Quality theorems on the solutions of quasilinear second order parabolic equations with discontinuous coefficients

Sarvan T. Huseynov

Baku State University, Baku, Azerbaijan.

$$
\begin{aligned}
& \text { Abstract } \\
& \begin{array}{l}
\text { A class of quasilinear second order parabolic equations with discontinuous coefficients is considered in this work. } \\
\text { The analog of Harnack inequality is proved for the non-negative solutions of these equations. }
\end{array}
\end{aligned}
$$

Keywords. Parabolic equations, Harnack inequalities.
2010 Mathematics Subject Classification. 35k59, 35k65.

1. Introduction

Let R^{n+1} be an $(n+1)$-dimensional Euclidean space of points $(x, t)=\left(x_{1}, x_{2}, \ldots<x_{n}, t\right)$ and D be some domain in R^{n+1}. Consider in D a quasilinear parabolic equation of the form

$$
\begin{equation*}
L u=\sum_{i, k=1}^{n} a_{i k}(x, t, u, \nabla u) \frac{\partial^{2} u}{\partial k_{i} \partial x_{k}}+b(x, t, u, \nabla u)-\frac{\partial u}{\partial t}=0 \tag{1.1}
\end{equation*}
$$

assuming that its coefficients satisfy the following conditions:

$$
\begin{align*}
& \sup _{(t, x) \in D,|\nu| \leq 1} \sum_{i=1}^{n} a_{i i}(t, x, \nu, \eta)=M<\infty \tag{1.2}\\
& -\infty<\eta_{i}<\infty \\
& \inf _{(t, x) \in D,|\nu| \leq 1} \min _{|\xi|=1} \sum_{i, k=1}^{n} a_{i k}(t, x, \nu, \eta) \xi_{i} \xi_{k}=\alpha>0 \\
& -\infty<\eta_{i}<\infty
\end{aligned}, \begin{aligned}
& |b(t, x, v, \eta)| \leq B_{0}\left(1+|\eta|^{2}\right)
\end{align*}
$$

We consider the solutions whose modules are bounded by the prescribed constant which, for simplicity, is assumed to be equal to 1 . In this work, for such solutions of Dirichlet problem we obtain Harnack-type theorems and the theorem on the regularity of boundary points.

For linear equations of parabolic type with a "small" spread of the spectrum of the higher coefficients matrix (Cordes condition), the corresponding theorems have been proved by E.M.Landis [1]. For such equations, the validity of above theorems without Cordes condition has been established by N.V.Krylov and M.V.Safonov [2]. The same theorems without Cordes condition for quasilinear elliptic equations have been proved by A.A.Novruzov [3], O.A.Ladyzhenskaya and N.N.Uraltseva [4], N.Trudinger [5].

[^0]Corresponding author. Email: sarvanhuseynov@rambler.ru .

For second order parabolic equations in divergence form with non-uniform degeneration, the Harnack inequality has been proved in [7].

2. Solutions of quasilinear second order parabolic equations

We will use the following notations:

$$
\begin{aligned}
& \coprod_{1}^{R}=\coprod_{x^{0}, R}^{t^{o}-b R^{2}, t^{0}}=\left\{(t, x): t^{0}-b R^{2}<t<t^{0},\left|x-x^{0}\right|<R\right\} \\
& \left(t^{0}, x^{0}\right) \in \bar{D}, R>0, b=\min \left(\frac{1}{16 \mathrm{M}}, 1\right) ; \\
& \coprod_{2}^{R}=\coprod_{x^{0}, R / 8}^{t^{o}-b R^{2} / 4, t^{0}} ; \coprod_{3}^{R}=\coprod_{x^{0}, R / 8}^{t^{o}-b R^{2}, t^{0}-b R^{2} / 2} ; \quad E_{R}=\coprod_{3}^{R} \backslash D \\
& L^{1}=\sum_{i, k=1}^{n} A_{i k}(t, x) \frac{\partial^{2}}{\partial x_{i} \partial x_{k}}-\frac{\partial}{\partial t}, \\
& A_{i k}(t, x)=a_{i k}(t, x, u(t, x), \nabla u(t, x)),
\end{aligned}
$$

where $u(t, x)$ is a solution of the Equation (1.1).
It is not difficult to see that the function

$$
v(t, x)=\exp \left[\frac{B_{0}}{\alpha} u(t, x)\right]-1+K\left|x-x^{0}\right|^{2}
$$

is a subsolution of the linear operator L^{1} for suitably chosen constant $K>0 \quad\left(K=K\left(M, \alpha, B_{o}, n\right)\right)$.
We will use the following lemma proved in [6].
Lemma 2.1. Let the domain D lie in the cylinder \coprod_{1}^{R}, let it have the limit points on the proper boundary $\Gamma\left(\coprod_{1}^{\mathrm{R}}\right)$ of the cylinder and intersect \coprod_{2}^{R}. Also, let the positive solution $u(t, x)$ of the Equation (1.1) be defined in D, be continuous in \bar{D} and vanish in the part of $\Gamma(D)$ which lies strictly inside \coprod_{1}^{R}, and let the conditions (1.2)-(1.4) hold. If mes $E_{R} \geq h_{0} R^{n+2}$, then for sufficiently small R^{\prime} 's

$$
\sup _{D} v \geq\left(1+\eta_{0}\right) \sup _{D \cap \amalg_{2}^{\mathrm{R}}} v
$$

where the constant $\eta_{0}>0$ depends only on M, α, B_{0}, n, and h_{0}.
Let's prove the lemma below, which will be significantly used in the sequel.
Lemma 2.2. Let the domain D and the function $u(t, x)$ be the same as in Lemma 1. If R is sufficiently small, then for every $N>0$ there exists $\delta>0$, depending only on M, α, B_{o}, n and N, such that

$$
\begin{equation*}
\sup _{D} v \geq N \sup _{D \cap \amalg_{\mathrm{x}^{0}, \mathrm{R} / 2}^{\mathrm{t}_{0}-b R^{2} / 2, t^{0}}} v \tag{2.1}
\end{equation*}
$$

as mes $D \leq \delta R^{n+2}$.
Proof. Let η_{0} be a constant from the previous lemma corresponding to $h_{0}=b \Omega_{n} / 4 \cdot 8^{n}$, where Ω_{n} is a volume of n-dimensional unit ball. Denote by m the smallest positive integer which satisfies

$$
\begin{equation*}
\left(1+\eta_{0}\right)^{m}>N \tag{2.2}
\end{equation*}
$$

Consider the difference $\coprod_{x^{0}, R}^{t^{o}-b R^{2}, t^{0}} \backslash \coprod_{x^{0}, R \mid 2}^{t^{o}-b R^{2} \mid 2, t^{0}}$.
Let

$$
\coprod^{(i)}=\coprod_{x^{0}, \frac{R}{2}\left(1+\frac{i}{m}\right)}^{t^{0}-\frac{b R^{2}}{2}\left(1+\frac{i}{m}\right), t_{0}}, \quad i=\overline{0, m-1} .
$$

The proper boundaries $\Gamma\left(\coprod^{(\mathrm{i})}\right)$ divide the above difference into m parts. Denote $\sup v$ by M_{i}. Assume that the $D \cap \Gamma\left(\amalg^{(t)}\right)$
value M_{i} is achieved by the function $v(t, x)$ at the point $\left(t^{i} \cdot x^{i}\right) \in \Gamma\left(\coprod^{(\mathrm{i})}\right)$. Also, let

$$
\begin{aligned}
& \coprod_{1}^{(\mathrm{i})}=\coprod_{x^{\mathrm{i}}, R \mid 2 m}^{t^{i}-b R^{2} \mid 4 m^{2}, t^{i}} ; \quad \coprod_{2}^{(\mathrm{i})}=\coprod_{x^{\mathrm{i}}, R \mid 16 m}^{t^{i}-b R^{2} \mid 16 m^{2}, t^{i}} ; \\
& \coprod_{3}^{(\mathrm{i})}=\coprod_{x^{\mathrm{i}}, R \mid 16 m}^{t^{i}-b R^{2}\left|4 m^{2}, t^{i}-b R^{2}\right| 8 m^{2}} \\
& i=\overline{0, m-1}
\end{aligned}
$$

Let's choose $\delta>0$ such that $\operatorname{mes}\left(\coprod_{3}^{(\mathrm{i})} \backslash D\right) \geq \frac{\operatorname{mes} \coprod_{3}^{(\mathrm{i})}}{2}$.
For this, it suffices that $\delta=b \Omega_{n} / 16^{n+1} m^{n+2}$. Now let's apply Lemma 1 to the cylinders $\coprod_{1}^{(\mathrm{i})}$ and $\coprod_{2}^{(\mathrm{i})}$. Then we obtain

$$
M_{i+1} \geq\left(1+\eta_{0}\right) M_{i}
$$

i.e.

$$
M_{m} \geq\left(1+\eta_{0}\right)^{m} M_{0}
$$

Hence, by (2.2), we get the validity of the inequality (2.1).
Theorem 2.3. Let the non-negative solution $u(t, x)$ of the Equation (1.1) be defined in the cylinder $\coprod_{x, R}^{t, t+b R^{2}}$ and the conditions (1.2)-(1.4) be satisfied for the coefficients. Then there exists a constant $P>0$, depending only on M, α, B_{o} and n, such that for sufficiently small R

$$
\begin{equation*}
\sup _{\amalg_{x, R / 16}^{t+b R^{2} / 4, t+b R^{2} / 2}} u \leq P \inf _{\amalg_{x, R / 16}^{t+3 b R^{2} / 4, t+b R^{2}}} u . \tag{2.3}
\end{equation*}
$$

Proof. Denote

$$
\begin{aligned}
& \coprod_{1}=\coprod_{x, R}^{t, t+b R^{2}}, \quad \coprod_{2}=\coprod_{x, R / 16}^{t+3 b R^{2} / 4, t+b R^{2}}, \\
& \coprod_{3}=\coprod_{x, R / 16}^{t+b R^{2} / 4, t+b R^{2} / 2}, \quad \coprod_{4}=\coprod_{x, R / 8}^{t, t+b R^{2} / 2}
\end{aligned}
$$

Let's first prove the (2.3)-type inequality for the function $v(t, x)$. Without loss of generality, we can assume sup $v=2$, Assume $N=2^{n+3}$ in Lemma 2 and let $\delta>0$ correspond to this N. Also let

$$
\gamma=\left(\frac{1}{64}\right)^{n+2} \delta
$$

Two cases are possible:

1) $m e s D^{1} \geq \gamma R^{n+2}$;
2) $m e s D^{1}<\gamma R^{n+2}$.

Consider the case 1). Denote by \tilde{D} the set of points $(t, x) \in \coprod_{1}$ with $v(t, x)<1$. Obviously, $\coprod_{1} \backslash \tilde{D}$ contains the set D^{1}. By Lemma 1 ,

$$
1-\inf _{\tilde{D} \cap \amalg_{1}} v \geq\left(1+\eta_{0}\right)\left(1-\inf _{\tilde{D} \cap \amalg_{2}} v\right)
$$

i.e.

$$
\left(1+\eta_{0}\right) \inf _{\tilde{D} \cap \amalg_{2}} v \geq \eta_{0}+\inf _{\tilde{D} \cap \amalg_{1}} v \geq \eta_{0}
$$

or

$$
\begin{equation*}
\inf _{\tilde{D} \cap \amalg_{2}} v \geq \frac{\eta_{0}}{1+\eta_{0}} \tag{2.4}
\end{equation*}
$$

But,

$$
\begin{equation*}
v / \amalg_{1} \backslash \tilde{D} \geq 1 \tag{2.5}
\end{equation*}
$$

Therefore, it follows from (2.4) and (2.5) that

$$
\begin{equation*}
\inf _{\amalg_{2}} v \geq \eta_{0} /\left(1+\eta_{0}\right)=\eta_{1} \tag{2.6}
\end{equation*}
$$

where the constant $\eta_{1}>0$ depends only on M, α, B_{o} and n. Now let's consider the case 2$)$. Denote $\coprod_{x, R\left(\rho+\frac{b}{16}\right)}^{t+\frac{b R^{2}}{4}\left(1-\rho^{2}\right), t+\frac{b R^{2}}{2}}$ by $\coprod^{(\rho)}$, and $D^{1} \cap\left(\coprod^{(\rho)} \backslash \coprod^{(0)}\right)$ by $D_{\rho}^{(1)}, \quad(0<\rho<1)$. Due to our choice of γ,

$$
\operatorname{mes} D_{1 / 32}^{(1)}<\frac{\delta R^{n+2}}{(2 \cdot 32)^{n+2}}
$$

Therefore, we can find $\rho_{1}, \quad 0<\rho_{1}<1 / 32$, such that

$$
\operatorname{mes} D_{\rho_{1}}^{(1)}=\left(\rho_{1} / 2\right)^{n+2} \delta R^{n+2}
$$

Let $\coprod_{(1)}=\coprod_{x^{1}, p^{1} R / 2}^{\mathrm{t}_{1}-b\left(\frac{\rho_{1}}{2}\right)^{2} R^{2}, t^{1}}$, where $\left(t^{1}, x^{1}\right)$ is a point belonging to $\mathrm{D}^{1} \cap \Gamma\left(\coprod^{\left(\rho_{1} / 2\right)}\right)$, with $v\left(t^{1}, x^{1}\right) \geq 2$.
Let's introduce the function

$$
v_{1}(t, x)=v(t, x)-1
$$

If $D_{(2)}$ is a component of the set $\mathrm{D}^{1} \bigcap \coprod_{(2)}$ which contains the point $\left(t^{1}, x^{1}\right)$, then, by Lemma 2 ,

$$
\sup _{D_{(1)}} v \geq \sup _{D_{(1)}} v_{1} \geq 2^{n+3}=2 \cdot 2^{n+2}
$$

Now let D^{2} be a set of points $(t, x) \in \coprod_{4}$ such that $v(t, x)>2^{n+2}$, and

$$
\mathrm{D}_{\rho}^{(2)}=D^{2} \bigcap\left(\coprod^{\left(\rho_{1}+\rho\right)} \backslash \coprod^{\left(\rho_{1}\right)}\right)
$$

where $0<\rho<1 / 16-\rho_{1}$.
As $\rho<1 / 32$, we have

$$
\operatorname{mes} D_{1 / 32}^{(2)}<\frac{\delta R^{n+2}}{(2 \cdot 32)^{n+2}}
$$

Therefore, these exists ρ_{2} such that

$$
\operatorname{mes} D_{\rho_{2}}^{(2)}=\left(\rho_{2} / 2\right)^{n+2} \delta R^{n+2}
$$

Let $\left(t^{2}, x^{2}\right)$ be a point on $\Gamma\left(\coprod^{\left(\rho_{1}+\frac{\rho_{2}}{2}\right)}\right)$, where $u\left(t^{2}, x^{2}\right) \geq 2^{n+3}$. Denote by $\coprod_{(2)}$ the cylinder

$$
\coprod_{x^{2}, \rho_{2} R / 2}^{t^{2}-b\left(\frac{\rho_{2}}{2}\right)^{2} R^{2}, t^{2}}
$$

Introduce the function

$$
v_{2}(t, x)=v(t, x)-2^{n+2}
$$

If $D_{(2)}$ is a component of $D^{2} \bigcap \coprod_{(2)}$ which contains the point $\left(t^{2}, x^{2}\right)$, then, by Lemma 2 ,

$$
\sup _{D_{(2)}} v \geq \sup _{D_{(2)}} v_{2} \geq 2^{n+3} \cdot 2^{n+2}=2 \cdot 2^{2(n+2)}
$$

We repeat this procedure similarly until

$$
\begin{equation*}
\rho_{1}+\rho_{2}+\ldots+\rho_{k} \geq 1 / 32 \tag{2.7}
\end{equation*}
$$

Let k be a smallest positive integer for which (2.7) holds. Such a k certainly exists, because otherwise the function $v(t, x)$ would be unbounded.

Thus, in addition to (2.7), we also get the validity of

$$
\begin{equation*}
\rho_{1}+\rho_{2}+\ldots+\rho_{k-1}<1 / 32 \tag{2.8}
\end{equation*}
$$

For every $i, 1 \leq i \leq k$, there exists a set $D_{\rho_{i}}^{(i)}$ such that

$$
\operatorname{mes} D_{\rho_{i}}^{(i)}=\left(\rho_{i} / 2\right)^{n+2} \delta R^{n+2}
$$

and, besides,

$$
v /_{D_{\rho_{i}}^{(i)}} \geq 2^{(i-1)(n+2)}
$$

Hence, by (2.7) and (2.8), we get the existence of the number i_{0} such that

$$
\rho_{i_{0}}>2^{-\left(i_{0}+5\right)}
$$

with

$$
\operatorname{mes} D_{\rho_{i_{o}}}^{\left(i_{0}\right)} \geq 2^{-\left(i_{0}+6\right)(n+2)} \delta R^{n+2}
$$

and

$$
v / D_{\rho_{i_{o}}}^{\left(i_{0}\right)} \geq 2^{\left(i_{0}-1\right)(n+2)}
$$

Consider the function

$$
v^{\prime}(t, x)=2^{-\left(i_{0}-1\right)(n+2)} v(t, x)
$$

Let \hat{D} be a set of points $(\mathrm{t}, \mathrm{x}) \in \coprod_{1}$ with $v^{\prime}(t, x)<1$. As $\coprod_{4} \backslash \hat{D}$ contains the set $D_{\rho_{i_{o}}}^{\left(i_{0}\right)}$, we have

$$
\begin{equation*}
\left.v^{\prime}\right|_{\hat{D} \cap \amalg_{2}} \geq \eta_{2} \tag{2.9}
\end{equation*}
$$

where the constant $\eta_{2}>0$ depends only on M, α, B_{o} and n, because i_{0} and δ also depend on these parameters. On the other hand,

$$
\left.v^{\prime}\right|_{\amalg_{2} \mid \hat{D}} \geq 1
$$

Therefore it follows from (2.9) that

$$
\left.v^{\prime}\right|_{\amalg_{2}} \geq \eta_{2}
$$

i.e.

$$
\begin{equation*}
\inf _{\amalg_{2}} v \geq \eta_{2} 2^{\left(i_{0}-1\right)(n+2)}=\chi \tag{2.10}
\end{equation*}
$$

Denote $\min \left(\eta_{1}, \chi\right)$ by χ_{0}. Then from (2.6) and (2.10) it follows that

$$
\inf _{\amalg_{2}} v \geq \chi_{0}
$$

or

$$
\sup _{\amalg_{3}} v \leq \frac{2}{\chi_{0}} \inf _{2} v
$$

Further, we have

$$
\exp \left[\frac{B_{0}}{\alpha} \sup _{\amalg_{3}} u\right] \leq \frac{2}{\chi_{0}} \exp \left[\frac{B_{0}}{\alpha} \inf _{\amalg_{2}} u\right]
$$

i.e.

$$
\begin{align*}
& \frac{B_{0}}{\alpha}\left(\sup _{\amalg_{3}} u-\inf _{\amalg_{2}} u\right) \leq \ln \frac{2}{\chi_{0}} \\
& \sup _{\amalg_{3}} u \leq \frac{\alpha}{B_{0}} \ln \frac{2}{\chi_{0}}+\inf _{\amalg_{2}} u \leq\left(\frac{\alpha}{B_{0}} \ln \frac{2}{\chi_{0}} \frac{1}{\eta_{3}}+1\right) \inf _{\amalg_{2}} u \tag{2.11}
\end{align*}
$$

provided that $\left.v\right|_{\amalg_{2}} \geq \chi_{0},\left.u\right|_{\amalg_{2}} \geq \eta_{3}$, where the constant $\eta_{3}>0$ depends only on M, α, B_{o} and n. Now it suffices to put $P=1+\frac{\alpha}{\eta_{3} B_{0}} \ln \frac{2}{\chi_{0}}$ and the desired inequality (2.3) follows from (2.11). The theorem is proved.

Let's assume that in every strictly internal subdomain of the domain D the coefficients of the Equation (1.1) have a smoothness of minimal degree which is enough for the equation to have a solution generalized in the sense of Wiener for the first boundary value problem.
Theorem 2.4. Let the coefficients of the Equation (1.1) be defined in the bounded domain $D \subset R^{n+1}$ and satisfy the conditions (1.2)-(1.4). For the point $\left(t^{0}, x^{0}\right) \in \Gamma(D)$ to be regular with respect to the Dirichlet problem, it is sufficient that

$$
\begin{equation*}
\lim _{R \rightarrow 0} \frac{m e s E_{R}}{R^{n+2}}>0 \tag{2.12}
\end{equation*}
$$

Proof. Let the condition (2.12) be satisfied. Then there exists $h_{0}>0$ such that for sufficiently small $R^{\prime} s$ mes $E_{R} \geq$ $h_{0} R^{n+2}$. To prove the regularity of the boundary point $\left(t_{0}, x_{0}\right)$ it suffices to show that for any $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$ there is $\delta>0$ such that, whatever the subdomain $D^{\prime} \subset D$ lying strictly inside the halfspace $t<t^{0}$ and whatever the solution $u(t, x)$ of the Equation (1.1) in D^{\prime} with $|u| \leq 1$, from $u / \Gamma\left(D^{\prime}\right) \cap O_{\varepsilon_{1}}\left(t^{0}, x^{0}\right) \leq 0$ it follows $u / D^{\prime} \cap O_{\delta}\left(t^{0}, x^{0}\right)<\varepsilon_{2}$, where $O_{\varepsilon}\left(t^{0}, x^{0}\right)$ is a cylindrical ε-neighborhood of the point $\left(t^{0}, x^{0}\right)$.

Let the subdomain $D^{\prime}, \varepsilon_{1}, \varepsilon_{2}$ and the solution $u(t, x)$ be already given. Denote by m_{1} the smallest positive integer which satisfies

$$
8^{-m_{1}}<\varepsilon_{1}
$$

Assume there is a point

$$
\left(t^{\prime}, x^{\prime}\right) \in D^{\prime}, \sqrt{\left|t^{\prime}-t^{0}\right|+\left|x^{\prime}-x^{0}\right|^{2}}<8^{-m}
$$

such that $m>m_{1}$ and $u\left(t^{\prime}, x^{\prime}\right) \geq \varepsilon_{2}$, i.e. $v\left(t^{\prime}, x^{\prime}\right) \geq \varepsilon_{2}$.
Applying Lemma 1, we get

$$
\begin{equation*}
B_{1} \geq M_{m_{1}} \geq\left(1+\eta_{0}\right)^{m-m_{1}} \varepsilon_{2} \tag{2.13}
\end{equation*}
$$

where $B_{1}=\sup _{D^{\prime}} v, M_{m_{1}}=\sup _{D^{\prime} \cap \amalg_{x^{0}, 8^{-m_{1}}}^{t^{0}-b 8^{-2 m_{1, t^{0}}}}} v$, and the constant $\eta_{0}>0$ depends only on the coefficients of the operator L, n and h_{0}.

From (2.13) we obtain

$$
\left(m-m_{1}\right) \ln \left(1+\eta_{0}\right) \leq \ln B_{1} / \varepsilon_{2},
$$

i.e.

$$
m \leq m_{1}+\frac{\ln B_{1} / \varepsilon_{2}}{\ln \left(1+\eta_{0}\right)}
$$

If we choose $\delta=8^{-\left[m_{1}+\frac{\ln B_{1} / \varepsilon_{2}}{\ln \left(1+\eta_{0}\right)}\right]-1}$, then the inequality $v(t, x)<\varepsilon_{2}$, i.e. $u(t, x)<\varepsilon_{2}$, holds at all points in $D^{\prime} \cap O_{\delta}\left(t^{0}, x^{0}\right)$.

The theorem is proved.

3. Conclusion

In this work, a class of second order quasilinear parabolic equations with discontinuous coefficients is studied. We consider solutions bounded in modulus by a predetermined constant which, for simplicity, we assume to be 1 . In our proofs, we significantly use the analogues of so-called growth lemmas stated in Landis [1]. By means of these lemmas, we prove the Harnack inequalities for non-negative solutions of the above equations.

References

[1] E. M. Landis, Second order equations of elliptic and parabolic types, Nauka, Russian, (1971), 288 p.
[2] N. V. Krylov and M. V. Safonov, Some properties of the solutions of parabolic equations with measurable coefficients, Izv. AN SSSR. Ser. matem., Russian, 44 (1980), 161-175.
[3] A. A. Novruzov, On Hölder norm estimate for the solutions of quasilinear elliptic equations with discontinuous coefficients, Dokl. AN SSSR, Russian, 253(1) (1980), 31-33.
[4] O. A. Ladyzhenskaya and N. N.Uraltseva, On Hölder norm estimates for the solutions of quasilinear elliptic equations in nondivergence form, Uspexi mat. nauk, Russian, 35(4) (1980), 144-145.
[5] N. S. Trudinger, Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations, Invent. Math., 61 (1980), 67-79.
[6] I. T. Mamedov, On a priori estimate of the Holder norm for the solutions of quasilinear parabolic equations with discontinuous coefficients, Dokl. AN SSSR, Russian, 252(5) (1980), 1052-1054.
[7] S. T. Huseynov, Harnack type inequality for non-negative solutions of second order degenerate parabolic equations in divergent form, Electronic journal of Differential Equations, 2016(278) (2016), 1-11.

[^0]: Received: 20 June 2023; Accepted: 03 March 2024.

