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Abstract
In this study, for the numerical solution of general second-order ordinary differential equations (ODEs) that exhibit
oscillatory or periodic behavior, fifth- and sixth-order explicit multi-step Runge-Kutta-Nyström (MSGRKN)

methods, respectively, are constructed. The parameters of the proposed methods rely on the frequency ω of each

problem whose solution is a linear combination of functions {e(iωx), e(−iωx)} or {cos(ωx), sin(ωx)}. The
study also includes an analysis of the linear stability of the suggested methods. The numerical results indicate

the efficiency of the proposed methods in solving such problems compared to methods with similar characteristics

in the literature.
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1. Introduction

Many physical phenomena in the applied sciences, such as problems of orbital dynamics, control theory, chemical
kinetics, and electric circuits, can be modeled as second-order differential equations. In this article, we look at a
second-order initial value problem (IVP) of the model given below and its numerical solution:

u′′ = f(x, u, u′), x ∈ [a, b], (1.1)

u(a) = α, u′(a) = β,

for which its solution has an oscillating behavior, where u(x) ∈ Rm, f(x, u, u′) : [a, b] × Rm × Rm → Rm is a
continuous vector function. The periodic or oscillatory solution property of Eq. (1.1) has not been taken into account
by many Runge-Kutta or -Nyström (RK) or (RKN) methods in the literature, which is why they often provide
unsatisfactory numerical results. Several attempts have been made to adapt RK or RKN methods by including the
oscillatory structure in their formulations. The techniques of exponential (or trigonometric) fitting introduced early
on by [14] and [9] are the most successful and effective attempts. Since then, researchers have introduced several
exponentially/trigonometrically fitted methods and applied them in different scientific fields. It is suggested to refer
to [1, 7, 19, 20] for an intriguing study on the development and analysis of exponentially fitted RK or RKN methods.
Recently, in the context of RKN or RK methods, the availability of some higher derivatives of the solution prompted
many researchers to utilize them to increase the accuracy and efficiency of the numerical methods after incorporating
exponential or trigonometric fitting techniques

(
see [5, 16, 17]

)
. Although the efficiency of these methods over the

classical RK or RKN methods in reaching a higher-order with a higher order with fewer function evaluations per step
have numerical experiments, unfortunately, computing the higher derivatives requires additional computational costs
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[5]. More recently, [11] proposed trigonometrically fitted multi-step RKN (TFMSRKN) methods. These methods have
the advantage of being able to reduce the number of function evaluations at each step and they do not require extra
costs as in higher derivatives RKN. However, the only drawback of these methods is their inability to solve the problem
stated in Eq. (1.1), as they were integrated to solve u′′ = f(x, u) where the equation is not explicitly dependent on
the first derivative u′. This prompted [13] to derive trigonometrically fitted multi-step RKN methods able to solve the
problem in Eq. (1.1), but this time the defect of the new derived methods was that they were of lower-order, which are
the third and fourth-order, which was possible to obtain more accurate results by deriving higher-order methods. So,
that motivated us in this study to derive higher-order methods of order five and six, respectively, to solve the problem
in Eq. (1.1) in order to obtain more accurate results. In section 2, we address the description of explicit multi-step
Runge-Kutta-Nyström (MSGRKN) methods and the definition of trigonometrically fitted. We devote section 3 to
the construction of the new trigonometrically fitted MSGRKN methods and to the study of the linear stability of the
proposed methods. Some test problems are presented to examine the numerical behavior of the suggested methods in
section 4, along with a discussion of the obtained results. Lastly, we give a conclusion in section 5.

2. Fundamental concepts

2.1. The definition of multi-step Runge-Kutta-Nyström methods. The following formulae are used to define
an explicit κ-stage -step Runge-Kutta-Nyström methods for the problem given in Eq. (1.1)

(
see [12]

)
Yi =

∑
`=1

ri`un−`+1 + h

∑
`=1

pi`u
′
n−`+1 + h2

κ∑
j=1

aijf(tn + cjh, Yj , Y
′
j ),

Y ′i =

∑
`=1

r̄i`u
′
n−`+1 + h

κ∑
j=1

āijf(tn + cjh, Yj , Y
′
j ), (2.1)

un+1 =

∑
`=1

q`un−`+1 + h

∑
`=1

w`u
′
n−`+1 + h2

κ∑
i=1

bif(tn + cih, Yi, Y
′
i ),

u′n+1 =

∑
`=1

ν`u
′
n−`+1 + h

κ∑
i=1

b̄if(tn + cih, Yi, Y
′
i ),

where ci, aij , ri`, bi, pi`, q`, ν`, w`, b̄i, āij , and r̄i` for ` = 1, . . . ,  and i, j = 1, 2, . . . , κ are real numbers, and Butcher
tableau can be used to summarise Eq. (2.1) as follows:

c1 r11 . . . r1 p11 . . . p1 a11 . . . a1κ r̄11 . . . r̄1 ā11 . . . ā1κ

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

cκ rκ1 . . . rκ pκ1 . . . pκ aκ1 . . . aκκ r̄κ1 . . . r̄κ āκ1 . . . āκκ
q1 . . . q w1 . . . w b1 . . . bκ ν1 . . . ν b̄1 . . . b̄κ

Consider the simplifying conditions in equations (3) and (4) from [2], which are as follows:
κ∑
j=1

aijc
α
j =

1

(α+ 1)(α+ 2)

(
cα+2
i −

∑
`=1

ri` (1− `)α+2

−
∑
`=1

pi` (1− `)α+1
(α+ 2)

)
, 0 ≤ α ≤ q1 − 2, (2.2)

κ∑
j=1

āijc
α
j =

1

(α+ 1)

(
cα+1
i −

∑
`=1

r̄i` (1− `)α+1
)
, 0 ≤ α ≤ q2 − 1, (2.3)

where q1 and q2 are the stage order of Yi and Y ′i respectively, by taking α = 0, 1, 2, 3, 4 in Eq. (2.2), we will get the
five simplifying conditions of Yi and by taking α = 0, 1, 2, 3, 4, 5 in Eq. (2.3), we will get the six simplifying conditions
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of Y ′i which are utilized in the construction of MSGRKN methods.
As is common for RKN methods, under the local assumptions

un−`+1 = u(xn + (1− `)h), u′n−`+1 = u′(xn + (1− `)h), ` = 1, . . . , . (2.4)

We can expand the local truncation errors as

u(xn + h)− un+1 =
∑
t∈NT

hρ(t)

ρ(t)!
α(t)χ̄(t)F (t)(u(xn), u′(xn)),

u′(xn + h)− u′n+1 =
1

h

∑
t∈NT

hρ(t)

ρ(t)!
α(t)χ(t)F (t)(u(xn), u′(xn)), (2.5)

where

χ̄(t) = 1−
∑
`=1

q`(1− `)ρ(t) −
∑
`=1

w`(1− `)ρ(t)−1ρ(t)−
κ∑
i=1

biΨ
′′
i (t),

χ(t) = ρ(t)−
∑
`=1

ν`(1− `)ρ(t)−1ρ(t)−
κ∑
i=1

b̄iΨ
′′
i (t). (2.6)

For the definitions of NT, ρ(t) and Ψ′′i (t), readers may refer to Definition 3.2. and Lemma 3.1. in [12].

Theorem 2.1. [12]. MSGRKN methods, given in Eq. (2.1), are convergent of order (p ≥ 2) iff

1 =

∑
`=1

q`(1− `)ρ(t) +

∑
`=1

w`(1− `)ρ(t)−1ρ(t) +

κ∑
i=1

biΨ
′′
i (t), ρ(t) ≤ p,

ρ(t) =

∑
`=1

ν`(1− `)ρ(t)−1ρ(t) +

κ∑
i=1

b̄iΨ
′′
i (t), ρ(t) ≤ p+ 1, (2.7)

where t ∈ NT.

Under the five simplifying conditions of Yi obtained from Eq. (2.2) and the six simplifying conditions of Y ′i obtained
from Eq. (2.3), Theorem 2.1 gives the seventh-order conditions for the MSGRKN methods as follows:

The order conditions for u:

∑
`=1

q` (1− `)α+2
+ (α+ 2)

∑
`=1

w` (1− `)α+1
+ (α+ 2)(α+ 1)

κ∑
i=1

bic
α
i = 1, 0 ≤ α ≤ 5. (2.8)

The order conditions for u′:

∑
`=1

ν` (1− `)α+1
+ (α+ 1)

κ∑
i=1

b̄ic
α
i = 1, 0 ≤ α ≤ 6. (2.9)

To get the higher-order MSGRKN methods, the following simplifying conditions are utilized to help reduce the number
of equations to be solved

∑
`=1

ri` = 1,

∑
`=1

r̄i` = 1,

∑
`=1

q` = 1,

∑
`=1

ν` = 1,

∑
`=1

ri`(1− `) +

∑
`=1

pi` = ci,

∑
`=1

q`(1− `) +

∑
`=1

w` = 1. (2.10)
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2.2. Trigonometrically fitted MSGRKN method.

Definition 2.2. MSGRKN method shown in Eq. (2.1) is considered trigonometrically fitted if it can integrate exactly
the functions exp(iωx) and exp(−iωx), where i is the imaginary unit. As a result, the equations shown below are
obtained.

exp(±icis) =

∑
`=1

ri`exp(±i(1− `)s)± is

∑
`=1

pi`exp(±i(1− `)s)

− s2
κ∑
j=1

aij exp(±icjs),

±iω exp(±icis) = ±iω
∑
`=1

r̄i`exp(±i(1− `)s)− sω

κ∑
j=1

āijexp(±icjs),

exp(±is) =

∑
`=1

q` exp(±i(1− `)s)± i s
∑
`=1

w` exp(±i(1− `)s) (2.11)

− s2
κ∑
i=1

bi exp(±icis),

±iω exp(±is) = ±iω
∑
`=1

ν`exp(±i(1− `)s)− s ω
κ∑
i=1

b̄i exp(±icis),

where s = ωh. By utilizing the formula of Euler exp(±i s) = cos(s) ± i sin(s) in the system of Eqs. (2.11) and
comparing the real and imaginary parts, the trigonometrically fitting (TF) conditions shown below are obtained:

sin(ci s) =

∑
`=1

ri` sin(s(1− `)) + s

∑
`=1

pi` cos(s(1− `))− s2
κ∑
j=1

aij sin(cj s), (2.12)

cos(ci s) =

∑
`=1

ri` cos(s(1− `))− s

∑
`=1

pi` sin(s(1− `))− s2
κ∑
j=1

aij cos(cj s), (2.13)

sin(cis) =

∑
`=1

r̄i` sin(s(1− `)) + s

κ∑
j=1

āij cos(cjs), (2.14)

cos(cis) =

∑
`=1

r̄i` cos((1− `)s)− s

κ∑
j=1

āij sin(cjs), (2.15)

cos(s) =

∑
`=1

q` cos(s(1− `))− s

∑
`=1

w` sin(s(1− `))− s2
κ∑
i=1

bi cos(cis), (2.16)

sin(s) =

∑
`=1

q` sin(s(1− `)) + s

∑
`=1

w` cos(s(1− `))− s2
κ∑
i=1

bi sin(cis), (2.17)

cos(s) =

∑
`=1

ν` cos(s(1− `))− s
κ∑
i=1

b̄i sin(cis), (2.18)

sin(s) =

∑
`=1

ν` sin(s(1− `)) + s

κ∑
i=1

b̄i cos(cis) (2.19)
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3. Construction of the proposed methods

The development of trigonometrically fitted two-step Runge-Kutta-Nyström (TFTSGRKN) when  = 2 will be discussed in
this section. In specific, two explicit TFTSGRKN methods of orders five and six respectively, will be constructed.

3.1. Trigonometrically fitted TSGRKN method of order five. This method is constructed based on the fifth-order
method of TSGRKN5(4) pair given in [2] as illustrated in Table 1

Table 1. The fifth-order method of TSGRKN5(4) pair in [2].

−1 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0 0
3
5

17408
3125 − 14283

3125 − 6144
3125 − 6264

3125 − 864
3125

2304
3125 0 − 64

125
189
125

72
125

192
125 0

1 41
25 − 16

25
14
25 − 1

5 − 13
800

119
300

23
96 0 16

17
1
17

3
68

8
51

175
204 0

41
25 − 16

25
14
25 − 1

5 − 13
800

119
300

23
96 0 16

17
1
17

1
68

16
51

125
204

2
17

For the parameters of this method, we solve the TF conditions in Eqs. (2.16)-(2.19) with the fundamental relation given in
Eq. (2.10)

2∑
`=1

q` = 1,

2∑
`=1

ν` = 1,

2∑
`=1

q`(1− `) +

2∑
`=1

w` = 1, (3.1)

to find the values of bi, b̄i, q`, ν`, and w`, we obtain the solution:

b2 = − (− cos (s) s+ sin (s)) b1
(−1)s+ sin (s)

− (sin (c3s) cos (s) + sin (s) cos (c3s)− cos (c3s) s− sin (c3s)) b3
(−1) s+ sin (s)

+

(
(sin (s))2 − sin (s) s+ (cos (s))2 − 2 cos (s) + 1

)
w2

s (sin (s)− s) − 2
cos (s)− 1

s2
, (3.2)

b̄2 =
1

s sin (s)
sin (c3s) cos (s) sb̄3 − 2 cos (s) sb̄1 sin (s)− sin (s) cos (c3s) sb̄3

+ (sin (s))2 w2 − (cos (s))2 w2 + (sin (s))2 + (cos (s))2 + w2 cos (s)− cos (s), (3.3)

b̄4 = − sin (c3s) sb̄3 − sin (s) sb̄1 − 1− w2 cos (s) + cos (s) + w2

sin (s) s
, (3.4)

q1 = 2− s (cos (s)− 1)w2

sin (s)− s − sin (s) s2b1
sin (s)− s +

sin (c3s) s
2b3

sin (s)− s , (3.5)

q2 = −1 +
s (cos (s)− 1)w2

sin (s)− s +
sin (s) s2b1
sin (s)− s −

sin (c3s) s
2b3

sin (s)− s , (3.6)

w1 =
sin (s) s2b1
sin (s)− s −

sin (c3s) s
2b3

sin (s)− s −
(− cos (s) s+ sin (s))w2

sin (s)− s , (3.7)

by substituting coefficients in Table 1 for the values of b1, b3, c3, b̄1, b̄3, and w2, we obtain
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b2 =
13

800

− cos (s) s+ sin (s)

(−1) s+ sin (s)

− 23

96

sin (3/5 s) cos (s) + sin (s) cos (3/5 s)− cos (3/5 s) s− sin (3/5 s)

(−1) s+ sin (s)

− 1

5

(sin (s))2 − sin (s) s+ (cos (s))2 − 2 cos (s) + 1

s (sin (s)− s) − 2(cos (s)− 1)

s2
, (3.8)

b̄2 =
1

s sin(s)

(125

204
sin(

3

5
s) cos(s)s− 1

34
cos(s)s sin(s)

− 125

204
sin(s) cos(

3

5
s)s+

18

17
(sin(s))2 +

16

17
(cos(s))2 − 16

17
cos(s)

)
, (3.9)

b̄4 = − 1

s sin(s)

(125

204
sin(

3

5
s)s− 1

68
sin (s) s− 16

17
+

16

17
cos (s)

)
, (3.10)

q1 = 2 +
1

5

s (cos (s)− 1)

(−1) s+ sin (s)
+

13

800

sin (s) s2

(−1) s+ sin (s)
+

23

96

sin (3/5 s) s2

(−1) s+ sin (s)
, (3.11)

q2 = −1− 1

5

s (cos (s)− 1)

(−1) s+ sin (s)
− 13

800

sin (s) s2

(−1) s+ sin (s)
− 23

96

sin (3/5 s) s2

(−1) s+ sin (s)
, (3.12)

w1 = − 13

800

sin (s) s2

(−1) s+ sin (s)
− 23

96

sin (3/5 s) s2

(−1) s+ sin (s)
+

1

5

− cos (s) s+ sin (s)

(−1) s+ sin (s)
. (3.13)

In a similar manner, by solving Eqs. (2.12) and (2.13) for the coefficients aij , rκ, and pκ, yield the following solution

r31 = cos (s) s2a31 − sp32 sin (s) + s2a32 − r32 cos (s) + cos (c3s) , (3.14)

p31 = − sin (s) sa31 +
sin (s) r32

s
− p32 cos (s) +

sin (c3s)

s
, (3.15)

by substituting coefficients in Table 1 for the values of a31, p32, a32, and r32, we obtain

r31 = − 864

3125
cos (s) s2 +

6264

3125
sin (s) s+

2304

3125
s2 +

14283

3125
cos (s)

+ cos

(
3

5
s

)
, (3.16)

p31 =
864

3125
sin (s) s− 14283

3125

sin(s)

s
+

6264

3125
cos (s) +

sin (3/5 s)

s
. (3.17)

Solving Eqs. (2.14) and (2.15) for the coefficients āij and r̄κ, result in the following solution

r̄31 = cos (3/5 s)− r̄32 cos (s)− s ā31 sin (s) , (3.18)

ā32 =
− cos (s) s ā31 + r̄32 sin (s) + sin (3/5 s)

s
, (3.19)

ā41 =
sin (3/5 s) ā43

sin (s)
+

16

17

cos (s)− 1

sin (s) s
, (3.20)

ā42 = − (cos (s) sin (3/5 s) + sin (s) cos (3/5 s)) ā43
sin (s)

+
2

17

9 (sin (s))2 − 8 (cos (s))2 + 8 cos (s)

sin (s) s
, (3.21)

by substituting coefficients in Table 1, we obtain
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r̄31 = cos

(
3

5
s

)
− 189

125
cos (s)− 72

125
s sin (s) , (3.22)

ā32 =
1

s

(
− 72

125
cos (s) s+

189

125
sin (s) + sin

(
3

5
s

))
, (3.23)

ā41 =
175

204

sin (3/5 s)

sin (s)
+

16

17

cos (s)− 1

sin (s) s
, (3.24)

ā42 = −175

204

cos (3/5 s) sin (s) + sin (3/5 s) cos (s)

sin (s)

+
2

17

9 (sin (s))2 − 8 (cos (s))2 + 8 cos (s)

sin (s) s
. (3.25)

For small values of s the aforementioned parameters undergo heavy cancellations, and the below Taylor series expansions
must be applied

b2 =
119

300
+

5357

31500000
s4 − 6329

350000000
s6 + . . . , (3.26)

b̄2 =
16

51
− 1

19125
s4 +

2441

80325000
s6 +

4489

6024375000
s8 + . . . , (3.27)

b̄4 =
2

17
+

1

19125
s4 +

739

80325000
s6 +

12727

12048750000
s8 + . . . , (3.28)

q1 =
41

25
+

461

1312500
s4 +

803

87500000
s6 +

708923

6063750000000
s8 + . . . , (3.29)

q2 = −16

25
− 461

1312500
s4 − 803

87500000
s6 − 708923

6063750000000
s8 + . . . , (3.30)

w1 =
14

25
− 461

1312500
s4 − 803

87500000
s6 − 708923

6063750000000
s8 + . . . , (3.31)

r31 =
17408

3125
− 96

78125
s6 +

1368

13671875
s8 + . . . , (3.32)

p31 = −6144

3125
+

1152

2734375
s6 − 3632

205078125
s8 + . . . , (3.33)

r̄31 = − 64

125
+

24

625
s4 − 216

78125
s6 +

2111

27343750
s8 + . . . , (3.34)

ā32 =
192

125
− 168

15625
s4 +

1352

2734375
s6 − 4139

410156250
s8 + . . . , (3.35)

ā41 =
3

68
+

4

255
s2 +

143

95625
s4 +

58577

401625000
s6 +

879661

60243750000
s8 + . . . , (3.36)

ā42 =
8

51
− 4

255
s2 +

832

95625
s4 − 58217

401625000
s6 +

1160699

60243750000
s8 + . . . . (3.37)

The fifth-order method given by Eqs. (3.26)-(3.37) is denoted as TFTSGRKN4s5. As s → 0, the coefficients b2, b̄2, b̄4, q1,
q2, r31, r̄31, p31, w1, ā32, ā41, and ā42 of the proposed method reduce to those of the original method.

3.2. Trigonometrically fitted TSGRKN method of order six. This method is constructed using the TSGRKN6(5) pair’s
sixth-order method given in [2] as shown in Table 2

Table 2. The sixth-order method of TSGRKN6(5) pair in [2].

−1 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0 0
1
5

3456
3125 − 331

3125
432
3125 − 138

3125 − 18
3125

108
3125 0 108

125
17
125

6
125

36
125 0

7
10 − 1852201

1100000
2952201
1100000

103173
44000

285719
275000

9615319
79200000 − 3129581

4400000
1685159
3168000 0 743

3250
2507
3250

333
1000

2299
13000

25
26 0

1 121
125

4
125

11466
11125

3
2225 − 4993

4539000 − 19253
934500

19727
53400

109324
794325 0 144

143 − 1
143 − 29

2431
68
231

5
429

35680
51051 0

121
125

4
125

11466
11125

3
2225 − 4993

4539000 − 19253
934500

19727
53400

109324
794325 0 144

143 − 1
143 − 32

21879 − 32
3003

1175
2574

6400
13923

229
2574
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For the coefficients of this method, solve Eqs. (2.16)-(2.19) together with the following conditions

2∑
`=1

q` = 1,

2∑
`=1

ν` = 1,

2∑
`=1

q`(1− `) +

2∑
`=1

w` = 1, (3.38)

for the values of bi, b̄i, q`, ν`, and w`, this lead to the following solution:

b2 = − (− cos (s) s+ sin (s)) b1
sin (s)− s

− (sin (c3s) cos (s) + sin (s) cos (c3s)− cos (c3s) s− sin (c3s)) b3
sin (s)− s

− (sin (c4s) cos (s) + sin (s) cos (c4s)− cos (c4s) s− sin (c4s)) b4
sin (s)− s

+

(
(sin (s))2 − sin (s) s+ (cos (s))2 − 2 cos (s) + 1

)
s2

s (sin (s)− s) − 2
cos (s)− 1

s2
, (3.39)

b̄2 =
1

s sin (s)
sin (c3s) cos (s) s b̄3 + sin (c4s) cos (s) s b̄4 − 2 cos (s) sb̄1 sin (s)

− sin (s) cos (c3s) sb̄3 − sin (s) cos (c4s) sb̄4 + (sin (s))2 ν2

− (cos (s))2 ν2 + (sin (s))2 + (cos (s))2 + ν2 cos (s)− cos (s), (3.40)

b̄5 = − sin (c3s) sb̄3 + sin (c4s) sb̄4 − sin (s) sb̄1 − 1− ν2 cos (s) + cos (s) + ν2
sin (s) s

, (3.41)

q1 = 2− s (cos (s)− 1)w2

sin (s)− s +
sin (c3s) s

2b3
sin (s)− s +

sin (c4s) s
2b4

sin (s)− s −
sin (s) s2b1
sin (s)− s , (3.42)

q2 = −1 +
s (cos (s)− 1)w2

sin (s)− s − sin (c3s) s
2b3

sin (s)− s −
sin (c4s) s

2b4
sin (s)− s +

sin (s) s2b1
sin (s)− s , (3.43)

w1 =
sin (s) s2b1
sin (s)− s −

sin (c3s) s
2b3

sin (s)− s −
sin (c4s) s

2b4
sin (s)− s −

(− cos (s) s+ sin (s))w2

sin (s)− s , (3.44)

by substituting coefficients in Table 2 for the values of b1, b3, b4, c3, c4, b̄1, b̄3, b̄4, and w2, we will get

b2 =
4993

4539000

− cos (s) s+ sin (s)

sin (s)− s

− 19727

53400

sin (1/5 s) cos (s) + sin (s) cos (1/5 s)− cos (1/5 s) s− sin (1/5 s)

sin (s)− s

− 109324

794325

(
sin
(

7
10
s
)

cos (s) + sin (s) cos
(

7
10
s
)
− cos

(
7
10
s
)
s− sin

(
7
10
s
))

(sin (s)− s)

+
3

2225

(sin (s))2 − sin (s) s+ (cos (s))2 − 2 cos (s) + 1

s (sin (s)− s) − 2
cos (s)− 1

s2
, (3.45)
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b̄2 =
1

(sin (s)) s

(
1175

2574
sin

(
1

5
s

)
cos (s) s+

6400

13923
sin

(
7

10
s

)
cos (s) s

+
64

21879
cos (s) s sin (s)− 1175

2574
sin (s) cos

(
1

5
s

)
s− 6400

13923
sin (s) cos

(
7

10
s

)
s

+
142

143
(sin (s))2 +

144

143
(cos (s))2 − 144

143
cos (s)

)
, (3.46)

b̄5 = − 1

(sin (s)) s

(
1175

2574
sin

(
1

5
s

)
s+

6400

13923
sin

(
7

10
s

)
s+

32

21879
sin (s) s

− 144

143
+

144

143
cos (s)

)
, (3.47)

q1 = 2− 3

2225

s (cos (s)− 1)

sin (s)− s +
19727

53400

sin
(
1
5
s
)
s2

sin (s)− s +
109324

794325

sin
(

7
10
s
)
s2

(sin (s)− s)

+
4993

4539000

sin (s) s2

sin (s)− s , (3.48)

q2 = −1 +
3

2225

s (cos (s)− 1)

sin (s)− s − 19727

53400

sin (1/5 s) s2

sin (s)− s −
109324

794325

sin
(

7
10
s
)
s2

(sin (s)− s)

− 4993

4539000

sin (s) s2

sin (s)− s , (3.49)

w1 = − 4993

4539000

sin (s) s2

sin (s)− s −
19727

53400

sin (1/5 s) s2

sin (s)− s −
109324

794325

sin
(

7
10
s
)
s2

(sin (s)− s)

− 3

2225

− cos (s) s+ sin (s)

sin (s)− s (3.50)

Similarly, solving the TF conditions in Eqs. (2.12) and (2.13) for the coefficients aij , rκ, and pκ produces the following
solution.

r31 = cos (s) s2a31 − sp32 sin (s) + s2a32 − r32 cos (s) + cos (1/5 s) , (3.51)

r41 = cos
( s

5

)
s2a43 + cos (s) s2a41 − sp42 sin (s) + s2a42 − r42 cos (s) + cos

(
7 s

10

)
, (3.52)

p31 =
−s2a31 sin (s)− cos (s) sp32 + r32 sin (s) + sin

(
1
5
s
)

s
, (3.53)

p41 = − sin (s) sa41 + s sin

(
1

5
s

)
a43 +

sin (s) r42
s

− p42 cos (s) + sin

( 7
10
s

s

)
, (3.54)

by substituting coefficients in Table 2 for the values of aij , r32, r42, p32, and p42, we obtain

r31 = − 18

3125
cos (s) s2 +

138

3125
sin (s) s+

108

3125
s2 +

331

3125
cos (s) + cos

(
1

5
s

)
, (3.55)

r41 =
1685159

3168000
cos

(
1

5
s

)
s2 +

9615319

79200000
cos (s) s2 − 285719

275000
sin (s) s

− 3129581

4400000
s2 − 2952201

1100000
cos (s) + cos

(
7

10
s

)
, (3.56)
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p31 =
1

s

(
18

3125
sin (s) s2 +

138

3125
cos (s) s− 331

3125
sin (s) + sin

(
1

5
s

))
, (3.57)

p41 = − 9615319

79200000
sin (s) s+

1685159

3168000
s sin (1/5 s) +

2952201

1100000

sin (s)

s

− 285719

275000
cos (s) + sin

(
7

10
s

)
s−1. (3.58)

Solving Eqs. (2.14) and (2.15) for the coefficients āij and r̄κ, result in the following solution

r̄31 = cos

(
1

5
s

)
− r̄32 cos (s)− s ā31 sin (s) , (3.59)

r̄41 = − sin (s) s ā41 + sin

(
1

5
s

)
s ā43 − r̄42 cos (s) + cos

(
7

10
s

)
, (3.60)

ā32 =
− cos (s) s ā31 + r̄32 sin (s) + sin

(
1
5
s
)

s
, (3.61)

ā42 =
1

s

(
− cos (s) s ā41 − cos

(
1

5
s

)
s ā43 + r̄42 sin (s) + sin

(
7

10
s

))
, (3.62)

ā51 =
sin
(
1
5
s
)
ā53

sin (s)
+

sin
(

7
10
s
)
ā54

sin (s)
+

144

143

cos (s)− 1

sin (s) s
, (3.63)

ā52 = −
(
sin (s) cos

(
1
5
s
)

+ cos (s) sin
(
1
5
s
))
ā53

sin (s)

−
(

sin (s) cos

(
7

10
s

)
+ cos (s) sin

(
7

10
s

))
ā54 (sin (s))−1

+
2

143

71 (sin (s))2 − 72 (cos (s))2 + 72 cos (s)

sin (s) s
, (3.64)

by substituting coefficients in Table 2 for the values of ā31, ā41, ā43, ā53, ā54, r̄32, and r̄42, we obtain

r̄31 = cos

(
1

5
s

)
− 17

125
cos (s)− 6

125
sin (s) s, (3.65)

r̄41 = − 333

1000
sin (s) s+

25

26
s sin

(
1

5
s

)
− 2507

3250
cos (s) + cos

(
7

10
s

)
, (3.66)

ā32 =

(
− 6

125
cos (s) s+

17

125
sin (s) + sin

(
1

5
s

))
s−1, (3.67)

ā42 =

(
− 333

1000
cos (s) s− 25

26
cos

(
1

5
s

)
s+

2507

3250
sin (s) + sin

(
7

10
s

))
s−1, (3.68)

ā51 =
5

429

sin
(
1
5
s
)

sin (s)
+

35680

51051
sin

(
7

10
s

)
(sin (s))−1 +

144

143

cos (s)− 1

sin (s) s
, (3.69)

ā52 = − 5

429

sin (s) cos
(
1
5
s
)

+ cos (s) sin
(
1
5
s
)

sin (s)

− 35680

51051

(
sin (s) cos

(
7

10
s

)
+ cos (s) sin

(
7

10
s

))
(sin (s))−1

+
2

143

71 (sin (s))2 − 72 (cos (s))2 + 72 cos (s)

sin (s) s
. (3.70)

For small values of s the aforementioned parameters undergo heavy cancellations, and the below Taylor series expansions
must be applied



818 A. ABDULSALAM, N. SENU, Z. A. MAJID, AND N. M. A. NIK LONG

b2 = − 19253

934500
− 251

3115000000
s4 − 10346563

2403000000000
s6 + . . . ,

b̄2 = − 32

3003
− 277

337837500
s6 +

21227

231660000000
s8 + . . . ,

b̄5 =
229

2574
+

3

6256250
s6 +

10289

180180000000
s8 + . . . ,

q1 =
121

125
− 251

1557500000
s4 − 5781487

2803500000000
s6 − 691344389

11513040000000000
s8 + . . . ,

q2 =
4

125
+

251

1557500000
s4 +

5781487

2803500000000
s6 +

691344389

11513040000000000
s8 + . . . ,

w1 =
11466

11125
+

251

1557500000
s4 +

5781487

2803500000000
s6 +

691344389

11513040000000000
s8 + . . . ,

r31 =
3456

3125
− 3

156250
s6 +

51

27343750
s8 − 8261

164062500000
s10 + . . . ,

r41 = −1852201

1100000
− 292013981

10560000000000
s8 +

50166461219

57024000000000000
s10 + . . . ,

p31 =
432

3125
+

3

390625
s6 − 557

1640625000
s8 +

14341

2255859375000
s10 + . . . ,

p41 =
103173

44000
− 45980767

396000000000
s6 +

16610612263

2851200000000000
s8 − 727479047771

6272640000000000000
s10 + . . . ,

r̄31 =
108

125
+

3

1250
s4 − 33

156250
s6 +

2691

437500000
s8 − 23329

246093750000
s10 + . . . ,

r̄41 =
743

3250
+

100093

3120000
s4 − 17451437

9360000000
s6 +

845071471

17472000000000
s8 − 336291538237

471744000000000000
s10 + . . . ,

ā32 =
36

125
− 27

31250
s4 +

31

781250
s6 − 5353

6562500000
s8 + . . . ,

ā42 =
2299

13000
− 953209

156000000
s4 +

192099941

655200000000
s6 − 9469563703

1572480000000000
s8 + . . . ,

ā51 = − 29

2431
− 229

715000
s4 − 126703

3003000000
s6 − 4664017

1029600000000
s8 + . . . ,

ā52 =
68

231
+

13511

6435000
s4 − 5873983

27027000000
s6 − 7005989

5896800000000
s8 + . . . . (3.71)

We denote the sixth-order method determined by Eqs. (3.71)-(3.71) as TFTSGRKN5s6. As s → 0, the proposed method’s
coefficients b2, b̄2, b̄5, q1, q2, w1, r31, r41, r̄31, r̄41, p31, p41, ā32, ā42, ā51, and ā52 reduce to those of the original method.

3.3. Absolute stability of the proposed methods. In the subsequent part, we will present the absolute stability of the
trigonometrically fitted MSGRKN methods. For a full study of stability, readers may refer to [13].
Applying the trigonometrically fitted MSGRKN method in Eq. (2.1) to the given test problem

u′′(x) = −λ2u(x) + µu′(x), (3.72)

the stability matrix M(s,Λ, Z) given in [13] will be obtained as follow

M(s,Λ, Z) =


qT − Λ2 bT M + Z bT M ′ wT − Λ2 bT N + Z bT N ′

I 0
−Λ2 b̄T M + Z b̄T M ′ νT − Λ2 b̄T N + Z b̄T N ′

0 I


2×2

, (3.73)

with

I =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


(−1)×

,
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(a) s=1 (b) s=2 (c) s=3

Figure 1. The stability regions sections of TFTSGRKN4s5 method at s = 1, 2, 3.

By using the following stability function for the trigonometrically fitted MSGRKN method

Ω
(
ξ,M(s,Λ, Z)

)
= det

[
ξI −M(s,Λ, Z)

]
, (3.74)

Where Λ = λh and Z = µh. Following this, we provide the stability definition for the trigonometrically fitted MSGRKN
method.

Definition 3.1. For the trigonometrically fitted MSGRKN method in Eq. (2.1) with the stability matrix M(s,Λ, Z) given
by Eq. (3.73), suppose the stability matrix M(s,Λ, Z) has eigenvalues ri(s,Λ, Z), i = 1, 2, . . . , 2. The region of the three
dimensional space

Rs =
{

(s,Λ, Z) : |ri(s,Λ, Z)| < 1, i = 1, . . . , 2
}

is referred to as the absolute stability region of the method.

Remark 3.2. In the context of the trigonometrically fitted MSGRKN method, understanding the three-dimensional stability
the region in the (s,Λ, Z) space can be challenging. This paper addresses this difficulty by presenting a selection of sections
through the three-dimensional stability region by planes where the parameter s is constant.

According to Definition 3.1 and Remark 3.2, the stability regions sections of the TFTSGRKN4s5 and TFTSGRKN5s6
methods by plane s = 1, 2, 3, respectively are illustrated in Figures 1 and 2, which are the regions in black.

4. Numerical experiments

In this section, to assess the performance of the suggested methods, we compare the effectiveness of the proposed methods
with existing methods by solving a set of test problems. The numerical comparisons here are based on two primary criteria:
the computation of the maximum error and the number of function evaluations. The following abbreviations are used in our
numerical results. The experiments were conducted using Code Blocks 16.01 and Lenovo PC with the following specifications:
Intel(R) Core(TM) i3-5005U CPU @2.00GHz.

• TFTSGRKN5s6: the five-stage sixth-order trigonometrically fitted TSGRKN method constructed in this study;
• TFTSGRKN4s5: the four-stage fifth-order trigonometrically fitted TSGRKN method constructed in this study;
• TSGRKN5s6: the five-stage sixth-order TSGRKN method given in [2];
• TSGRKN4s5: the four-stage fifth-order TSGRKN method given in [2];
• L2TFMSRKN4s5: the four-stage trigonometrically fitted MSRKN method of order five derived in [11];
• TFSTDRKN3s5: the three-stage trigonometrically fitted TDRKN method of order five derived in [5];
• PFAFRKN4s5: the four-stage fifth-order phase fitted and amplification fitted RKN method given in [6];
• MSRKN5s6: the five-stage sixth-order two-step RKN method obtained by [10];
• ARKNG6s5: the six-stage fifth-order adapted RKN given in [8];
• RK7s6: the seven-stage sixth-order RK method given in [4];
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(a) s=1 (b) s=2 (c) s=3

Figure 2. The stability regions sections of TFTSGRKN5s6 method at s = 1, 2, 3.

• NFE: the number of function evaluations;
• MaxError: Max (|u(xn)−un|) which is the maximum between absolute errors of the computed solution and the exact

solution;

Problem 1. Orbital problem of Stiefel and Bettis which was studied in [11]
Consider the nearly periodic second-order ODE

u′′ = 0.001eix − u, u(0) = 1, u′(0) = 0.9995i, x ∈ [0, 80π].

Exact solution: u(x) = cos(x) + 0.0005x sin(x) + i
(

sin(x)− 0.0005x cos(x)
)
.

The exact solution represents the motion of a perturbed circular orbit in the complex plane. The problem has the equivalent
form

u′′1 = 0.001 cos(x)− u1, u1(0) = 1, u′1(0) = 0,

u′′2 = 0.001 sin(x)− u2, u2(0) = 0, u′2(0) = 0.9995,

Exact solution: u1(x) = cos(x) + 0.0005x sin(x), u2(x) = sin(x)− 0.0005x cos(x).

The frequency ω = 1 is chosen as the fitting parameter. For solving this problem, which is a special second-order IVP that
does not include the first derivative u′(x). As shown in Table 3, the sixth-order TFTSGRKN5s6 method produces the lowest
maximum errors compared to the sixth-order TSGRKN5s6 and MSRKN5s6 methods that are used to solve general and special
second-order IVPs, respectively. This is because, unlike the TFTSGRKN5s6 method, the TSGRKN5s6 and MSRKN5s6 methods
do not use the trigonometrically fitted technique. The adaptation of the trigonometrically fitted technique improves the accuracy
of the methods. The maximum errors of the TFTSGRKN5s6 method were also compared to those of the fifth-order methods
(the newly derived TFTSGRKN4s5 method, the TSGRKN4s5 method that used to solve general second-order IVPs, and the
L2TFMSRKN4s5 and PFAFRKN4s5 methods that are used to solve special second-order IVPs). Table 3 demonstrates that the
TFTSGRKN5s6 method is more accurate at all values of h except for h = π

9
where the maximum errors for the TFTSGRKN5s6

and PFAFRKN4s5 methods are almost the same. For the comparison of the proposed fifth-order TFTSGRKN4s5 method,
we compare the maximum errors for the TFTSGRKN4s5 method with those of the other fifth-order methods (TSGRKN4s5,
L2TFMSRKN4s5, and PFAFRKN4s5). We can observe from Table 3 that the TFTSGRKN4s5 method achieves numerical
solutions that are as accurate as those obtained by the PFAFRKN4s5 method and better than those of the TSGRKN4s5 and
L2TFMSRKN4s5 methods at all values of h except at h = π

9
where PFAFRKN4s5 method is more accurate.

Problem 2. Consider the two-body problem [3, 18]

u′′1 = − u1

(u2
1 + u2

2)3/2
− (2 ε+ ε2)u1

(u2
1 + u2

2)5/2
, u′′2 = − u2

(u2
1 + u2

2)3/2
− (2 ε+ ε2)u2

(u2
1 + u2

2)5/2
,
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Problem 2.

u1(0) = 1, u′1(0) = 0, u2(0) = 0, u′2(0) = 1 + ε,

with ε = 10−3, the fitting parameter ω = 1 and x ∈ [0, 1000]
Exact solution: u1(x) = cos(x+ ε x), u2(x) = sin(x+ ε x).

This problem is also a special second-order IVP. Table 4 presents the findings obtained by the TFTSGRKN5s6 method. These
results are compared with the sixth-order TSGRKN5s6 and MSRKN5s6 methods, as well as the fifth-order TFTSGRKN4s5,
TSGRKN4s5, L2TFMSRKN4s5, and PFAFRKN4s5 methods. In terms of accuracy, Table 4 clearly demonstrates that TFTS-
GRKN5s6 outperforms the sixth- and fifth-order methods at all values of j except at j = 1 where the errors produced by
TFTSGRKN5s6 and TFTSGRKN4s5 methods are competitive. In addition, the accuracy of the new TFTSGRKN4s5 method
is compared with the accuracy of the fifth-order (TSGRKN4s5, L2TFMSRKN4s5, and PFAFRKN4s5) methods. Table 4 shows
that the TFTSGRKN4s5 method performs better than those of fifth-order methods at all values of j except at j = 4 where
TFTSGRKN4s5 and the sixth-order TSGRKN5s6 method have the same errors.

Problem 3. Consider the linear nonhomogeneous oscillatory system [16]
u′′1 = −13u1 + 12u2 + u′1 + 2u′2 + 24 sin(5x), u1(0) = − 9012

3005
, u′1(0) = − 7438

601
,

u′′2 = 12u1 − 13u2 − 2u′1 − 3u′2 + cos(5x), u2(0) = 8292
3005

, u′2(0) = 4583
601

.

Exact solution: u1(x) = − 7438
3005

sin(5x)− 9012
3005

cos(5x), u2(x) = 4583
3005

sin(5x) + 8292
3005

cos(5x).

Where x ∈ [0, 1000] and the fitting parameter ω = 5. In this problem, where u′ appears explicitly, we compared the results
of the newly proposed TFTSGRKN5s6 and TFTSGRKN4s5 methods with the TSGRKN5s6, TSGRKN4s5, TFSTDRKN3s5,
and ARKNG6s5 methods, which were derived to solve general second-order ODEs (1.1). Moreover, the findings of the newly
derived methods are compared with the classical RK7s6 method. The errors we got are compared for different step sizes and
illustrated in Table 5 shows that the TFTSGRKN5s6 and TFTSGRKN4s5 methods generate smaller errors.

Problem 4. Consider the linear problem studied in [15]

u′′ = −u′ + cos(x), x ∈ [0, 100π],

u(0) = −1

2
, u′(0) =

1

2
.

Exact solution: u(x) = 1
2

(
sin(x)− cos(x)

)
. The fitting parameter ω = 1.

To solving this problem where the first derivative appears explicitly. Table 6 demonstrates that the TFSTDRKN3s5 method’s
findings are competitive with those of our methods. However, our methods are more accurate than the TSGRKN5s6, TS-
GRKN4s5, ARKNG6s5, and RK7s6 methods.

Besides the comparison in terms of the maximum errors, comparing the computational efficiency of the proposed methods
by considering the number of function evaluations is an important aspect of the numerical comparison. The number of function
evaluations directly impacts the computational cost and runtime of the numerical integration process. A method that requires
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Table 3. Comparison of the numerical outcomes for Problem 1.

h Methods NFE MaxError

TFTSGRKN5s6 1285 5.161572 (-6)
TFTSGRKN4s5 964 5.523519 (-5)
TSGRKN5s6 1285 1.158438 (-3)

π
4 TSGRKN4s5 964 1.822003 (-2)

L2TFMSRKN4s5 964 1.575662 (-4)
PFAFRKN4s5 1284 1.774120 (-5)
MSRKN5s6 1285 8.528549 (-3)

TFTSGRKN5s6 1925 2.781890 (-7)
TFTSGRKN4s5 1444 5.498992 (-6)
TSGRKN5s6 1925 7.511925 (-5)

π
6 TSGRKN4s5 1444 1.941552 (-3)

L2TFMSRKN4s5 1444 2.658036 (-5)
PFAFRKN4s5 1924 1.339640 (-6)
MSRKN5s6 1925 2.680592 (-4)

TFTSGRKN5s6 2881 1.633438 (-8)
TFTSGRKN4s5 2161 5.194966 (-7)
TSGRKN5s6 2881 4.912598 (-6)

π
9 TSGRKN4s5 2161 1.863227 (-4)

L2TFMSRKN4s5 2161 3.888469 (-6)
PFAFRKN4s5 2880 3.999111 (-8)
MSRKN5s6 2881 1.388938 (-5)

TFTSGRKN5s6 3845 2.266398 (-9)
TFTSGRKN4s5 2884 9.359432 (-8)
TSGRKN5s6 3845 7.163709 (-7)

π
12 TSGRKN4s5 2884 3.343283 (-5)

L2TFMSRKN4s5 2884 9.608069 (-7)
PFAFRKN4s5 3844 1.996201 (-8)
MSRKN5s6 3845 2.015801 (-6)
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Figure 5. Curves of efficiency for
Problem 3.
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Figure 6. Curves of efficiency for
Problem 4.
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Table 4. Comparison of the numerical outcomes for Problem 2.

h = 1/(2j) Methods NFE MaxError

TFTSGRKN5s6 8000 2.464736 (-3)
TFTSGRKN4s5 6000 5.993949 (-3)
TSGRKN5s6 8000 4.506096 (-1)

j = 1 TSGRKN4s5 6000 1.822003 (-2)
L2TFMSRKN4s5 6000 2.899678 (-1)
PFAFRKN4s5 8000 1.928877 (-2)
MSRKN5s6 8000 2.600481 (+3)

TFTSGRKN5s6 16000 2.554999 (-5)
TFTSGRKN4s5 12000 1.929336 (-4)
TSGRKN5s6 16000 4.421979 (-3)

j = 2 TSGRKN4s5 12000 1.941552 (-3)
L2TFMSRKN4s5 12000 1.626069 (-2)
PFAFRKN4s5 24000 1.357440 (-3)
MSRKN5s6 16000 1.990184 (+6)

TFTSGRKN5s6 32000 2.130471 (-7)
TFTSGRKN4s5 24000 6.249775 (-6)
TSGRKN5s6 32000 3.617804 (-5)

j = 3 TSGRKN4s5 24000 1.863227 (-4)
L2TFMSRKN4s5 24000 5.777271 (-4)
PFAFRKN4s5 56000 4.106792 (-5)
MSRKN5s6 32000 2.266863 (+3)

TFTSGRKN5s6 64000 8.058148 (-10)
TFTSGRKN4s5 48000 1.812122 (-7)
TSGRKN5s6 64000 2.830579 (-7)

j = 4 TSGRKN4s5 48000 3.343283 (-5)
L2TFMSRKN4s5 48000 1.863324 (-5)
PFAFRKN4s5 120000 1.251015 (-6)
MSRKN5s6 64000 1.010329 (+3)

fewer function evaluations is generally more computationally efficient. Tables 3 and 4 illustrate that the TFTSGRKN5s6 method
has the same number of function evaluations as the TSGRKN5s6 and MSRKN5s6 methods. This is because these methods
are two-step Runge-Kutta-Nyström that only require the evaluation of f(Y+1, Y

′
+1), . . . , f(Yκ, Y

′
κ) in each step (κ−  function

evaluations). Additionally, the NFE of the TFTSGRKN4s5, TSGRKN4s5, and L2TFMSRKN4s5 methods are same and fewer
than those of the PFAFRKN4s5 method. This is because the TFTSGRKN4s5, TSGRKN4s5, and L2TFMSRKN4s5 methods
are two-step Runge-Kutta-Nyström that only requires the evaluation of (κ−  function evaluations). While the PFAFRKN4s5
method is a one-step Runge-Kutta-Nyström that requires (κ function evaluations) in each step. Tables 5 and 6 show that the
sixth-order two-step Runge-Kutta-Nyström TFTSGRKN5s6 and TSGRKN5s6 methods only need three function evaluations
per step compared with the sixth-order classical RK7s6 method that requires reducing problem in Eq. (1.1) to an equivalent
system of first-order implies doubling the dimension of the problem. While for the fifth-order two-step Runge-Kutta-Nyström,
TFTSGRKN4s5 and TSGRKN4s5 methods require only two function evaluations per step compared with TFSTDRKN3s5 and
ARKNG6s5 methods, which require three and six function evaluations per step, respectively. Moreover, from the plots of
efficiency curves for test problems (1)–(4) given in Figures 3–6, it is evident that the Figures are consistent with the data of
numerical results presented in the Tables. In general, these curves demonstrate that the proposed methods are accurate enough
and very efficient for solving the type of ODE in Eq. (1.1).
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Table 5. Comparison of the numerical outcomes for Problem 3.

h = 1/(2j) Methods NFE MaxError

TFTSGRKN5s6 32000 4.547125 (-8)
TFTSGRKN4s5 24000 3.355738 (-7)
TSGRKN5s6 32000 4.913395 (-3)

j = 3 TSGRKN4s5 24000 8.010632 (-3)
TFSTDRKN3s5 32000 1.690212 (-5)
ARKNG6s5 48000 1.027010 (+0)
RK7s6 112014 7.006685 (-3)

TFTSGRKN5s6 64000 8.398282 (-11)
TFTSGRKN4s5 48000 6.168723 (-10)
TSGRKN5s6 64000 3.244349 (-4)

j = 4 TSGRKN4s5 48000 5.316291 (-4)
TFSTDRKN3s5 96000 6.544592 (-8)
ARKNG6s5 144000 2.756132 (-1)
RK7s6 336028 1.072075 (-4)

TFTSGRKN5s6 128000 1.816325 (-13)
TFTSGRKN4s5 96000 1.067146 (-12)
TSGRKN5s6 128000 2.047889 (-5)

j = 5 TSGRKN4s5 96000 3.163733 (-5)
TFSTDRKN3s5 224000 2.545351 (-10)
ARKNG6s5 336000 6.892470 (-2)
RK7s6 784042 1.657023 (-6)

TFTSGRKN5s6 256000 3.774758 (-14)
TFTSGRKN4s5 192000 9.370282 (-14)
TSGRKN5s6 256000 1.279162 (-6)

j = 6 TSGRKN4s5 192000 1.935512 (-6)
TFSTDRKN3s5 480000 1.009859 (-12)
ARKNG6s5 720000 1.718241 (-2)
RK7s6 1680056 2.574848 (-8)

5. Conclusions

In this article, the development of the fifth and sixth-order explicit multi-step Runge-Kutta-Nyström methods with the
trigonometrically fitting technique used to obtain the trigonometrically fitted multi-step Runge-Kutta-Nyström methods. In
this technique, each stage formula is imposed to exactly integrate the functions exp(iωx) and exp(−iωx), where i is the
imaginary. These methods are compared with the existing RK methods and their trigonometrically- and phase-fitted versions
in the literature.
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Table 6. Comparison of the numerical outcomes for Problem 4.

h = 1/(2j) Methods NFE MaxError

TFTSGRKN5s6 2516 4.477934 (-10)
TFTSGRKN4s5 1888 2.322399 (-9)
TSGRKN5s6 2516 1.262954 (-3)

j = 1 TSGRKN4s5 1888 2.205504 (-3)
TFSTDRKN3s5 2516 1.476419 (-11)
ARKNG6s5 3774 4.443020 (-2)
RK7s6 8806 5.353845 (-6)

TFTSGRKN5s6 5033 7.743112 (-13)
TFTSGRKN4s5 3775 4.735934 (-12)
TSGRKN5s6 5033 6.998643 (-5)

j = 2 TSGRKN4s5 3775 1.064347 (-4)
TFSTDRKN3s5 7548 1.543210 (-14)
ARKNG6s5 11322 1.075808 (-2)
RK7s6 26418 6.898729 (-8)

TFTSGRKN5s6 10061 2.528186 (-14)
TFTSGRKN4s5 7546 1.905420 (-14)
TSGRKN5s6 10061 4.123126 (-6)

j = 3 TSGRKN4s5 7546 6.173361 (-6)
TFSTDRKN3s5 17608 3.663736 (-15)
ARKNG6s5 26412 2.645903 (-3)
RK7s6 61628 9.736510 (-10)

TFTSGRKN5s6 20117 2.482389 (-14)
TFTSGRKN4s5 15088 2.891090 (-14)
TSGRKN5s6 20117 2.503142 (-7)

j = 4 TSGRKN4s5 15088 3.752632 (-7)
TFSTDRKN3s5 37724 4.329870 (-15)
ARKNG6s5 56586 6.561930 (-4)
RK7s6 132034 1.444511 (-11)



826 A. ABDULSALAM, N. SENU, Z. A. MAJID, AND N. M. A. NIK LONG

References

[1] Z. A. Anastassi and T. E. Simos, An optimized Runge–Kutta method for the solution of orbital problems, Journal of Com-
putational and Applied Mathematics, 1 (2005), 1–9.

[2] A. Abdulsalam, N. Senu, Z. Abdul Majid, and N. M. A. Nik Long, Adaptive multi-step Runge–Kutta–Nyström methods for
general second-order ordinary differential equations, Journal of Computational and Applied Mathematics, 421 (2023), 1–26.

[3] A. Abdulsalam, N. Senu, Z. Abdul Majid, and N. M. A. Nik Long, Development of high-order adaptive multi-step Runge–
Kutta–Nyström method for solving special second-order ODEs, Mathematics and Computers in Simulation, 216 (2024), 104-125.

[4] J. C. Butcher, Numerical methods for ordinary differential equations, 2nd ed, Chichester, England, John Wiley and Sons,
2016.

[5] Z. Chen, L. Shi, S. Liu, and X. You, Trigonometrically fitted two-derivative Runge-Kutta-Nyström methods for second-order
oscillatory differential equations, Applied Numerical Mathematics, 142 (2019), 171–189.

[6] M. A. Demba, H. Ramos, P. Kumam, and W. Watthayu, A phase-fitted and amplification-fitted explicit Runge–Kutta–
Nyström pair for oscillating systems, Mathematical and Computational Applications, 26 (2021), 59–71.

[7] J. M. Franco, Exponentially fitted explicit Runge–Kutta–Nyström methods, Journal of Computational and Applied Mathe-
matics, 167 (2004), 1–19.

[8] J. M. Franco, Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators, Computer Physics
Communications, 147 (2002), 770787.

[9] W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numerische Math-
ematik, 3 (1961), 381–397.

[10] L. Jiyong and W. Xianfen, Multi-step Runge–Kutta–Nyström methods for special second-order initial value problems, Ap-
plied Numerical Mathematics, 113 (2017), 54–70.

[11] L. Jiyong and D. Shuo, Trigonometrically fitted multi-step RKN methods for second-order oscillatory initial value problems,
Applied Mathematics and Computation, 1 (2018), 740–753.

[12] L. Jiyong, S. Deng, and X. Wang, Multi-step Nyström methods for general second-order initial value problems y′′(t) =
f(t, y(t), y′(t)), International Journal of Computer Mathematics, 96 (2019), 1254–1277.

[13] L. Jiyong and G. Yachao, Modified multi-step Nyström methods for oscillatory general second-order initial value problems,
International Journal of Computer Mathematics, 2 (2021), 223–237.

[14] T. Lyche, Chebyshevian multistep methods for ordinary differential equations, Numerische Mathematik, 19 (1972), 65–75.
[15] T. S. Mohamed, N. Senu, Z. B. Ibrahim, and N. M. A. Nik Long, Efficient two-derivative Runge-Kutta-Nyström methods

for solving general second-order ordinary differential equations y′′(x) = f(x, y(x), y′(x)), Discrete Dynamics in Nature and
Society, 2018 (2018), 1–10.

[16] T. S. Mohamed, N. Senu, Z. B. Ibrahim, and N. M. A. Nik Long, Exponentially fitted and trigonometrically fitted two-
derivative Runge-Kutta-Nyström methods for solving y′′ = f(x, y, y′), Mathematical Problems in Engineering, 1 (2018), 1–19.

[17] Th. Monovasilis, Z. Kalogiratou, and T. E. Simos, Trigonometrical fitting conditions for two derivative Runge-Kutta meth-
ods, Numerical Algorithms, 79 (2018), 787–800.

[18] F. F. Ngwane and S. N. Jator, A trigonometrically fitted block method for solving oscillatory second-order initial value
problems and hamiltonian system, International Journal of Differential Equations, 1 (2017).

[19] B. Paternoster, Runge-Kutta-Nyström methods for ODEs with periodic solutions based on trigonometric polynomials, Ap-
plied Numerical Mathematics, 28 (1998), 401–412.

[20] T. E. Simos, An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic
or oscillating solutions, Computer Physics Communications, 115 (1998), 1–8.


	1. Introduction
	2. Fundamental concepts
	2.1. The definition of multi-step Runge-Kutta-Nyström methods
	2.2. Trigonometrically fitted MSGRKN method

	3. Construction of the proposed methods
	3.1. Trigonometrically fitted TSGRKN method of order five.
	3.2. Trigonometrically fitted TSGRKN method of order six.
	3.3. Absolute stability of the proposed methods.

	4. Numerical experiments
	5. Conclusions
	Acknowledgment
	References

