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Abstract
A class of quasilinear second-order parabolic equations with discontinuous coefficients is considered in this work.

The analog of Harnack inequality is proved for the non-negative solutions of these equations.
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1. Introduction

Let Rn+1 be an (n + 1)-dimensional Euclidean space of points (x, t) = (x1, x2, ..., xn, t) and D be some domain in
Rn+1. Consider in D a quasilinear parabolic equation of the form

Lu =

n∑
i,k=1

aik(x, t, u,∇u)
∂2u

∂ki∂xk
+ b(x, t, u,∇u)− ∂u

∂t
= 0, (1.1)

assuming that its coefficients satisfy the following conditions:

sup
(t, x) ∈ D, |ν| ≤ 1
−∞ < ηi <∞

n∑
i=1

aii(t, x, ν, η) = M <∞, (1.2)

inf
(t, x) ∈ D, |ν| ≤ 1
−∞ < ηi <∞

min
|ξ|=1

n∑
i,k=1

aik(t, x, ν, η)ξiξk = α > 0, (1.3)

|b(t, x, v, η)| ≤ B0

(
1 + |η|2

)
. (1.4)

We consider the solutions whose modules are bounded by the prescribed constant which, for simplicity, is assumed
to be equal to 1. In this work, for such solutions of the Dirichlet problem we obtain Harnack-type theorems and the
theorem on the regularity of boundary points.

For linear equations of parabolic type with a ”small” spread of the spectrum of the higher coefficients matrix (Cordes
condition), the corresponding theorems have been proved by E. M. Landis [3]. For such equations, the validity of the
above theorems without Cordes condition has been established by N. V. Krylov and M. V. Safonov [2]. The same
theorems without Cordes condition for quasilinear elliptic equations have been proved by A. A. Novruzov [6], O. A.
Ladyzhenskaya and N. N. Uraltseva [4], N. Trudinger [7].
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For second-order parabolic equations in divergence form with non-uniform degeneration, the Harnack inequality
has been proved in [1].

2. Solutions of quasilinear second-order parabolic equations

We will use the following notations:∐R

1
=
∐to−bR2,t0

x0,R
=
{

(t, x) : t0 − bR2 < t < t0,
∣∣x− x0

∣∣ < R
}
,

(
t0, x0

)
∈ D, R > 0, b = min

(
1

16M
, 1

)
;

∐R

2
=
∐to−bR2/4, t0

x0,R/8
;
∐R

3
=

to−bR2, t0−bR2/2∐
x0,R/8

; ER =
∐R

3
\D;

L1 =
n∑

i,k=1

Aik(t, x) ∂2

∂xi∂xk
− ∂

∂t ,

Aik(t, x) = aik(t, x, u(t, x),∇u(t, x)),

where u(t, x) is a solution of the Equation (1.1).
It is not difficult to see that the function

υ(t, x) = exp

[
B0

α
u(t, x)

]
− 1 +K

∣∣x− x0
∣∣2 ,

is a subsolution of the linear operator L1 for suitably chosen constant K > 0, (K = K(M,α,Bo, n)).
We will use the following lemma proved in [5].

Lemma 2.1. Let the domain D lie in the cylinder
∐R

1 , let it have the limit points on the proper boundary Γ
(∐R

1

)
of the cylinder and intersect

∐R
2 . Also, let the positive solution u(t, x) of the Equation (1.1) be defined in D, be

continuous in D and vanish in the part of Γ (D) which lies strictly inside
∐R

1 , and let the conditions (1.2)-(1.4) hold.
If mesER ≥ h0R

n+2, then for sufficiently small R′s

sup
D
υ ≥ (1 + η0) sup

D
⋂∐R

2

v,

where the constant η0 > 0 depends only on M,α,B0, n, and h0.

Let’s prove the lemma below, which will be significantly used in the sequel.

Lemma 2.2. Let the domain D and the function u(t, x) be the same as in Lemma 2.1. If R is sufficiently small, then
for every N > 0 there exists δ > 0, depending only on M,α,Bo, n and N , such that

sup
D
v ≥ N sup

D
⋂∐t0−bR2/ 2,t0

x0,R/2

v (2.1)

as mesD ≤ δRn+2.

Proof. Let η0 be a constant from the previous lemma corresponding to h0 = bΩn/4 · 8n, where Ωn is a volume of the
n-dimensional unit ball. Denote by m the smallest positive integer which satisfies

(1 + η0)
m
> N. (2.2)

Consider the difference
∐to−bR2,t0

x0,R \
∐to−bR2|2,t0
x0,R|2 .

Let ∐(i)
=
∐t0− bR2

2 (1+ i
m ),t0

x0,R2 (1+ i
m )

, i = 0,m− 1.
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The proper boundaries Γ(
∐(i)

) divide the above difference into m parts. Denote sup
D

⋂
Γ(

∐(t))
v by Mi. Assume that the

value Mi is achieved by the function υ(t, x) at the point
(
ti.xi

)
∈ Γ(

∐(i)
). Also, let∐(i)

1
=
∐ti−bR2|4m2,ti

xi,R|2m
;
∐(i)

2
=
∐ti−bR2|16m2,ti

xi,R|16m
;

∐(i)

3
=
∐ti−bR2|4m2,ti−bR2|8m2

xi,R|16m
i = 0,m− 1.

Let’s choose δ > 0 such that mes(
∐(i)

3 \D) ≥ mes
∐(i)

3

2 .

For this, it suffices that δ = bΩn/16n+1mn+2. Now let’s apply Lemma 1 to the cylinders
∐(i)

1 and
∐(i)

2 . Then we
obtain

Mi+1 ≥ (1 + η0)Mi,

i.e.

Mm ≥ (1 + η0)
m
M0.

�

Hence, by (2.2), we get the validity of the inequality (2.1).

Theorem 2.3. Let the non-negative solution u(t, x) of the Equation (1.1) be defined in the cylinder
∐t,t+bR2

x,R and the

conditions (1.2)-(1.4) be satisfied for the coefficients. Then there exists a constant P > 0, depending only on M,α,Bo
and n, such that for sufficiently small R

sup∐t+bR2/4,t+bR2/2

x,R/16

u ≤ P inf∐t+3bR2/4,t+bR2

x,R/16

u. (2.3)

Proof. Denote ∐
1

=
∐t,t+bR2

x,R

∐
2

=
∐t+3bR2/4, t+bR2

x,R/16
, (2.4)∐

3
=

∐t+bR2/4, t+bR2/2

x,R/16
=
∐

4
=
∐t,t+bR2/2

x,R/8
. (2.5)

Let’s first prove the (2.3)-type inequality for the function υ(t, x). Without loss of generality, we can assume sup υ = 2∐
3

,

where υ is a subsolution of the linear operator L1. Let D1 denote the set of points (t,χ) ∈
∐

4, where υ(t, x) > 1.
Assume N = 2n+3 in Lemma 2.2 and let δ > 0 correspond to this N . Also, let

γ =

(
1

64

)n+2

δ.

Two cases are possible:

1) mesD1 ≥ γRn+2,
2) mesD1 < γRn+2.

Consider the case 1. Denote by
∼
D the set of points (t, x) ∈

∐
1 with υ(t, x) < 1. Obviously,

∐
1\D̃ contains the set

D1. By Lemma 2.1,

1− inf
D̃

⋂∐
1

υ ≥ (1 + η0)

(
1− inf

D̃
⋂∐

2

υ

)
,

i.e.

(1 + η0) inf
D̃

⋂∐
2

υ ≥ η0 + inf
D̃

⋂∐
1

υ ≥ η0,
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or

inf
D̃

⋂∐
2

υ ≥ η0

1 + η0
. (2.6)

But,

υ/∐
1\D̃
≥ 1. (2.7)

Therefore, it follows from (2.6) and (2.7) that

inf∐
2

υ ≥ η0/ (1 + η0) = η1, (2.8)

where the constant η1 > 0 depends only on M,α,Bo and n. Now let’s consider the case 2). Denote
∐t+ bR2

4 (1−ρ2), t+ bR2

2

x,R(ρ+ 1
16 )

by
∐(ρ)

, and D1
⋂(∐(ρ)\

∐(0)
)

by D
(1)
ρ , (0 < ρ < 1). Due to our choice of γ,

mesD
(1)
1/32 <

δRn+2

(2 · 32)n+2
.

Therefore, we can find ρ1, 0 < ρ1 < 1/32, such that

mesD(1)
ρ1 = (ρ1/2)

n+2
δRn+2.

Let
∐

(1) =
∐t1−b( ρ12 )

2
R2,t1

x1,p1R/2 , where
(
t1, x1

)
is a point belonging to D1

⋂
Γ
(∐(ρ1/2)

)
, with υ

(
t1, x1

)
≥ 2.

Let’s introduce the function

υ1(t, x) = υ(t, x)− 1.

If D(2) is a component of the set D1
⋂∐

(2) which contains the point
(
t1, x1

)
, then, by Lemma 2,

sup
D(1)

υ ≥ sup
D(1)

υ1 ≥ 2n+3 = 2 · 2n+2.

Now let D2 be a set of points (t, x) ∈
∐

4 such that υ(t, x) > 2n+2, and

D(2)
ρ = D2

⋂(∐(ρ1+ρ)
\
∐(ρ1)

)
,

where 0 < ρ < 1/16− ρ1.
As ρ < 1/32, we have

mesD
(2)
1/32 <

δRn+2

(2 · 32)n+2
.

Therefore, these exist ρ2 such that

mesD(2)
ρ2 = (ρ2/2)n+2δRn+2.

Let
(
t2, x2

)
be a point on Γ

(∐(ρ1+
ρ2
2 )
)
, where u

(
t2, x2

)
≥ 2n+3. Denote by

∐
(2) the cylinder∐t2−b( ρ22 )

2
R2,t2

x2,ρ2R/2
.

Introduce the function

υ2(t, x) = υ(t, x)− 2n+2.

If D(2) is a component of D2
⋂∐

(2) which contains the point
(
t2, x2

)
, then, by Lemma 2,

sup
D(2)

υ ≥ sup
D(2)

υ2 ≥ 2n+3 · 2n+2 = 2 · 22(n+2).
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We repeat this procedure similarly until

ρ1 + ρ2 + ...+ ρk ≥ 1/32. (2.9)

Let k be a the smallest positive integer for which (2.9) holds. Such a k certainly exists, because otherwise the
function υ(t, x) would be unbounded.

Thus, in addition to (2.9), we also get the validity of

ρ1 + ρ2 + ...+ ρk−1 < 1/32. (2.10)

For every i, 1 ≤ i ≤ k, there exists a set D
(i)
ρi such that

mesD(i)
ρi = (ρi/2)n+2δRn+2,

and, besides,

υ/
D

(i)
ρi

≥ 2(i−1)(n+2).

Hence, by (2.9) and (2.10), we get the existence of the number i0 such that

ρi0 > 2−(i0+5),

with

mesD(i0)
ρio
≥ 2−(i0+6)(n+2)δRn+2,

and

υ/D(i0)
ρio
≥ 2(i0−1)(n+2).

Consider the function

υ′(t, x) = 2−(i0−1)(n+2)υ(t, x).

Let D̂ be a set of points (t, x) ∈
∐

1 with υ′(t, x) < 1. As
∐

4\D̂ contains the set D
(i0)
ρio , we have

υ′
∣∣∣D̂⋂∐

2
≥ η2, (2.11)

where the constant η2 > 0 depends only on M,α,Bo and n, because i0 and δ also depend on these parameters. On
the other hand,

υ′
∣∣∣∐

2|D̂
≥ 1.

Therefore it follows from (2.11) that

υ′
∣∣∐

2
≥ η2,

i.e.

inf∐
2

υ ≥ η22(i0−1)(n+2) = χ. (2.12)

Denote min(η1, χ) by χ0. Then from (2.8) and (2.12) it follows that

inf∐
2

υ ≥ χ0,

or

sup∐
3

υ ≤ 2

χ0
inf∐

2

υ.

Further, we have

exp

[
B0

α
sup∐

3

u

]
≤ 2

χ0
exp

[
B0

α
inf∐

2

u

]
,
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i.e.

B0

α

(
sup∐

3

u− inf∐
2

u

)
≤ ln

2

χ0
,

sup∐
3

u ≤ α

B0
ln

2

χ0
+ inf∐

2

u ≤
(
α

B0
ln

2

χ0

1

η3
+ 1

)
inf∐

2

u, (2.13)

provided that υ
∣∣∐

2
≥ χ0, u

∣∣∐
2
≥ η3, where the constant η3 > 0 depends only on M,α,Bo and n. Now it suffices to

put P = 1 + α
η3B0

ln 2
χ0

and the desired inequality (2.3) follows from (2.13). The theorem is proved. �

Let’s assume that in every strictly internal subdomain of the domain D the coefficients of the Equation (1.1) have
a smoothness of minimal degree which is enough for the equation to have a solution generalized in the sense of Wiener
for the first boundary value problem.

Theorem 2.4. Let the coefficients of the Equation (1.1) be defined in the bounded domain D ⊂ Rn+1 and satisfy the
conditions (1.2)-(1.4). For the point

(
t0, x0

)
∈ Γ(D) to be regular with respect to the Dirichlet problem, it is sufficient

that

lim
R→0

mesER
Rn+2

> 0. (2.14)

Proof. Let the condition (2.14) be satisfied. Then there exists h0 > 0 such that for sufficiently small R′s mesER ≥
h0R

n+2. To prove the regularity of the boundary point (t0, x0) it suffices to show that for any ε1 > 0 and ε2 > 0
there is δ > 0 such that, whatever the subdomain D′ ⊂ D lying strictly inside the halfspace t < t0 and whatever the
solution u(t, x) of the Equation (1.1) in D′ with |u| ≤ 1, from u/Γ(D′)

⋂
Oε1 (t0,x0) ≤ 0 it follows u/D′

⋂
Oδ(t0,x0) < ε2,

where Oε
(
t0, x0

)
is a cylindrical ε-neighborhood of the point

(
t0, x0

)
.

Let the subdomain D′,ε1, ε2 and the solution u(t, x) be already given. Denote by m1 the smallest positive integer
which satisfies

8−m1 < ε1.

Assume there is a point

(t′, x′) ∈ D′,
√
|t′ − t0|+ |x′ − x0|2 < 8−m,

such that m > m1 and u(t′, x′) ≥ ε2, i.e. υ(t′, x′) ≥ ε2.
Applying Lemma 1, we get

B1 ≥Mm1
≥ (1 + η0)m−m1ε2, (2.15)

where B1 = sup
D′

υ, Mm1
= sup

D′
⋂∐t0−b8

−2m
1,t0

x0,8−m1

υ, and the constant η0 > 0 depends only on the coefficients of the

operator L, n and h0.
From (2.15) we obtain

(m−m1) ln(1 + η0) ≤ lnB1/ε2,

i.e.

m ≤ m1 +
lnB1/ε2

ln(1 + η0)
.

If we choose δ = 8
−
[
m1+

lnB1/ε2
ln(1+η0)

]
−1

, then the inequality υ(t, x) < ε2, i.e. u(t, x) < ε2, holds at all points in
D′
⋂
Oδ(t

0, x0).
The theorem is proved.

�
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3. Conclusion

In this work, a class of second-order quasilinear parabolic equations with discontinuous coefficients is studied. We
consider solutions bounded in modulus by a predetermined constant which, for simplicity, we assume to be 1. In our
proofs, we significantly use the analogs of so-called growth lemmas stated in Landis [3]. By means of these lemmas,
we prove the Harnack inequalities for non-negative solutions of the above equations.
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