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Abstract
The present article investigates a numerical analysis of COVID-19 (temporal and spatio-tempora) lockdown-
vaccination models. The proposed models consist of six nonlinear ordinary differential equations as a temporal

model and six nonlinear partial differential equations as a spatio-temporal model. The evaluation of reproduction

number is a forecast spread of the COVID-19 pandemic. Sensitivity analysis is used to emphasize the importance of
pandemic parameters. We show the stability regions of the disease-free equilibrium point and pandemic equilibrium

point. We use effective methods such as central finite difference (CFD) and Runge-Kutta of fifth order (RK-5).

We apply Von-Neumann stability and consistency of the numerical scheme for the spatio-temporal model. We
examine and compare the numerical results of the proposed models under various parameters.
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1. Introduction

All over the world, there are a great number of viruses, including COVID-19, which has infected millions of people
and affected their health and the economy as well. Many natural phenomena and life problems are crystallized in
the form of mathematical models that are dealt with analytically or numerically [1, 3–5, 7, 8, 13]. The transmission
dynamics of the virus can be formulated in mathematical models that understand us and predict the dynamics of the
virus [10–12, 14, 19]. In [15] Kucharski et al. combined datasets from inside and outside Wuhan and formulated it
as a mathematical model to estimate the early dynamics of transmission of the infection and take control measures
against the spread of the virus. Baba et al. applied some schemes such as ODE45, Euler, RK-2, and RK-4 to a
mathematical model of COVID-19 that represents the imposition of lockdown in Nigeria [6]. In Brazil, Valle [22] used
an iterative method in the COVID-19 model that can estimate the total number of infections and deaths, and the
observed data are in agreement with the results obtained by the Gompertz model. Mandal et al. [17] found that
to control COVID-19 in India by reducing the contact of exposed and susceptible humans to avoid imposing control
measures by the government, In [9] Biswas et al. studied a model of the spreading of COVID-19, they estimated the
parameters of the model by fitting the model with collected data about the virus in India and presented predictions
with the future trends of COVID-19 transmission under some control measures. Zhang et al.[24] applied Runge-Kutta
of fourth-order to evaluate and analyze a new fractional-order mathematical model for the COVID-19 pandemic.
Agarwal et al. analyzed the COVID-19 mathematical model of fractional order theoretically [2]. In [23] Wrapp et
al. showed that the infected people who show symptoms are more numerous than those who do not show symptoms.
Rothe et al. [20] discovered that the COVID-19 virus has more links than the SARS virus. In [18] Hakimeh et
al. introduced a mathematical model to reduce the transmission of some diseases by the Caputo fractional-order
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derivative. A numerical simulation was presented by Tuan et al. in [21] which obtained the approximate solutions
by using the generalized Adams-Bashforth-Moulton method.In [16] Banan et al. introduced the multistep Laplace
optimized decomposition method, applied to a COVID-19 model with fractional derivatives, the method is found to
be highly accurate compared to the traditional fourth-order Runge-Kutta method.

This article is arranged as follows: In section 2, we present a mathematical formulation for the COVID-19 lockdown-
vaccination (temporal and spatiotemporal) models. We investigate reproduction number, sensitivity analysis, and
stability region analysis for the presented model, as shown in section 3. In section 4, we introduce numerical solutions
for the COVID-19 temporal model via two schemes: Runge-Kutta of fifth order and the central finite difference.
In section 5, we introduce numerical solutions for the COVID-19 spatiotemporal model, study the stability, and
consistency of the numerical scheme, and discuss the results of the proposed model. In section 6, we discuss the effect
of some parameters on controlling the spread of infection between individuals.

2. Mathematical formulation

In this section, we introduce a mathematical model of COVID-19 that describes the effect of lockdown and vac-
cination strategies on the spread of COVID-19 between people. The population is divided into six categories: S(t)
represents the susceptible people who are not under lockdown, SQ(t) represents susceptible persons who are already
under lockdown, I(t) represents infected people who are not under lockdown, IQ(t) represents infected persons who
are under lockdown at the same time, Q(t) is the cumulative density of the lockdown program, and V (t) represents
vaccinated people. This model can be covered by a system of six nonlinear ordinary differential equations as a temporal
model and a system of six nonlinear partial differential equations as a spatiotemporal model.

2.1. Temporal model.

dS

dt
= Λ + βvV − βSI − δsSQ− (d+ βs)S + µiI + µqIQ + νsSQ,

dSQ
dt

= δsSQ− dSQ − νsSQ − βSQ
SQ,

dI

dt
= βSI − µiI − ρiI − dI − δiIQ+ νiIQ,

dIQ
dt

= δiIQ− dIQ − νiIQ − µqIQ − ρqIQ,

dQ

dt
= ηI − ψQ,

dV

dt
= βsS + βSQ

SQ − dV − βvV.

(2.1)

Subject to non-negative initial conditions:

S(0) = S0, SQ(0) = SQ0
, I(0) = I0, IQ(0) = IQ0

, Q(0) = Q0, V (0) = V0. (2.2)

2.2. Spatiotemporal model.

∂S

∂t
= C1

∂2S

∂x2
+ Λ + βvV − βSI − δsSQ− (d+ βs)S + µiI + µqIQ + νsSQ,

∂SQ
∂t

= C2
∂2SQ
∂x2

+ δsSQ− dSQ − νsSQ − βSQ
SQ,

∂I

∂t
= C3

∂2I

∂x2
+ βSI − µiI − ρiI − dI − δiIQ+ νiIQ,

∂IQ
∂t

= C4
∂2IQ
∂x2

+ δiIQ− dIQ − νiIQ − µqIQ − ρqIQ,

∂V

∂t
= C6

∂2V

∂x2
+ βsS + βSQ

SQ − dV − βvV.

(2.3)
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With initial conditions,

S(0, x) =

{
2S0x 0 ≤ x ≤ 0.5,

2S0(1− x) 0.5 ≤ x ≤ 1,

SQ(0, x) =

{
2SQ0x 0 ≤ x ≤ 0.5,

2SQ0(1− x) 0.5 ≤ x ≤ 1,

I(0, x) =

{
2I0x 0 ≤ x ≤ 0.5,

2I0(1− x) 0.5 ≤ x ≤ 1,

IQ(0, x) =

{
2IQ0x 0 ≤ x ≤ 0.5,

2IQ0
(1− x) 0.5 ≤ x ≤ 1,

Q(0, x) =

{
2Q0x 0 ≤ x ≤ 0.5,

2Q0(1− x) 0.5 ≤ x ≤ 1,

V (0, x) =

{
2V0x 0 ≤ x ≤ 0.5,

2V0(1− x) 0.5 ≤ x ≤ 1.

(2.4)

And homogeneous Neumann boundary conditions,

∂S(t, 0)

∂x
=
∂S(t, 1)

∂x
= 0,

∂SQ(t, 0)

∂x
=
∂SQ(t, 1)

∂x
= 0,

∂I(t, 0)

∂x
=
∂I(t, 1)

∂x
= 0,

∂IQ(t, 0)

∂x
=
∂IQ(t, 1)

∂x
= 0,

∂Q(t, 0)

∂x
=
∂Q(t, 1)

∂x
= 0,

∂V (t, 0)

∂x
=
∂V (t, 1)

∂x
= 0.

(2.5)

Where the parameters definitions as shown in Table 1.

3. Reproduction number and stability region

In this section, we introduce some important indicators that help us realize the spread of the pandemic in the
population.

3.1. Reproduction number. The number of new infections caused by an infectious individual in a disease-free
population is defined as the reproduction number R0. The reproduction number in pandemic mathematical models
represents the average number of secondary infections produced by a single infected individual in a completely sus-
ceptible population. If R0 > 1, the pandemic will spread, while it will be confined if R0 < 1. Adjusting interventions
to lower R0 helps control and mitigate the impact of a pandemic, making it a crucial parameter in mathematical
modeling for public health planning and response strategies.
To obtain R0 for the proposed model (2.1) we put the virus-free equilibrium point C0 = [S0, 0, 0, 0, V0] and make the
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Table 1. Parameters definitions.

Symbol Definition

Λ Rate of recruitment
β Rate of infection contact
δs Lockdown imposition on susceptible people
δi Lockdown imposition on infected people
ρi Rate of death in infected persons but not under lockdown
ρq Rate of death in infected persons under lockdown
ρq Rate of death in infected persons under lockdown
µi Rate of recovery in infected persons but not under lockdown
µq Rate of recovery in infected persons under lockdown
νs Transfer rate of susceptible lockdown persons to susceptible class
νi The rate of infection of persons under lockdown to the infection class
η Transfer rate of infection of persons under lockdown to infection class
η Achievement rate of the lockdown program
ψ Depletion rate of the lockdown program
βs Vaccination rate in S class
βSQ

Vaccination rate in SQ class
βv Vaccine waning rate
d Natural death rate

system (2.1) equal to zero and solve it.

0 = Λ + βvV − βSI − δsSQ− (d+ βs)S + µiI + µqIQ + νsSQ,

0 = δsSQ− dSQ − νsSQ − βSQ
SQ,

0 = βSI − µiI − ρiI − dI − δiIQ+ νiIQ,

0 = δiIQ− dIQ − νiIQ − µqIQ − ρqIQ,
0 = ηI − ψQ,
0 = βsS + βSQ

SQ − dV − βvV.

(3.1)

we get S0 = Λ
d+βs

and V0 = βsS0

d+βv
.

Let X = [I, IQ]T which I and IQ are components of the infection in the model and

dX

dt
= F(X)−V(X), (3.2)

where F(X) =

(
βSI − δiIQ

δiIQ

)
, V(X) =

(
µiI + ρiI + dI − νiIQ

dIQ + νiIQ + µqIQ + ρqIQ

)
.

J(F(X)) =

(
βS − δiQ 0
δiQ 0

)
, J(V(X)) =

(
µi + ρi + d −νi

0 d+ νi + µq + ρq

)
, (3.3)

where J(F(X)) and J(V(X)) are the Jacobians of F(X) and V(X) respectively.
We calculate the greatest eigenvalue of the matrix J(F(X)) ∗ J(V(X))−1 and substitute with C0, we obtain the
reproduction number R0 for the model (2.1).

R0 =
βΛ

(d+ βs)ρi + d(d+ βs) + (d+ βs)µi
. (3.4)
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3.2. Sensitivity analysis. The sensitivity analysis is studying the pandemic parameters of the proposed model (2.1)
and their effects on the virus spread. Using the reproduction number R0 we obtain

∂R0

∂Λ
=

β

(d+ βs) (d+ µi + ρi)
,

∂R0

∂β
=

Λ

(d+ βs) (d+ µi + ρi)
,

∂R0

∂d
= − βΛ (2d+ µi + ρi + βs)

(d+ βs) 2 (d+ µi + ρi) 2
,

∂R0

∂ρi
= − βΛ

(d+ βs) (d+ µi + ρi) 2
,

∂R0

∂µi
= − βΛ

(d+ βs) (d+ µi + ρi) 2
,

∂R0

∂βs
= − βΛ

(d+ βs) 2 (d+ µi + ρi)
.

(3.5)

Given that all parameters are positive, then we have ∂R0

∂Λ > 0, ∂R0

∂β > 0 and ∂R0

∂d < 0, ∂R0

∂ρi
< 0, ∂R0

∂µi
< 0, ∂R0

∂βs
< 0.

Thus, increasing the parameters Λ and β results in an increase in R0, and increasing the parameters d, ρi, βs, and µi
leads to a decrease in R0.

3.3. Stability region. In the stability regions of the disease-free equilibrium point and pandemic equilibrium point
as shown in Figures 1 and 2 for (ρi,µi,β) and the values of other parameters are fixed. In Figure 1(a), we examine
the effects of (ρi,µi,β) at the disease-free equilibrium point where R0 < 1. Figures 1(b), 1(c), and 1(d) illustrates the
projection of the stability region (ρi,β) with fixed µi at 0.15, 0.25, and 0.45, respectively. We observe that ρi and β
maintain their stability at a large value of µi.
In Figure 2(a), we examine the effects of (ρi,µi,β) at the endemic equilibrium point. Figures 2(b), 2(c), and 2(d)
illustrates the projection of the stability region (ρi,β) with fixed µi at 0.15, 0.25, and 0.45, respectively. We observe
that ρi and β maintain their stability at a small value of µi.

4. Numerical solutions for temporal model

This section presents the computational methods of the temporal model (2.1). We take some parameter values
from the works of literature and estimate the other parameter values from the stability region, which is discussed in
section 3. We carry out two efficient numerical schemes: Runge-Kutta fifth-order and central finite-difference.
The main characteristics of the fifth-order Runge-Kutta method provide a higher degree of stability, making it effective
in handling ODEs. ODEs often require smaller step sizes to maintain accuracy, but the 5th-order Runge-Kutta method
can still provide accurate results even with relatively larger step sizes compared to lower-order methods. The main
characteristics of the central finite difference methods are accuracy and stability. Higher-order methods approximate
derivatives using more points, leading to smaller errors. They are also often more numerically stable, allowing a larger
timestep size. This improves computational efficiency by enabling the use of a coarser grid for a given accuracy.

4.1. Runge-Kutta Of fifth-order (RK-5) method. Assume that the initial value problem is well-posed, then

dy

dt
= F (t, y), a < t < b, y(a) = e, (4.1)

Algorithm Steps:
Step 1:
Discretize the Domain by dividing the domain of t ∈ [0, 200] with step size τ = 1.
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Figure 1. Stability region for disease free equilibrium point.

Figure 2. Stability region for pandemic equilibrium point.
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Step 2:
We establish the RK-5 technique, for each time step compute a sequence of approximation points

k1 = F (ti, wi),

k2 = F (ti +
h

4
, wi +

k1h

4
),

k3 = F (ti +
h

4
, wi +

k1h

8
+
k2h

8
),

k4 = F (ti +
h

2
, wi −

k2h

2
+ k3h),

k5 = F (ti +
3h

4
, wi +

3k1h

16
+

9k4h

16
),

k6 = F (ti + h,wi −
3k1h

7
+

2k2h

7
+

12k3h

7
− 12k4h

7
+

8k5h

7
).

(4.2)

Step 3:
Update the variables using the weighted sum of the K values,

wi+1 = wi +
h

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6). (4.3)

Step 4:
Update time

ti+1 = ti + τ. (4.4)

Step 5:
Repeat steps 2-4 until you reach the desired endpoint or number of time steps.
We use Mathematica 12 to maintain numerical results for RK-5 as shown in Figure 3.

4.2. Central finite difference (CFD) method. Suppose that a well-posed IVP (4.1) is given the CFD technique
as a sequence of approximation points (t, wi) ' (t, y(t)) to the exact solution of Equation (4.1) by

ti+1 = ti + k,

dy

dt
=
F (ti, wi + k) + F (ti, wi − k)

2k
.

Step 1:
Discretize the Domain by dividing the domain of t ∈ [0, 200] with step size τ = 1.
Step 2:
Apply the central finite difference method to approximate the derivatives in the differential equations. For each
equation in the system, replace the derivatives with central finite difference approximations.
Step 3:
Discretize the system of equations and Convert it into a system of algebraic equations.

(S)n+1 = (S)n−1 + 2τ
(
Λ− β(S)n(I)n − δs(S)n(Q)n − d(S)n + µi(I)n + µq(IQ)n + νs(SQ)n

)
, (4.5)

(SQ)n+1 = (SQ)n−1 + 2τ
(
δs(S)n(Q)n − d(SQ)n − νs(SQ)n

)
, (4.6)

In+1 = In−1 + 2τ
(
β(S)nIn − µiIn − ρiIn − dIn − δiI(Q)n + νi(IQ)n

)
, (4.7)

(IQ)n+1 = (IQ)n−1 + 2τ
(
δiInQn − d(IQ)n − νi(IQ)n − µq(IQ)n − ρq(IQ)n

)
, (4.8)
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Qn+1 = Qn−1 + 2τ (ηIn − ψQn) . (4.9)

Vn+1 = Vn−1 + 2τ
(
βs(S)n + βSQ

(SQ)n − dVn − βvVn
)
. (4.10)

Step 4:
Solve the algebraic system.
Step 5:
Update the values of the variables at each grid point based on the solution obtained.
Step 6:
Repeat iteratively.
We use Mathematica 12 to maintain numerical results for system (2.1) using the CFD method as shown in Figure 4.

4.3. Results. Now, we discuss the numerical outcomes of the governing model with respect to the approximate solu-
tions. To achieve this aim, we employed the effective Central Finite Difference and RK-5 schemes and compared the
results after 200 days. The initial conditions as discussed in [6] are S(0) = 400, SQ(0) = 300, I(0) = 300, IQ(0) = 497,
Q(0) = 200, and V (0) = 120, and the parameter values are Λ = 400, δs = 0.0002, νs = 0.2, η = 0.0005, ψ = 0.06,
µi = µq = 0.16979, ρq = 0.03275, δi = 0.002, νi = 0.02, d = 0.0096, and assuming the values of β = 0.000017,
ρi = 0.03275. Using the Mathematica package, we apply our techniques of CFD and RK-5 to solve the proposed
model (2.1).
Figures 3 and 4 represent the solution of the system (2.1) with RK5 and CFD methods respectively. Figure 5 rep-
resents compare between RK5 and CFD results of the solution of the system (2.1). It can be demonstrated that the
RK-5 method gives a better approximation than the CFD method.

All figures show that the results of the model converge to their equilibrium points.
In Figure 6, we introduce solutions with different values of δi = 0.002, 0.001, and 0.003 that represent the imposition

of lockdown on infected individuals to support the validity of our results.

Finally, from all the figures, we can confirm the effectiveness of the proposed algorithms and their computationally
appropriate use of numerical handling of the given model.

5. Numerical solutions for spatiotemporal model

In this section, we present a numerical simulation of the spatiotemporal model (2.3) with initial conditions (2.4)
and boundary conditions (2.5).
Step1:
Beginning with dividing the domain of x ∈ [0, 1] and t ∈ [0, 200] into 102× 200 cubes with step size h = 0.1 and τ = 1.
For this, we apply finite difference using

∂f(t, x)

∂t
=
fn+1
i − fni

τ
,

∂2f(t, x)

∂x2
=
fn+1
i−1 − 2fn+1

i + fn+1
i+1

h2
,

∂f(t, x)

∂x
=
fni+1 − fni−1

2h
.

(5.1)

Step 2: Discretizing the system and its boundary conditions we get the following results,

(S)
n+1
i = (S)

n
i +

τC1

h2
((S)

n+1
i+1 − 2(S)

n+1
i + (S)

n+1
i−1 ) + τ(Λ− β(S)

n+1
i (I)

n
i

− δs(S)
n+1
i (Q)

n
i − (d+ βs)(S)

n+1
i + µi(I)

n
i + µq(IQ)

n
i + νs(SQ)

n+1
i + βv(V )

n
i ), (5.2)
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Figure 3. Numerical results for system (2.1) using RK-5 method.
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Figure 4. Numerical results for system (2.1) using CFD method.
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Figure 5. RK-5 method versus CFD method for model (2.1).
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Figure 6. Compare between different values of δi for model (2.1).
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(SQ)
n+1
i = (SQ)

n
i +

τC2

h2
((SQ)

n+1
i+1 − 2(SQ)

n+1
i + (SQ)

n+1
i−1 ) + τ(In+1

i δs(S)
n
i (Q)

n
i

− d(SQ)
n+1
i − νs(SQ)

n+1
i − βSQ

(SQ)
n+1
i ), (5.3)

In+1
i = Ii

n +
τC3

h2
(In+1
i+1 − 2In+1

i + In+1
i−1 ) + τ(β(S)

n
i I

n+1
i − µiIn+1

i − ρiIn+1
i

− dIn+1
i − δiI(Q)

n
i + νi(IQ)

n
i ), (5.4)

(IQ)
n+1
i = (IQ)

n
i +

τC4

h2
((IQ)

n+1
i+1 − 2(IQ)

n+1
i + (IQ)

n+1
i−1 ) + τ(δiIi

nQi
n

− d(IQ)
n+1
i − νi(IQ)

n+1
i − µq(IQ)

n+1
i − ρq(IQ)

n+1
i ), (5.5)

Qn+1
i = Qi

n +
τC5

h2
(Qn+1

i+1 − 2Qn+1
i +Qn+1

i−1 ) + τ(ηIi
n − ψQn+1

i ), (5.6)

V n+1
i = V i

n +
τC6

h2
(V n+1
i+1 − 2V n+1

i + V n+1
i−1 ) + τ(βs(S)

n
i + βSQ

(SQ)
n
i

− βvV
n+1
i − dV n+1

i ). (5.7)

Step 4:
Solve the algebraic system.
Step 5:
Update the values of the variables at each grid point based on the solution obtained.
Step 6:
Repeat iteratively.

5.1. Stability of numerical scheme. In this subsection, we will test Von Neumann stability for the numerical
method that we have applied.
Von-Neumann stability refers to a criterion used in numerical analysis to ensure the stability of finite difference methods
when solving partial differential equations. Named after mathematician John von Neumann, it involves analyzing the
amplification factor of numerical errors over iterations. Meeting the stability criteria helps prevent uncontrolled growth
of errors and ensures reliable and accurate numerical simulations.
Assume

Sni = ξn1 e
Jksih,

Sn+1
i = ξn+1

1 eJksih,

Sni+1 = ξn1 e
Jks(i+1)h,

Sni−1 = ξn1 e
Jks(i−1)h,

(5.8)

substitute from (5.8) in Equation (5.2) we get the following relation,

ξn+1
1 eJksih = ξn1 e

Jksih +
τC1

h2
(ξn+1

1 eJks(i+1)h − 2ξn+1
1 eJksih + ξn+1

1 eJks(i−1)h) + Λ

− βξn+1
1 eJksih(I)

n
i − δsξ

n+1
1 eJksih(Q)

n
i − (βs + d)ξn+1

1 eJksih + µi(I)
n
i + µq(IQ)

n
i

+ νs(SQ)
n
i + βv(V )

n
i . (5.9)

Define the amplification factor G1 =
Sn+1
i

Sn
i

, we can compute G1 by dividing Equation (5.9) by Sni and obtain

G1 = 1 +
τC1

h2
(G1e

JkSh − 2G1 +G1e
−JkSh) + Λ− βG1(I)

n
i − δsG1(Q)

n
i − (βs + d)G1

+ µi(I)
n
i + µq(IQ)

n
i + νs(SQ)

n
i + βv(V )

n
i , (5.10)
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G1 =
1

1 + 4 τC1

h2 sin2(
kSah

2 ) + τ(υ·a + d+ βs)
, (5.11)

G1 =

∣∣∣∣∣ 1

1 + 4 τC1

h2 sin2(
kSah

2 ) + τ(υ·a + d+ βs)

∣∣∣∣∣ ≤ 1. (5.12)

Similarly, repeating the previous steps to Equations (5.3), (5.4), (5.5), (5.6), and (5.7) for (SQ)ni , Ini , (IQ)ni and Qni
with (SQ)ni = ξn2 e

Jksq ih , Ini = ξn3 e
JkI ih , (IQ)ni = ξn4 e

Jk(IQ)ih , Qni = ξn5 e
JkQih and V ni = ξn6 e

JkV ih respectively, we
also obtain

G2 =

∣∣∣∣∣ 1

1 + 4 τC2

h2 sin2(
kSb

h

2 ) + τ(d+ βSQ
+ νs)

∣∣∣∣∣ ≤ 1, (5.13)

G3 =

∣∣∣∣∣ 1

1 + 4 τC3

h2 sin2(kIh2 ) + τ(µi + ρi + d+ υ·b)

∣∣∣∣∣ ≤ 1, (5.14)

G4 =

∣∣∣∣∣ 1

1 + 4 τC4

h2 sin2(kTh2 ) + τ(d+ νi + µq + ρq)

∣∣∣∣∣ ≤ 1, (5.15)

G5 =

∣∣∣∣∣ 1

1 + 4 τC5

h2 sin2(kRh2 ) + τψ

∣∣∣∣∣ ≤ 1, (5.16)

G6 =

∣∣∣∣∣ 1

1 + 4 τC6

h2 sin2(kV h2 ) + d+ βv

∣∣∣∣∣ ≤ 1, (5.17)

where υ·a = βIi
n + δsQi

n , υ·b = δiQi
n − βSin and J =

√
−1.

So Gi ≤ 1, i = 1, 2, 3, 4, 5, 6 which is the necessary and sufficient condition for the error to remain bounded and
maintain von Nemann stability for the numerical method.

5.2. Consistency. In this subsection, we will use Taylor expansion to prove that this numerical scheme is first-order
consistent in t and second-order consistent in x. For this, we use

ΦS =
Sn+1
i − Sni

τ
− C1

h2
(Sn+1
i+1 − 2Sn+1

i + Sn+1
j−1 )− Λ + β(S)

n+1
i (I)

n
i

+ δs(S)
n+1
i (Q)

n
i + d(S)

n+1
i − µi(I)

n
i − µq(IQ)

n
i − νs(SQ)

n+1
i , (5.18)

ΦS = (
∂S

∂t
+
τ

2!

∂2S

∂t2
+
τ2

3!

∂2S

∂t2
+ ...)− C1

h2
(h2(

∂2S

∂x2
+ 2

h2

4!

∂4S

∂x2
+ ...))

− Λ + β(I)
n
i + δs(Q)

n
i + d− νs ∗ (Si

n + τ
∂S

∂t
+
τ2

2!

∂2S

∂t2
+
τ3

3!

∂2S

∂t2
+ ...), (5.19)

ΦS = −C1h
2

12
(
∂4S

∂x4
) + τ((βIni + δsQ

n
i + d)

∂Sa
∂t

+ ...), (5.20)
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Figure 7. Numerical simulation results for disease free equilibrium point for model (2.3).

which devolve to zero as τ ,h becomes zero.
Also, we can obtain the relations of SQ, I, IQ, and Q using the previous steps as follows:

ΦSQ
= −C2h

2

12
(
∂4SQ
∂x4

) + τ(αbI
n
i + δ)(

∂SQ
∂t

+ ...),

ΦI = −C3h
2

12
(
∂4I

∂x4
) + τ(µi + ρi + d+ δiQi

n − βSin)(
∂I

∂t
+ ...),

ΦIQ = −C4h
2

12
(
∂4IQ
∂x4

) + τ(d+ νi + µq + ρq)(
∂IQ
∂t

+ ...),

ΦQ = −C5h
2

12
(
∂4Q

∂x4
) + τ(ψ)(

∂Q

∂t
+ ...)

ΦV = −C6h
2

12
(
∂4V

∂x4
) + (d+ βv)(

∂V

∂t
+ ...),

(5.21)

which also go to zero as τ ,h becomes zero. For this reason, the order of accuracy of this numerical method is h2 + τ .

5.3. Results. By solving the system (5.2)-(5.7) with the values of parameters that were extracted and discussed in
sections 3 and 4, taking the values Ci = 0.01 and i = 1, 2, 3, 4, 5, 6 .
The Neumann boundary condition states that in complete lockdown, nobody can leave or enter the region. We can
see in Figure 7 that the numerical solution at the pandemic equilibrium state at the selected parameters has good
agreement with the chosen parameters.
All classes attain their maximum value in a specific region x and then decrease when they go away from this area.
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6. Effects of Parameters

The value of each parameter in the model affects the spread of the disease. The most important issue in controlling
epidemics is creating lockdowns to reduce relationships between individuals. In these models (temporal and spatio-
temporal), we studied the effect of some parameters on infection classes I and IQ. These models, represents the rate of
infectious contact, which in turn affects the increase or decrease in the number of infected people, as shown in Figure
8. The lower the value of β decrease the infection rate, which indicates that the lack of contact between people leads to
the disappearance of the epidemic or at least a decrease in cases of disease. On the other hand, as shown in Figure 9,
by reducing νi, which represents the transmission of people from IQ to I class , the number of infections decreases with
the passage of time, which shows the role of isolation in reducing the spread of the disease. We also note an increase
in µq , which represents the percentage of people recovering from the disease and were under lockdown, significantly
reducing the number of infected people and under lockdown, as shown in Figures 10(b) and 10(d), but the percentage
of infected people continues to increase as in Figures 10(a) and 10(c). In Figure 11, we made a comparison of different
values of δs and their impact on the spread of the epidemic, where δs represents the rate of imposing the lockdown
on healthy people who are exposed to infection. We find that by increasing the percentage of isolation, the number of
epidemic infections decreases significantly.
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Figure 8. Numerical simulation of I and IQ with different values of β = 15 ∗ 10−6 and 15 ∗ 10−7.

Figure 9. Numerical simulation of I and IQ with different values of νi = 0.02, 0.002, 0.0002.

7. Conclusion

In this paper, a comprehensive numerical study of lockdown-vaccination models for COVID-19 is presented, focusing
on both temporal and spatio-temporal aspects. The reproduction number is discussed as a crucial indicator for
estimating the spread of the virus. The analysis includes a sensitivity analysis to assess the pandemic parameters.
Moreover, the stability regions of the temporal model have been investigated. The numerical scheme applied to the
spatio-temporal model is stable and has accuracy of order (h2+τ). Numerical schemes such as CFD and RK-5 methods
are employed to analyze the numerical results and facilitate comparison under various parameters. The findings have
provided valuable insights into the control and mitigation of COVID-19, contributing to our understanding of the
disease dynamics and the effectiveness of different intervention strategies. The graphical results of spatio temporal
model showed that all classes attain their maximum value in a specific region and then decrease when people go away
from this area, which means that lockdown is an excellent control for decreasing infection. We discussed the effect
of some parameters on controlling the spread of infection between individuals. Results showed that β and νi have
a direct impact on the number of infections I(t), so that I(t)increase or decrease by increasing or decreasing them,
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Figure 10. Numerical simulation of I and IQ with different values of µq = 0.15, 0.25, 0.45.

Figure 11. Numerical simulation of I and IQ with different values of δs = 0.02, 0.002, 0.0002.

while µq have an inverse impact on I(t) and a direct impact on IQ(t) and finally δs which have an inverse impact
on both I(t) and IQ(t), so an increase in δs leads to a decrease in I(t) and IQ(t). This showed the importance of
applying lockdown to reduce infection and control it. Overall, this study contributes to the existing knowledge base by
providing a mathematical framework and numerical analysis of COVID-19 lockdown-vaccination models. The findings
give critical insights for policymakers and healthcare professionals, allowing them to implement effective methods to
limit viral transmission and mitigate its effects on public health and the economy. The ongoing study and fine-tuning
of these models promise to increase our understanding of the intricate dynamics of infectious diseases, improving
evidence-based decision-making in the context of pandemics.
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