of recovered
individuals.

Figure 2. Simulation showing the effects of poor isolation of asymptomatic individuals on the dy-
namics of COVID-19.

respectively. Of all the three reduction factors, εI , the rate at which one prevented oneself from contracting COVID-
19 from visibly infected individuals, is the most sensitive factor. Therefore, the extent at which people keep away
from the visibly infected COVID-19 patients contributed immeasurably to COVID-19 spread minimization during the
pandemic. Now, to observe the effects of the control parameters α, ρ and τ on the dynamics of COVID-19, we carry
out simulations by using different values of these parameters and the results are displayed in Figures 2-5.

Figure 2, shows the dynamics of the system with changes in the values of the control parameter α. Attention is
focused on α because asymptomatic infectious individuals have the greatest tendency to spread the infections. The
impact of these set of people on disease propagation might be taken flippantly since they look healthy and show no
symptoms of infections. We can observe from Figure 2A that when interventions were not put on the ground to detect
and isolate individuals who were asymptomatic to COVID-19, people became symptomatic freely and the population
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(A) Effect of increase in α on the population of sympto-
matic individuals.

(B) Effect of increase in α on the population of individuals
under COVID-19 treatment.

(C) Effect of increase in α on the population of recovered
individuals.

Figure 3. Simulation showing the effects of prompt isolation of asymptomatic individuals on the
dynamics of COVID-19.

of symptomatic individuals jumped up and reached the peak before it began to drop. Although the populations of
individuals in the treatment and recovered classes in Figures 2B and 2C increased continuously, the increases were at
a decreasing rate owing to the inability to stem the infection at the asymptomatic phase. Generally, Figure 2 depicts
COVID-19 dynamics at the start of the pandemic when some epidemiological features of the disease (e.g. infectivity,
serial interval, incubation period, asymptomatics, etc.) were not known. At the beginning of the pandemic, the
infection spread like the harmattan fire.

The impacts of various strategies (e.g. testing, contact tracing, etc.) to discover COVID-19 infection at the
asymptomatic phase are revealed in Figure 3. We observe in Figure 3A that as α increases, the number of individuals
who are symptomatic of COVID-19 falls continuously and go to extinction after 30 weeks. The impacts of these
strategies also increase the populations of individuals in treatment and recovered classes as shown in Figures 3B and
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(A) Effect of increase in ρ on the population
of symptomatic individuals.

(B) Effect of increase in ρ on the population
of individuals under COVID-19 treatment.

(C) Effect of increase in ρ on the population
of recovered individuals.

Figure 4. Simulation showing the effects of isolation of symptomatic individuals on the dynamics
of COVID-19.

3C respectively. The behavior of the model in Figure 3 described COVID-19 dynamics when the features of the
virus were fully understood and the people were encouraged to start undergoing COVID-19 tests. Through the tests,
many people who harbored the virus without showing symptoms were discovered and placed under treatments which
eventually decreased the spread of the virus but increased the number of people who were under treatment and those
who recovered from the virus.

Visibly infected individuals would seek medical attention without delay and this is revealed in Figure 4. As more and
more COVID-19 visibly infected individuals seek medical attention, the population of symptomatic individuals falls
while the number of people who are under treatment rises as indicated in Figures 4A and 4B respectively. Improved
treatment leads to quick recovery which is indicated by an increase in the number of recovered individuals in Figure
4C.
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(A) Effect of increase in τ on the population of
individuals under treatment.

(B) Effect of increase in τ on the population of
recovered individuals.

Figure 5. Simulation showing the effects of successful treatment on the dynamics of COVID-19.

A good number of individuals who were infected with COVID-19 were successfully treated when the pandemic was
hot. Successful treatment of COVID-19 infections reduces the case-fatality ratio (CFR) of the disease. The CFR of
COVID-19 as of 1 October 2020 was 2.98 [4, 45]. That is, a ratio of 1,019,242 deaths to 34,192,734 reported cases. The
massive reduction in COVID-19 CFR is attributable to the successful treatment of the disease. The effect of treatment
on the COVID-19 dynamics can be visualized in Figure 5 where an increase in the treatment parameter results in
a decrease in the population of people who are under treatment (Figure 5A) but an increase in the population of
recovered individuals (Figure 5B).

5. Conclusion

Isolation and quarantine are two epidemiological terms that have different interpretations. The present paper
analyzed the role played by isolation, particularly at the asymptomatic phase of infection on the dynamics of COVID-
19 pandemic via a compartmental model of a system of first-order nonlinear ordinary differential equations. The
model solutions were proved to be positive and bounded before it was subjected to a rigorous qualitative analysis.
The reproduction numbers were derived and used to investigate the local and global stability of the zero and nonzero
equilibria. The necessary and sufficient conditions required by the zero and nonzero equilibria of the model to be locally
and globally asymptotically stable were derived. The relative importance of the model parameters to disease spread
and management was also studied and the contributions of some key model parameters to disease dynamics were
derived analytically. Numerical simulation was conducted and it was established that the most sensitive parameter to
COVID-19 transmission was effective contact rate while the most important parameter to COVID-19 management was
the successful treatment rate. Numerical simulation also revealed that COVID-19 incidence and prevalence depended
majorly on the per capita probability of detecting infection at the asymptomatic phase. It was therefore realised from
the simulation that isolation, which is aided by contact tracing and testing, played significant roles in the management
of the COVID-19 when the pandemic was hot.
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