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Abstract
In this article, the Chebyshev pseudo-spectral (CPS) method is presented for solving Troeschs problem, which is

a singular, highly sensitive, and nonlinear boundary problem and occurs in the consideration of the confinement
of a plasma column by radiation pressure. Here, a continuous time optimization (CTO) problem corresponding

to Troeschs problem is first proposed. Then, the Chebyshev pseudo-spectral method is used to convert the CTO
problem to a discrete-time optimization problem its optimal solution can be found by nonlinear programming

methods. The feasibility and convergence of the generated approximate solutions are analyzed. The proposed

method is used to solve various kinds of Troeschs equations. The obtained results have been compared with
approximate solutions resulting from well known numerical methods. It can be confirmed that the numerical

solutions resulting from this method are completely acceptable and accurate, compared with other techniques.
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1. Introduction

A boundary value problem (BVP) is a differential equation which has values assigned on the physical boundary
of the given domain. Boundary value problems are applicable in different areas of the science including physics,
mathematics, engineering and chemistry.
Troesch’s problem [1, 13, 42, 48] is special nonlinear two point BVP that occurs in the consideration of the restriction
of a plasma column by radiation pressure [48]. This problem also occurs in the study of aspects of gas porous electrodes
[22].
The standard Troesch’s problem is given by

y′′(t) = nsinh(ny), 0 ≤ t ≤ 1,

y(0) = 0, y(1) = 1, (1.1)

where n is a positive constant.
This problem contains a singularity at the upper boundary and meantime includes an analytic solution of the Cauchy
problem equivalent to it. This problem has a closed-form solution as follows [42]:

y(t) =
2

n
arcsinh{y

′(0)

2
sc[nx, 1− 1

4
(y′(0))2]}, (1.2)

with y′(0) = 2
√

1−m, in which m is the solution of the following equation

sinh(n2 )
√

1−m
= sc(n,m), (1.3)
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where sc(n,m) is the Jacobian elliptic function determined by sc(n,m) = tan(φ), and m (0 < m < 1) is a modulus of
the Jacobian elliptic function. Here, φ, n and m satisfy the following integral:

n =

∫ φ

o

1√
1−msin2θdθ

.

Since at the upper boundary there exists singularity, therefore numerical approximation methods have significant
problems. A number of methods have been reported to obtain a closed-form and approximate solution for Troesch’s
problem. Roberts and Shipman [42] applied the perturbation and continuation methods, simultaneously, to obtain a
closed-form solution for this problem. Troesch [47] utilized the shooting method to attain a numerical approximate
solution for this problem. Deeba et al. [7] solved this problem utilizing a numerical method based on the decomposition
technique. Khuri [25] find an approximate solution for this problem using a modified decomposition technique and
the Laplace transformation. Feng et al. [18] presented a numerical technique inspired by the modified homotopy
perturbation method. Moreover, Khuri and Sayfy [26] executed the finite element technique utilizing the cubic B-
spline collocation technique for solving Troesch’s problem. Chang and Chang [4] utilized a novel approach based on
the differential transformation for finding the solution of Troesch’s problem. Also, Chang [6] solved this problem
using the variational method and variable transformation. In [14], a modern version of finite difference approach for
this problem was presented. Zarebnia and Sajjadian [50] employed sinc-Galerkin approach for solving this problem.
Leal et al. [27] find an approximate solution using the homotopy perturbation method. Raja [41] applied the neural
networks optimized with three meta-heuristic methods including active set (AS), particle swarm optimization (PSO),
and PSO hybridized with AS (PSO-AS) algorithms to find a solution for this problem. Moreover, Saadatmandi and
Abdolahi-Niasar [43] suggested a collocation method to obtain the approximate solution of Troesch’s problem. To
find more detailed information and numerical methods for solving Troesch’s problem, we refer to Momani et al. [32],
Bougoffa and Al-khadhi [2], Mirmoradi et al. [30], Chang [5], Nabati and Jalalvand [33], Zuniga et al. [51], Youssef
and Baumann [49], Markov and Dragunov [29] and references therein.

Now, in this article, the Chebyshev pseudo-spectral (CPS) method will be applied to solve Troesch’s problem. First,
we propose a continuous time optimization (CTO) problem related to the main differential equation. Then, we convert
the CTO problem to a discrete time optimization problem, using the Chebyshev-Gauss-Lobatto nodes. The feasibility
and the convergence of the obtained solution are discussed. Numerical solutions show that the obtained results for
different values of n, are extremely precise in comparison with those attained by the other numerical snd analytical
approaches.

The rest of this paper is formed as follows: Section 2 is devoted to Chebyshev pseudo-spectral method. Feasibility
and Convergence analysis are included in section 3. The accuracy and efficiency of the suggested CPS method is
illustrated by numerical results in section 4. Eventually, in section 5, conclusions are stated.

2. Chebyshev pseudo-spectral method

In the literature, there are many numerical methods for solving differential equations and the Troeschs problem (see
for example [10, 40]). Pseudo-spectral (PS) methods are a category of direct numerical methods for continuous-time
problems (see [3, 8, 9, 11, 15–17, 19, 23, 28, 38, 46]). In [3], it was shown that PS methods provide a fast convergence
for the approximation of the functions. In PS methods, we can prove some sufficient conditions related to the conver-
gence as well as the feasibility of the obtained approximate solution.
Among the PS methods, the Chebyshev pseudo-spectral (CPS) method has a high degree of the accuracy in approx-
imations [21, 31, 34–37]. In the CPS method, we first use an interpolating polynomial in Chebyshev-Gauss-Lobatto
(CGL) nodes, that offers a fast computation in comparison with the other nodes. Then, we calculate the derivatives
of interpolating polynomials in CGL nodes by a differentiation matrix. So, by the CPS method, a nonlinear algebraic
equation is attained related to the dynamical equation.

However, here, in order to find an approximation of the exact solution of Troesch’s problem (1.1), we attain a nonlinear
programming (NLP) problem. In the CPS method, the state variable y(.) is discretized, values of the state in CGL
nodes are unknowns, and the ordinary differential equation (ODE) is represented according to these values. Moreover,
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to attain a continuous approximation for the state variable, an interpolation procedure is utilized.
Related to differential Equation (1.1), we suggest a continuous-time optimization (CTO) problem as follows:

min J = y(0)2 + (y(1)− 1)2

subject to

{
y′′(t) = nsinh(ny),

0 ≤ t ≤ 1.

(2.1)

It is obvious that zero is the best objective value of the CTO problem (2.1). Therefore, by solving the CTO problem
(2.1), we are going to find a feasible solution y(t) with y(0) = and y(1) − 1 = 0. Consequently, the obtained optimal
solution of (2.1) satisfies all the equations of the Troesch’s problem (1.1). Hence, finding optimal solution of the CTO
problem (2.1) is equivalent to obtain the solution of Troesch’s problem (1.1). As follows, the CTO problem (2.1) is
solved using the CPS method. Define u(t) = y′(t), 0 ≤ t ≤ 1. Therefore, the following the CTO problem is obtained
from (2.1):

min J = y(0)2 + (y(1)− 1)2

subject to

{
y′(t) = u(t),

u′(t) = nsinh(ny), 0 ≤ t ≤ 1.

(2.2)

The time transformation t = 1
2 (τ + 1) is applied, for changing the interval to [−1, 1]. Define{

Y (τ) = y( τ+1
2 ) = y(t),

U(τ) = u( τ+1
2 ) = u(t).

(2.3)

Using the chain rule, we obtain y′(t) = 2Y ′(τ) and u′(t) = 2U ′(τ). Therefore, the CTO problem (2.2) is transformed
to the following problem:

min J = Y 2(−1) + (Y (1)− 1)2

subject to


Y ′(τ) = 1

2U(τ),

U ′(τ) = 1
2nsinh(nY (τ)),

−1 ≤ τ ≤ 1.

(2.4)

The following CGL nodes on [−1, 1] are utilized to obtain a discrete form of the CTO problem (2.4):

τk = cos(
N − k
N

π), k = 0, 1, 2, . . . , N, (2.5)

where these nodes are the roots of the Chebyshev polynomials Tj(τ) = cos(jcos−1(τ)), j = 0, 1, . . . , N, τ ∈ [−1, 1].
In the CPS method, the next Lagrange interpolating polynomials are used for interpolating:

Lk(τ) =
2

Nµk

N∑
j=0

1

µj
Tj(τk)Tj(τ), τ ∈ [−1, 1], k = 0, 1, . . . , N, (2.6)

where µ0 = µN = 2 and µk = 1, for k = 1, . . . , N − 1. It is obvious that Lk(τk) = 1, k = 0, 1, . . . , N and Lk(τj) = 0,
for all k 6= j.
The following CPS approximation is defined for the CTO problem (2.4):

Y (τ) ≈
N∑
l=0

ȳlLl(τ), U(τ) ≈
N∑
l=0

ūlLl(τ), (2.7)

where N is a given sufficiently big number and

Y (τk) ≈ ȳk, U(τk) ≈ ūk. (2.8)
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Moreover,

Y ′(τk) ≈
N∑
l=0

ȳlDlk, U
′(τk) ≈

N∑
l=0

ūlDlk, k = 0, 1, . . . , N, (2.9)

where

Dlk = L′l(τk) =


µk

µl
(−1)k+1 1

τk−τl , if k 6= l,

− τk
2−2τ2

k
, if 1 ≤ k = l ≤ N − 1,

− (2N2+1)
6 , if k = l = 0,

2N2+1
6 , if k = l = N.

(2.10)

Utilizing relations (2.8) and (2.9), the following discrete time optimization (DTO) problem is a discrete approximation
of the CTO problem (2.4):

min JN = ȳ2
0 + (ȳN − 1)2

subject to



N∑
l=0

ūlDlk − nsinh(nȳk)
2 = 0,

N∑
l=0

ȳlDlk − ūk

2 = 0,

k = 0, 1, 2, . . . , N,

(2.11)

where N is sufficiently large.
By finding the optimal solution of the DTO problem (2.11), a numerical approximation for the solution of Troesch’s
problem (1.1) as y(tk) ≈ ȳ∗k, k = 0, 1, 2, . . . , N is obtained, where tk = τk+1

2 and τk, k = 0, 1, . . . , N are the CGL nodes.
Furthermore, a continuous approximation is obtained, using interpolation

y∗(t) ≈
N∑
l=0

ȳ∗l Ll(2t− 1), 0 ≤ t ≤ 1. (2.12)

Remark 2.1. We note that the DTO problem (2.11) can be solved by techniques of nonlinear programming.

3. Investigation of feasibility and convergence

In this section, we investigate the feasibility of the DTO problem (2.11). Also, we analyze the convergence of the
approximation to the exact solution of Troesch’s problem. it is demonstrated that we can relax the constraints of
problem (2.11) to warranty feasibility. To this end, the following problem is suggested, in which the Polak’s theory of
consistent approximations [39] is applied for the relaxation:

min JN = ȳ2
0 + (ȳN − 1)2

subject to


|
N∑
l=0

ūlDlk − 1
2nsinh(nȳk)| ≤ (N − 1)

3
2 −m,

|
N∑
l=0

ȳlDlk − 1
2 ūk| ≤ (N − 1)

3
2−m,

(3.1)

where m ≥ 2 is specified. It is obvious that when N → ∞, there is no differences between constraints of (2.11) and
(3.1).

Let Wm,∞ be the Sobolov space, which contains all functions η : [−1, 1]→ R with η(j) ∈ L∞, 0 ≤ j ≤ m, with the
norm:

‖ η ‖=
m∑
j=0

supt∈[−1,1]|η(j)(t)|.
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Lemma 3.1. [3] Let η ∈ Wm,∞ be given. Then, there exists a polynomial pN (t) of degree less than or equal to N ,
that

|η(t)− pN (t)| ≤ cc0N−m, −1 ≤ t ≤ 1 (3.2)

in which c is a constant and c0 =‖ η ‖ .

Remark 3.2. Since y(.), i.e. the ODE solution (1.1) is continuously differentiable on [0, 1], we can find a constant
k ∈ R with

|y(t)| ≤ k, t ∈ [0, 1].

Hence,

| d
dy
sinh(ny)| = ncosh(ny) ≤ ncosh(nk), y ∈ [−k, k].

Also, for function f(y) = nsinh(ny),−k ≤ y ≤ k and for all y1, y2 ∈ [−k, k], by mean value theorem, we have

|f(y1)− f(y2)| = |n||sinh(ny1)− sinh(ny2)| ≤ |n|2cosh(nk)|y1 − y2|. (3.3)

Remark 3.3. We note that since the solution y(.) of the BVP (1.1) is continuously differentiable on [0, 1], so y(.) ∈
Wm,∞.

Theorem 3.4. Suppose that (Y (.), U(.)) is an optimal solution of (2.4), then there exists an integer N1 > 0 such that
problem (3.1) for any N ≥ N1, has a feasible solution (ȳk, ūk), k = 0, 1, . . . , N such that{

L(N − 1)1−m ≥ |Y (τk)− ȳk|, k = 0, 1, . . . , N,

L(N − 1)1−m ≥ |U(τk)− ūk|, k = 0, 1, . . . , N,
(3.4)

where L > 0 is a constant and τk are the CGL nodes, k = 0, 1, . . . , N.

Proof. From Lemma 3.1 and Remark 3.3, there are polynomials p1(.) and p2(.) from order (N − 1) and constants c1
and c2 that are independent of N such that{

c1(N − 1)1−m ≥ |Y ′(τ)− p1(t)|,
c2(N − 1)1−m ≥ |U ′(τ)− p2(t)|.

(3.5)

Define {
YN (τ) =

∫ τ
−1
p1(x)dx+ Y (−1),

UN (τ) =
∫ τ
−1
p2(x)dx+ U(−1),

(3.6)

and ȳk = YN (τk) and ūk = UN (τk), for k = 0, 1, 2, . . . , N. We demonstrate that (ȳk, ūk), k = 0, 1, 2, . . . , N is a feasible
solution for problem (3.1). From relations (3.5) and (3.6), it follows:

|Y (τ)− YN (τ)| = |
∫ τ

−1

(Y ′(x)− p1(x))dx| ≤
∫ τ

−1

|Y ′(x)− p1(x)|dx

≤ c1(N − 1)1−m
∫ τ

−1

dx = (τ + 1)c1(N − 1)1−m ≤ 2c1(N − 1)1−m, −1 ≤ τ ≤ 1. (3.7)

By an analogous manner, we attain

|U(τ)− UN (τ)| ≤ 2c2(N − 1)1−m. (3.8)

Now, by (3.6), YN (τ) and UN (τ) are polynomials with degree equal to N or less than it. But, derivative of any
polynomial of degree equal to N or less than it, at the CGL nodes τ0, . . . , τN equals to the value of the polynomial at
the nodes multiplied by the matrix D, defined by (2.10). Hence, we attain

N∑
l=0

ȳlDlk = Y ′N (τk), k = 0, 1, 2, . . . , N, D = (Dlk),
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and

N∑
l=0

ūlDlk = U ′N (τk), k = 0, 1, 2, . . . , N.

Hence,

|
N∑
l=0

ȳlDlk −
1

2
ūk| ≤ |Y ′N (τk)− Y ′(τk)|+ |Y ′(τk)− 1

2
ūk|

= |p1(τk)− Y ′(τk)|+ |1
2
U(τk)− 1

2
ūk|

≤ c1(N − 1)1−m + c2(N − 1)1−m = (c1 + c2)(N − 1)1−m.

Also, by relations (3.3), (3.5), and (3.8), we have

|
N∑
l=1

ūlDlk − nsinh(nȳk)| ≤ |U ′N (τk)− U ′(τk)|+ |U ′(τk)− nsinh(nȳk)|

= |p2(τk)− U ′(τk)|+ |nsinh(nY (τk))− nsinh(nȳk)|
≤ c2(N − 1)1−m + n2cosh(nk)|Y (τk)− ȳk|
≤ c2(N − 1)1−m + c1n

2cosh(nk)(N − 1)1−m.

By selecting N1 such that max{c1 + c2, c2 + c1n
2cosh(nk)} ≤ N 1

2 for all N ≥ N1, we have:

|
N∑
i=0

ȳlDlk −
1

2
ūk| ≤ (N − 1)

3
2−m, (3.9)

and

|
N∑
l=0

ūlDlk − nsinh(nȳk)| ≤ (N − 1)
3
2−m. (3.10)

By relations (3.9) and (3.10), we conclude that (ȳk, ūk), k = 0, 1, . . . , N satisfy the constraints of DTO (3.1) and
therefore the feasibility of this problem is proved. By setting L = 2 max{c1, c2}, we obtain relation (3.4) directly from
(3.7) and (3.8). �

From Theorem 3.4 we conclude that the feasible point set of the problem (2.11) is nonempty and compact. Hence,
the continuous objective function JN = ȳ2

0 + (ȳN − 1)2 achieves the minimal solution.

Now, it is demonstrated that the sequence of solutions of the DTO problem (3.1) converges to the optimal solution
of CTO problem (2.4). The procedure concludes from [23, 24] and is according to the Polak’s theory of consistent
approximation [39]. Assume that optimal solution to the problem (3.1) is as (ȳ∗k, ū

∗
k), k = 0, 1, . . . , N . Define{

Y ∗N (t) =
∑N
k=0 ȳ

∗
kLk(t), t ∈ [−1, 1]

U∗N (t) =
∑N
k=0 ū

∗
kLk(t), t ∈ [−1, 1],

where Lk(.) is the Lagrange interpolating polynomial, for k = 0, 1, . . . , N . Therefore, a sequence of direct solutions
{(ȳ∗k, ū∗k), k = 0, 1, 2, . . . , N}∞N=N1

and the sequence of interpolating functions {Y ∗N (.), U∗N (.)}∞N=N1
are obtained.

Assumption I: We assume that the sequence {(ȳ0, ū0, Y
′∗
N (.), U ′∗N (.))}∞N=N1

has a subsequence that uniformly con-
verges to {(y∞0 , u∞0 , q1(.), q2(.))}∞N=N1

, where q1(.) and q2(.) are continuous functions.
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Theorem 3.5. Assume that a sequence of optimal points of (3.1) is as {(ȳ∗k, ū∗k), k = 0, 1, . . . , N}∞N=N1

and {Y ∗N (.), U∗N (.)}∞N=N1
is their interpolating function sequence that satisfies Assumption I, then,{

Y ∗(τ) =
∫ τ
−1
q1(t)dt+ y∞0 , −1 ≤ t ≤ 1,

U∗(τ) =
∫ τ
−1
q2(t)dt+ u∞0 , −1 ≤ t ≤ 1,

(3.11)

is an optimal point for problem (2.4).

Proof. From assumption I, we conclude that there exists a subsequence {Y ∗Ni

′(.), U∗Ni

′(.)}∞i=1 of sequence

{Y ∗N
′(.), U∗N

′(.)}∞N=N1
such that limi→∞Ni =∞ and

lim
i→∞

(Y ∗Ni

′(.), U∗Ni

′(.)) = (q1(.), q2(.)). (3.12)

So, from (3.11) and (3.12) and Assumption I, we can conclude that{
limi→∞ Y ∗Ni

(.) = Y ∗(.),

limi→∞ U∗Ni
(.) = U∗(.).

Also, by investigating the objective function of DTO problem (3.1) and applying assumption I, it is easy to see that

lim
i→∞

(ȳ∗20 + (ȳ∗Ni
− 1)2) = Y ∗2(−1) + (Y ∗(1)− 1)2.

Now, we first demonstrate that (Y ∗(.), U∗(.)) is feasible for problem (2.4). Then, we show that (Y ∗(.), U∗(.)) is optimal
for CTO problem (2.4).
Step 1. We prove that (Y ∗(.), U∗(.)) satisfies the differential equations of problem (2.4). With no loss of generality,
suppose that the second differential equation is not satisfied at (Y ∗(.), U∗(.)). Thus, there exists a time t̄ ∈ [−1, 1]
with

U ′∗(t̄)− 1

2
nsinh(nY ∗(t̄)) 6= 0.

From density of CGL nodes τk in [−1, 1], for k = 0, 1, . . . , N (see [20]), we conclude that a sequence kNi
exists such

that 0 < kNi
< Ni and limi→∞tkNi

= t̄. Thus,

U ′
∗
(t̄)− 1

2
nsinh(nY ∗(t̄)) = limi→∞(U ′

∗

Ni
(tkNi

)− 1

2
nsinh(nY ∗Ni

(tkNi
)) 6= 0. (3.13)

On the other hand, by limi→∞(Ni − 1)
3
2−m = 0, and constraints of problem (3.1), we conclude

limi→∞(U ′
∗

Ni
(tkNi

)− 1

2
nsinh(nY ∗Ni

(tkNi
)) = 0 (3.14)

which contradicts (3.13). Hence, (Y ∗(.), U∗(.)) is a feasible point for (2.4).
Step 2. Since Troesch’s problem has a solution, there exists a solution for the CTO problem (2.4) with the objective
function equal to zero. Now, assume that (Y ∗∗(.), U∗∗(.)) is an optimal solution for (2.4) with Y ∗∗(.) ∈Wm,∞,m ≥ 2.
From Theorem 3.4, we conclude that there is a sequence of feasible points {ỹNk , ũNk ) : k = 0, 1, . . . , N}∞N=N1

for
CTO problem (2.4) that is convergent to (Y ∗∗(.), U∗∗(.)), uniformly. Now, by optimality of (Y ∗∗(.), U∗∗(.)) and
(ȳ∗k, ū

∗
k), k = 0, 1, . . . , N we have:

0 = (Y ∗∗(−1))2 + (Y ∗∗(1)− 1)2 ≤ (Y ∗(−1))2 + (Y ∗(1)− 1)2

= limi→∞((Y ∗Ni
(−1))2 + (Y ∗Ni

(1)− 1)2)

= lim
i→∞

(ȳ∗
2

0 + (ȳ∗Ni
− 1)2)

≤ lim
N→∞

((ỹN0 )2 + (ỹNN − 1)2) = (Y ∗∗(−1))2 + (Y ∗∗(1)− 1)2 = 0. (3.15)

By (3.15), we have

Y ∗2(−1) + (Y ∗(1)− 1)2 = 0,

and therefore (Y ∗(.), U∗(.)) is a feasible point with the objective value equal to zero that is optimal. �
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Table 1. Approximate solutions y(τk) ' ȳk, k = 0, 1, . . . , N for n = 0.5 and N = 9.

k=0,1 k=2,3 k=4,5 k=6,7 k=8,9
0.00000000 0.112250798 0.399084001 0.736373459 0.967431003
0.028919804 0.240386265 0.570932754 0.874900442 1.00000000

4. Numerical illustrations

In this section, we apply the CPS method to particular instances of Troesch’s problem, to show its accuracy and
fast convergence.
At first, we consider Troesch’s problem for n = 0.5 in Equation (1.1). We solve the NLP problem (2.11) for various
values of N. The DTO problem (2.11) is solved in the MATLAB software by the FMINCON function. The pointwise
approximate optimal solutions ȳ0, ȳ1, . . . , ȳN for N = 9 are given in Table 1. Also, the numerical point attained by the
CPS method at the points t = 0.1, 0.2, . . . , 0.9 for n = 0.5 are compared with the exact solution of Troesch’s problem.
We also compare the results with five other numerical procedures, namely, the decomposition technique given by
Deeba et al. [7], the Laplace transformation procedure by Khuri [25], the modified homotopy perturbation method
given by Feng et al. [18], the homotopy perturbation technique utilized by Leal et al. [27] and the sinc-Galerkin
approach applied by Zarebnia and Sajjadian [50]. The results are given in Table 2. Moreover, in Table 3 we compare
the absolute difference between the exact solution and the approximate ones, called the absolute error, of the proposed
method with that of the aforementioned numerical methods. In Figure 1, the absolute error of the utilized method is
compared with some other methods [25, 27, 50]. The graphical and numerical results demonstrate that the suggested
approach is the most precise one, in comparison with other numerical techniques. Moreover, from Figure 2 we conclude
that by increasing the number of Chebyshev nodes (N), the absolute error decreases, rapidly.

In the second case, the approximation is attained for the Troesch’s problem with n = 1. The pointwise approximate
optimal solutions ȳ0, ȳ1, . . . , ȳN for N = 10 are given in Table 4. In Table 5, we compare the obtained approximate
results for Troesch’s problem for the case n = 1 with the exact ones and points attained by some other numerical
approaches [7, 18, 27, 50]. In this table, we put the results of solving DTO problem (2.11) for N = 10 and N = 16.
Moreover, in Table 6 the absolute error of the proposed method for N = 10 is compared with some other numerical
techniques. Figure 3 shows the absolute error of our method compared with that of Zarebnia and Sajjadian [50].
Moreover, in Figure 4 absolute error for different number of nodes is shown. Numerical results demonstrate the
validity, applicability and accuracy of the method compared with the other mentioned methods. Moreover, in Table 7
we present the values of the CPS solution at the endpoint t = 0 for n = 0.5 and n = 1. The numerical approximations,
compared with the most accurate available results, affirm the proficiency and precision of the CPS method. Moreover,
the solutions of Troesch’s problem for some other values of n is depicted in Figure 5. Also, in Figure 6 we change the
input domain to the interval [0, 30] and find the solution of the Troesch’s problem on this domain for different values
on n including n = 5, 10, 15. The attained results confirm efficiency of the suggested approach for the new interval
[0, 30]. Further, we run the proposed algorithm for different values of n including n = 5, 10, 15, and depict the results
in Figure 7. Finally, we compared our results with those of references [45] and [44] for n = 10 in Table 8. As it can
be seen in Figures 6 and 7, the proposed algorithm has the ability of solving the Troesch’s problem with a big n or
a large span of the domain interval, efficiently. However, when n is big or the domain interval is large, in order to
obtain acceptable results, it is necessary to increase N .

5. Conclusions

In this paper, we demonstrated that the Chebyshev pseudo-spectral method is an applicable method for attaining an
approximation of the exact solution of Troesch’s problem, with high accuracy. The feasibility as well as convergence of
the attained approximate solutions were analyzed. Moreover, we showed efficiency of the suggested method compared
to other methods. We indicated that the CPS method, in comparison with other available methods, has very high
accuracy.
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Table 2. Approximate solutions for the Troesch’s problem for n=0.5.

t Exact solution Deeba et al. [7] Khuri [25] Feng et al. [18] Leal et al. [27]
Zarebnia and
sajjadian [50]

Our approach
forN = 9

0.1 0.0959443492923 0.0959477541 0.09594435202 0.0959395656 0.0959443155 0.095944347 0.095944349310930
0.2 0.1921287476603 0.1921352537 0.1921287539 0.1921193244 0.1921286848 0.192128740 0.192128747653106
0.3 0.2887944008934 0.2888034214 0.2887944107 0.2887806940 0.2887943176 0.288794409 0.288794400877506
0.4 0.3861848463623 0.3861955524 0.3861848612 0.3861675428 0.3861847539 0.386184841 0.386184846394200
0.5 0.4845471647449 0.4845585473 0.4845471832 0.4845274183 0.4845470753 0.484547165 0.484547164827194
0.6 0.5841332484456 0.5841442013 0.5841332650 0.5841127822 0.5841331729 0.584133254 0.584133248531741
0.7 0.6852011483018 0.6852105701 0.6852011675 0.6851822495 0.6852010943 0.685201142 0.685201148362007
0.8 0.7880165226496 0.7880234321 0.7880165463 0.788001867 0.7880164925 0.788016528 0.788016522690064
0.9 0.8928542161363 0.8928578710 0.8928542363 0.8928462193 0.8928542059 0.892854218 0.892854216158665
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Table 3. The absolute error of the Troesch’s problem solution problem for n=0.5, using different methods.

t Deeba et al. [7] Khuri [25] Feng et al. [18] Leal et al. [27]
Zarebnia and
Sajjadian [50]

Our approach
forN = 9

0.1 3.40× 10−6 2.72× 10−9 4.78× 10−6 3.38× 10−8 2.30× 10−8 1.09× 10−11

0.2 6.51× 10−6 6.20× 10−9 9.42× 10−6 6.29× 10−8 7.70× 10−8 4.69× 10−11

0.3 9.02× 10−6 9.80× 10−9 1.37× 10−5 8.33× 10−8 8.10× 10−8 2.25× 10−11

0.4 1.07× 10−5 1.48× 10−8 1.73× 10−5 9.25× 10−8 5.40× 10−8 0.50× 10−11

0.5 1.14× 10−5 1.85× 10−8 1.97× 10−5 8.89× 10−8 3.00× 10−9 1.27× 10−10

0.6 1.10× 10−5 1.66× 10−8 2.07× 10−5 7.75× 10−8 5.60× 10−8 1.31× 10−10

0.7 9.42× 10−6 1.92× 10−8 1.89× 10−5 5.40× 10−8 6.30× 10−8 9.42× 10−11

0.8 6.91× 10−6 2.36× 10−8 1.47× 10−5 3.02× 10−8 5.30× 10−8 0.99× 10−11

0.9 3.65× 10−6 2.02× 10−8 8.00× 10−6 1.02× 10−8 1.90× 10−8 5.87× 10−11
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Table 4. Approximate solutions y(τk) ' ȳk, k = 0, 1, . . . , N for n = 1 and N = 10.

k=0,1 k=2,3 k=4,5 k=6,7 k=8,9 k = 10
0.000000000000000 0.080832430522906 0.297879996209397 0.594225370814932 0.876936336964576 1.000000000000000
0.020685646429221 0.175440382486681 0.440599834126281 0.745638478215252 0.967509783495296

Table 5. Approximate solutions for Troesch’s problem for n=1.

t Exact solution Deeba et al. [7] Feng et al. [18] Leal et al. [27]
Zarebnia and
Sajjadian [50]

Our approach
for N = 10

Our approach
for N = 16

0.1 0.0846612565515 0.084248760 0.0843817004 0.0846607585 0.084661250 0.084661256233803 0.084661256551547
0.2 0.1701713581775 0.169430700 0.1696207644 0.1701704581 0.170171338 0.170171357775566 0.170171358177518
0.3 0.2573939080798 0.256414500 0.2565929224 0.2573927827 0.257393933 0.257393907199741 0.257393908079857
0.4 0.3472228551104 0.346085720 0.3462107378 0.3472217324 0.347222839 0.347222853916141 0.347222855110482
0.5 0.4405998351683 0.439401985 0.4394422743 0.4405989511 0.440599836 0.440599834126281 0.440599835168429
0.6 0.5385343980768 0.537365700 0.5373300622 0.5385339413 0.538534416 0.538534396340466 0.538534398076923
0.7 0.6421286091908 0.641083800 0.6410104651 0.6421286573 0.642128589 0.642128606902691 0.642128609190851
0.8 0.7526080940464 0.751788000 0.7517335467 0.7526085475 0.752608114 0.752608092252368 0.752608094046422
0.9 0.8713625197982 0.870908700 0.8708835371 0.8713630450 0.871362527 0.871362516502162 0.871362519798196

Table 6. Absolute error of the Troesch’s problem solution for n=1, using different methods.

t Deeba et al. [7] Feng et al. [18] Leal et al. [27]
Zarebnia and
Sajjadian [50]

Our approach
for N = 10

0.1 4.12× 10−4 2.76× 10−4 4.98× 10−7 6.55× 10−9 3.18× 10−10

0.2 7.00× 10−4 5.56× 10−4 9.00× 10−7 2.02× 10−8 4.02× 10−10

0.3 9.79× 10−4 8.10× 10−3 1.12× 10−6 2.50× 10−8 8.80× 10−10

0.4 1.14× 10−3 1.01× 10−3 1.12× 10−6 1.61× 10−8 1.19× 10−9

0.5 1.19× 10−3 1.16× 10−3 8.84× 10−7 0.83× 10−9 1.04× 10−9

0.6 1.16× 10−3 1.20× 10−3 4.57× 10−7 1.79× 10−8 1.74× 10−9

0.7 1.04× 10−3 1.19× 10−3 0.48× 10−7 2.10× 10−8 2.29× 10−9

0.8 8.20× 10−4 8.74× 10−4 4.53× 10−7 1.99× 10−8 1.79× 10−9

0.9 4.53× 10−4 4.79× 10−4 5.25× 10−7 7.20× 10−9 3.29× 10−9

Table 7. The approximate values for y′(0).

n N=10 N=12 N=14 N=16 N=18
n=0.5 0.959043795421242 0.959043795413151 0.959043795413204 0.959043795413238 0.959043795413266
n=1 0.845202682747389 0.845202685268858 0.845202685309271 0.845202685309938 0.845202685309953

Table 8. Approximate solutions of the Troeschs problem for n = 10, using different methods.

t Temimi and Kurkcu [45] Scott [44] Our approach
0.1 0.000042 0.000042 0.000045
0.2 0.000130 0.000130 0.000131
0.3 0.000359 0.000359 0.000359
0.4 0.000978 0.000978 0.000978
0.5 0.002659 0.002659 0.002659
0.6 0.007229 0.007229 0.007228
0.7 0.019664 0.019664 0.019662
0.8 0.053730 0.053730 0.053724
0.9 0.152114 0.152114 0.152095
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Figure 7. Solutions of the Troesch’s problem on time interval [0, 1] and n = 5, 10, 15.
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