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Abstract
The free vibrations of a rod are governed by a differential equation of the form (a(x)y′)′ + λa(x)y(x) = 0, where

a(x) is the cross sectional area and λ is an eigenvalue parameter. Using the finite element method (FEM) we
transform this equation to a generalized matrix eigenvalue problem of the form (K − ΛM)u = 0 and, for given

a(x), we correct the eigenvalues Λ of the matrix pair (K,M) to approximate the eigenvalues of the rod equation.

The results show that with step size h the correction technique reduces the error from O(h2i4) to O(h2i2) for the
i-th eigenvalue. We then solve the inverse spectral problem by imposing numerical algorithms that approximate

the unknown coefficient a(x) from the given spectral data. The cross section is obtained by solving a nonlinear

system using Newton’s method along with a regularization technique. Finally, we give numerical examples to
illustrate the efficiency of the proposed algorithms.
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1. Introduction

The free longitudinal vibrations of a rod of length one is governed by the following differential equation:

(a(x)y′)′ + λa(x)y(x) = 0, 0 < x < 1, (1.1)

where a(x) is the cross sectional area at a point x, λ is a parameter, and y(x) is the displacement [17]. Normally, two
boundary conditions at the end points x = 0 and x = 1 are considered for Equation (1.1), the most important ones
being,

free− free : y′(0) = 0, y′(1) = 0,
fixed− free : y(0) = 0, y′(1) = 0,
fixed− fixed : y(0) = 0, y(1) = 0.

(1.2)

When Equation (1.1) is considered together with one of the boundary conditions (1.2) it becomes an eigenvalue
problem where λ is an eigenvalue, the corresponding non-trivial solution y being a corresponding eigenfunction [17]. It
is known that the differential equation (1.1) with one set of the boundary conditions (1.2) has a sequence of nonnegative
eigenvalues, say {λi}∞i=1, where the λi are distinct, arranged in order of increasing magnitude, and limi→∞ λi = ∞.
For more details see [17, 21]. The set of eigenvalues {λi}∞i=1 is called the spectrum of the problem (1.1)-(1.2). In the
literature one usually finds three types of problems corresponding to (1.1), namely: (i) Direct problems, (ii) Inverse
problems and (iii) Isospectral problems.

In direct problems, for a given a(x), spectral data such as the eigenvalues, the eigenfunctions, and related asymptotic
behaviour of either or both, are studied. It is clear that the rod equation is not explicitly solvable, in general. In
practice, however, numerical methods such as finite differences, finite element, and other such finite dimensional
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methods are used to estimate the spectral data. Using such methods Equations (1.1) and (1.2) are then transformed
to a matrix eigenvalue problem where the eigenvalues of the resulting matrix become approximations for the first N
eigenvalues of the problem (1.1) and (1.2). Each of these methods can be used to approximate the eigenvalues of
lower indices but for eigenvalues of higher indices they generally lead to poor numerical results. It is obvious that rod
equation (1.1) is a special case of Sturm-Liouville equation. For the canonical form of the Sturm-Liouville equation,
the finite difference method with step size h and finite element method with linear shape functions have error of order
O(h2i4) for i-th eigenvalue [7, 37]. Other algorithms for solving direct problems can be found in [11, 22, 23, 26, 27, 30].
The asymptotic behaviour of the eigenvalues and eigenfunctions of Sturm-Liouville problems can be found in various
references, e.g., [5, 17, 21, 31].

The corresponding inverse spectral problem is concerned with the construction of the unknown cross sectional area
a(x) using spectral data (such as eigenvalues, eigenfunctions, or both). By solving this inverse problem for a rod,
we may design a rod with a prescribed structure and frequencies. The importance of finding the solution of such
an inverse problem is thus realized. In general, the construction of a unique function, a(x), requires two spectra
corresponding to two different boundary conditions, e.g. fixed-fixed and fixed-free [6, 17, 20, 21]. In the case of
a symmetric cross sectional area one can construct a(x) uniquely using one spectrum, see [13, 17]. We refer the
reader to [3, 4, 12, 21, 34, 35, 38, 42] and the references therein for information regarding inverse problems associated
with a canonical Sturm-Liouville equation. By definition, isospectral rods are rods having the same spectrum. Such
isospectral problems are studied in [18, 19, 28, 29, 32, 39]. Observe that the problem (1.1)-(1.2) with cross sections
a(x) and ca(x) (where c is any positive constant) have the same set of eigenvalues. It follows that whenever a(x)
is a solution of the inverse spectral problem then, for any positive constant c, the function ca(x) is also a solution.
Therefore, in order to find a unique solution to inverse problem, we must assume some condition, for example, that
a(x) attain some specific value at a point of the interval [0, 1], say x = 1. In other words, we will assume that:

∃x∗ ∈ [0, 1], a(x∗) = 1. (1.3)

Paine et al. [37] found a good approximation for the eigenvalues of the Sturm-Liouville equation y′′ + (λ − q(x))y =
0 with fixed-fixed boundary conditions by correcting the eigenvalues obtained from the finite difference method.
Correcting the eigenvalues of the finite element and Numerov methods for a canonical Sturm-Liouville equation
are studied in [7, 14, 30]. The idea of correcting the eigenvalues in the finite difference and Numerov methods
is also considered in solving inverse Sturm-Liouville problems with fixed-fixed and fixed-free boundary conditions,
[8, 14, 15, 36]. The construction of the cross section a(x) is studied in some papers: Morassi et al.[9, 33] constructed
rods with given natural frequencies using the idea of quasi-isospectral rods. In [13] by correcting the eigenvalues of the
finite difference method, the symmetric cross section a(x) is constructed. In [20] the cross section a(x) is constructed
using one spectrum and a minimal mass condition.

To the best of our knowledge, the idea of using the FEM together with a correction has not been applied to solving
direct and inverse problems of a rod equation. Therefore, first we discretize the rod equation by using the finite element
method in order to obtain the corresponding matrix eigenvalue problem. In order to make good approximations for
the eigenvalues of the rod equation we add a suitable correction term to the eigenvalues of the obtained matrix. Then
we propose an algorithm based on a correction technique to solve direct and inverse (spectral) problems in the cases
of symmetric and nonsymmetric functions, a(x). Our results show that the FEM together with a correction technique
can be applied successfully to solve direct and inverse problems of the type considered here.

2. Direct problem for rod equation

In this section, for a given cross section a(x) we want to approximate the eigenvalues of the problems (1.1)-(1.2). To
this end, we use the FEM to transform the Rod Equation (1.1) into a generalized matrix eigenvalue problem. Then,
using a correction technique, we approximate the eigenvalues of the problem (1.1)-(1.2). Using the finite element
method [1, 2, 10] with linear shape functions the Rod Equation (1.1) with fixed-free boundary condition can be
discretized as a generalized matrix eigenvalue problem of the form,

(K1 − Λ1M1)v = 0, (2.1)
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where K1 is the stiffness matrix, M1 is mass matrix,

K1 =
1

h


a1 + a2 −a2

−a2 a2 + a3 −a3

. . .
. . .

. . .

aN−1 + aN −aN
−aN aN

 , (2.2)

M1 =
h

6


2(a1 + a2) a2

a2 2(a2 + a3) a3

. . .
. . .

. . .

2(aN−1 + aN ) aN
aN 2aN

 , (2.3)

and where h = 1
N , xi = ih, ai = a(xi − h

2 ), Λ1 is an eigenvalue of the corresponding discrete system, and v =

[v1, v2, . . . , vn]T is a corresponding eigenvector. For fixed-fixed boundary conditions, Equation (1.1) can be transformed
into (K2 − Λ2M2)u = 0 where K2 and M2 are tridiagonal matrices of order N − 1, obtained by deleting the last row
and column of matrices K1 and M1, respectively and u = [u1, u2, . . . , uN−1]t is an eigenvector.

2.1. A correction technique. Let {λi(a(x))}∞i=1 and {µi(a(x))}∞i=1 be the eigenvalues of Equation (1.1) with fixed-
fixed and fixed-free boundary conditions, respectively. The eigenvalues Λ2

i (a(x)) are approximations to the first N − 1
eigenvalues of {λi(a(x))}∞i=1 and Λ1

i (a(x)) are approximations to the first N eigenvalues of {µi(a(x))}∞i=1. These
eigenvalues are good approximations for the few first eigenvalues only but they lead to poor results for higher indices,
see Tables 1-3.

Using the change of variable y(x) = a(x)w(x), Equation (1.1) will be transformed to the Sturm-Liouville equation

w′′(x)+(λ−q(x))w(x) = 0, where q(x) = a′′(x)
a(x) . Thus, using asymptotic formula of the eigenvalues of Sturm-Liouville

problem [17] we have λi(a(x)) = λi(1) + C1 + αi,

µi(a(x)) = µi(1) + C2 + βi,
(2.4)

where C1 and C2 are constants depending on the cross section a(x) and limi→∞ αi = 0, limi→∞ βi = 0.
Due to the asymptotic form (2.4) we note that the increasing error in approximations λi(a(x)) ' Λ2

i (a(x)) and
µi(a(x)) ' Λ1

i (a(x)) are results of existing error in approximations λi(1) ' Λ2
i (1) and µi(1) ' Λ1

i (1). Thus, we
expect a reduction of the error by adding correction terms ε1(i, h) = µi(1)−Λ1

i (1) and ε2(i, h) = λi(1)−Λ2
i (1) to the

eigenvalues Λ1
i (a(x)) and Λ2

i (a(x)), respectively. Using this correction idea, we correct the eigenvalues Λ1
i and Λ2

i to
obtain good approximations for λi and µi as follows:{

µi(a(x)) ' Λ̃1
i := Λ1

i + ε1(i, h), i = 1, 2, . . . , N,

λi(a(x)) ' Λ̃2
i = Λ2

i + ε2(i, h), i = 1, 2, . . . , N − 1.
(2.5)

In order to calculate ε1(i, h) and ε2(i, h), and thus λi, µi we need to find the eigenvalues of the pair (K1,M1) and
(K2,M2) corresponding to the uniform cross sectional area.

Lemma 2.1. [24] The eigenvalues and eigenvectors of the tridiagonal matrix

T =


a− α b
c a b

. . .
. . .

. . .

c a b
c a− β

 , (2.6)
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are given by

λ = a+ 2
√
bc cos θ, sin θ 6= 0, (2.7)

and the corresponding eigenvectors are,

uj =
1

sin θ
qj−1

[
sin jθ +

α√
bc

sin(j − 1)θ

]
, j = 1, 2, . . . , n, q =

√
b

c
, (2.8)

where θ satisfies the equation,

sin(n+ 1)θ +
α+ β√
bc

sinnθ +
αβ

bc
sin(n− 1)θ = 0. (2.9)

Lemma 2.2. The eigenvalues and the orthonormal eigenvectors of the matrix pair (K2,M2) corresponding to a
uniform rod (a(x) ≡ 1) with fixed-fixed boundary condition are

Λ02
k = 6

h2
1+cos kπh
2−cos kπh , k = 1, 2, . . . , N − 1,

ukj =
√

6 sin jkπh√
2+cos kπh

, k = 1, 2, . . . , N − 1.

(2.10)

Proof. For a uniform rod, the system (K2 − Λ02M2)u = 0 can be written as follows:
2
h −

2
3hΛ02 −( 1

h + h
6 Λ02)

−( 1
h + h

6 Λ02)
. . .

. . .

−( 1
h + h

6 Λ02)
−( 1

h + h
6 Λ02) 2

h −
2
3hΛ02

u = 0. (2.11)

Comparing the coefficient matrix in (2.11) with the matrix T in (2.6), we have

a = c = −(
1

h
+
h

6
Λ02), b =

2

h
− 2

3
hΛ02, α = β = 0. (2.12)

Now, it is easy to see that zero is an eigenvalue of the coefficient matrix in system (2.11) with multiplicity N − 1.
Substituting (2.12) in (2.9) gives,

θk =
kπ

N
, k = 1, 2, . . . , N − 1. (2.13)

Substituting this θk into (2.7) with λ = 0 we find that,

Λ02
k =

6

h2

1 + cos kπh

2− cos kπh
, k = 1, 2 . . . , N − 1. (2.14)

Using the same θk, we obtain the components, ukj , of uj from (2.8), i.e.

ukj =
sin jkπh

sin kπh
, k, j = 1, 2, . . . , N − 1. (2.15)

The eigenvectors uj whose components are (2.15) are orthogonal but not orthonormal with respect to M2. Indeed, we
have

uTkM2uk =
h

6 sin2 kπh

[
2

N−2∑
i=1

sin
ikπ

N
sin

(i+ 1)kπ

N
+ 4

N−1∑
i=1

sin2 ikπ

N

]
. (2.16)

On the other hand,

N−1∑
i=1

sin2 ikπ

N
=

1

2

N−1∑
i=1

(1− cos
2ikπ

N
) =

1

2

(
N − 1−

N−1∑
i=1

cos
2ikπ

N

)
. (2.17)
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Writing cos 2ikπ
N as an exponential function and doing some calculations we find

N−1∑
i=1

cos
2ikπ

N
= −1, (2.18)

so that,

N−1∑
i=1

sin2 ikπ

N
=
N

2
. (2.19)

Use of a standard trigonometric identity gives,

N−2∑
i=1

sin
ikπ

N
sin

(i+ 1)kπ

N
=

1

2

N−2∑
i=1

[
cos

kπ

N
− cos

(2i+ 1)kπ

N

]
=

1

2

[
(N − 2) cos

kπ

N
−
N−2∑
i=1

cos
(2i+ 1)kπ

N

]
. (2.20)

Using (2.18) we obtain the relation,

2N+2∑
i=1

cos
2ikπ

2N + 2
= 0. (2.21)

which is valid for all integer k,N . We can now rewrite (2.21) as follows

N−1∑
i=1

cos
2(2i+ 1)kπ

2(N + 1)
+

N+1∑
i=1

cos
2(2i)kπ

2(N + 1)
+ cos

2kπ

2N + 2
+ cos

2(2N + 1)kπ

2N + 2
= 0.

Since cos 2kπ
2N+2 = cos 2(2N+1)kπ

2N+2 , there follows,

N−1∑
i=1

cos
2(2i+ 1)kπ

2(N + 1)
+

N+1∑
i=1

cos
2(2i)kπ

2(N + 1)
= −2 cos

kπ

N + 1
.

From (2.21), we conclude that the second sum in the last equation is zero, hence

N−2∑
i=1

cos
(2i+ 1)kπ

N
= −2 cos

kπ

N
. (2.22)

Combining (2.22) and (2.20) and substituting this result in (2.16), we find

utkMuk =
1

6 sin2 kπh
(2 + cos

kπ

N
). (2.23)

Use of (2.23) and (2.15) completes the proof. �

Lemma 2.3. The eigenvalues and the orthonormal eigenvectors of the matrix pair (K1,M1) corresponding to a
uniform rod with fixed-free boundary conditions are given by,

Λ01
k = 6

h2

1+cos(k−0.5)πh
2−cos(k−0.5)πh , k = 1, 2, . . . , N,

vkj =
√

6 sin j(k−0.5)πh√
2+cos(k−0.5)πh

, k = 1, 2, . . . , N.
(2.24)

Proof. The proof is similar to Lemma 2.2 and so is left to the reader. �
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Table 1. Error of uncorrected and corrected eigenvalues for a1(x).

i λi |λi − Λ2
i | |λi − Λ̃2

i |
1 2.3965 0.0019 0.0051
2 50.976 0.0332 0.0792
3 101.830 0.4086 0.1616
4 167.179 1.6075 0.1981
5 254.184 4.1327 0.2865
6 362.495 8.7564 0.4342
7 490.866 16.469 0.6144
8 638.924 28.422 0.8314
9 806.673 45.948 1.1002
10 994.157 70.580 1.4344
11 1201.39 104.05 1.8467
12 1428.37 148.28 2.3525
13 1675.09 204.2 2.9708
14 1941.56 205.37 3.7247
15 2227.77 367.26 4.6414
16 2533.72 476.815 5.7529

From Lemmas 2.2, 2.3 and the definitions of ε1(i, h) and ε2(i, h), we obtain

ε1(i, h) = (i− 0.5)2π2 − 6
h2

1+cos(i−0.5)πh
2−cos(i−0.5)πh , i = 1, 2, . . . , N,

ε2(i, h) = i2π2 − 6
h2

1+cos iπh
2−cos iπh , i = 1, 2, . . . , N − 1.

(2.25)

Now, having the correction terms ε1(i, h) and ε2(i, h) we can approximate the eigenvalues λi(a(x)) and µi(a(x)) by
using (2.5).

2.2. Numerical results for direct problem. In this subsection, to show the efficiency of the corrected formulas
(2.5) , we approximate the eigenvalues of (1.1) corresponding to the following cross sections

a1(x) = 1 + 10e−25(x−0.5)2 , a2(x) = 2 + cos(3πx), a3(x) = 3− 4x+ 2x2.

To compare the results, the exact eigenvalues are computed using Matslise package [22]. The results of Tables 1-3 show
that the errors |λi−Λ1

i | and |µi−Λ2
i | increase rapidly with the index i. We observe that the corrected approximations

Λ̃1
i and Λ̃2

i are efficient and much better than Λ1
i and Λ2

i .
The Computational order is defined by

CohΛ =
log
|Λh1

i −λi|
|Λh2

i −λi|

log h1

h2

, CoiΛ =
log

|Λh
i −λi|

|Λh
i+1−λi+1|

log i
i+1

,

where CohΛ denotes the computational order with respect to the step size h and CoiΛ denotes the computational order
with respect to the index i. The results of Tables 4-5 show that the correction technique reduces this error from
O(h2i4) to O(h2i2). Similar results to Tables 4-5 can also be found for the cross sectional areas a1(x) and a3(x).

3. Inverse eigenvalue problems for the rod equation

In general, the construction of a(x) from spectral data in analytic form is impossible. Therefore, in this section,
by solving an inverse matrix eigenvalue problem by a method based on a correction technique, we construct the cross
sectional area.
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Table 2. Error of uncorrected and corrected eigenvalues for a2(x).

i λi |λi − Λ2
i | |λi − Λ̃2

i | µi |µi − Λ1
i | |µi − Λ̃1

i |
1 7.806 0.0086 0.0011 2.103 0.0005 0.00008
2 46.021 0.0758 0.0435 36.514 0.0080 0.0297
3 86.759 0.5483 0.0570 66.053 0.2469 0.0447
4 162.10 1.8059 0.1113 125.67 1.0255 0.0971
5 250.69 4.5271 0.1659 206.37 2.9391 0.1357
6 358.21 9.5214 0.2403 302.38 6.6841 0.1972
7 487.27 17.824 0.3246 420.69 13.192 0.2768
8 635.25 30.644 0.4390 559.06 23.590 0.3733
9 802.92 49.414 0.5856 716.66 39.190 0.5068
10 990.50 75.785 0.7612 894.28 61.54 0.6671
11 1197.74 111.59 0.9824 1091.68 92.39 0.8645
12 1424.72 158.89 1.2559 1308.77 133.67 1.1118
13 1671.46 219.92 1.5908 1545.63 187.55 1.4144
14 1937.93 297.04 2.0021 1802.23 256.32 1.7858
15 2224.14 392.746 2.5049 2078.57 342.42 2.2409
16 2530.09 509.51 3.1177 2374.65 448.34 2.7962

Table 3. Error of uncorrected and corrected eigenvalues for a3(x).

i λi |λi − Λ2
i | |λi − Λ̃2

i | µi |µi − Λ1
i | |µi − Λ̃1

i |
1 10.814 0.021 0.007 3.884 0.0004 0.002
2 40.491 0.426 0.025 23.239 0.129 0.014
3 89.838 2.238 0.059 62.698 1.064 0.040
4 158.92 7.198 0.115 121.91 4.187 0.084
5 247.75 17.802 0.202 200.87 11.61 0.154
6 356.31 37.326 0.333 299.56 26.21 0.261
7 158.92 69.798 0.529 121.91 51.67 0.421
8 247.75 119.82 0.818 200.87 92.316 0.660
9 356.31 192.121 1.239 299.56 152.91 1.009

3.1. Constructing a symmetric cross sectional area. In this subsection, we want to construct a(x) in the sym-
metric case (i.e., where a(x) = a(1− x)). It is well known that in this case one spectrum is enough to construct a(x),
uniquely. Thus, we consider the Equation (1.1) with fixed-fixed boundary condition and solve the following inverse
eigenvalue problem:

Inverse Problem I. Given a set of real, positive and distinct numbers {λi}ni=1, construct a symmetric cross sec-
tional area a(x) such that {λi}ni=1 are the first n eigenvalues of the problem (1.1) with fixed-fixed boundary conditions.

NOTE: If n is large, the eigenvalue λn must satisfy the asymptotic relations (2.4) or, at the very least, lower/upper
bounds for the eigenvalues for a Sturm-Liouville problem with fixed-fixed boundary conditions.

Let N = 2n + 2. By the symmetric property of a(x) we have ai = aN−i+1, i = 1, 2, . . . , n + 1. Using the given
eigenvalues {λi}ni=1, we will construct the entries {ai}n+1

i=1 of the matrices K2 and M2. In order to strike a balance

between the given data {λi}ni=1 and the unknowns {ai}n+1
i=1 taking into account the assumption (1.3), we will assume

an+1 = 1. The construction follows. First, by using the given eigenvalues {λi}ni=1 we compute the first n eigenvalues
of the pair (K2,M2), i.e. {Λ2

i }ni=1. Then by solving an inverse matrix eigenvalue problem as above we can construct



658 H. MIRZAEI, K. GHANBARI, V. ABBASNAVAZ, AND A. MINGARELLI

Table 4. The computational order of Λ2
i and Λ̃2

i with respect to h for a2(x) and h = 1
10×2n

.

Without Correction With Correction
i Coh

Λ2
i

Coh
Λ2

i
Coh

Λ2
i

Coh
Λ̃2

i

Coh
Λ̃2

i

Coh
Λ̃2

i

Coh
Λ̃2

i

1 1.997 1.999 2.000 1.977 1.994 1.999 2.000
2 1.992 1.998 1.999 2.023 2.006 2.001 2.000
3 2.003 2.000 2.000 2.054 2.013 2.003 2.001
4 2.005 2.001 2.000 2.140 2.035 2.009 2.002
5 2.012 2.003 2.000 2.232 2.058 2.015 2.004
6 2.019 2.005 2.001 2.329 2.084 2.021 2.005
7 2.025 2.008 2.002 2.476 2.124 2.031 2.008
8 2.031 2.011 2.003 2.613 2.164 2.041 2.011
9 2.035 2.015 2.004 2.762 2.207 2.053 2.013
10 2.018 2.005 2.257 2.066 2.017
11 2.022 2.006 2.310 2.081 2.020
12 2.025 2.007 2.367 2.096 2.024
13 2.029 2.009 2.427 2.113 2.029
14 2.032 2.010 2.491 2.130 2.033
15 2.035 2.011 2.558 2.150 2.038
16 2.038 2.013 2.627 2.170 2.043
17 2.040 2.015 2.699 2.192 2.059
18 2.042 2.016 2.773 2.214 2.055
19 2.041 2.018 2.849 2.238 2.061

Table 5. The computational order of Λ2
i and Λ̃2

i with respect to index i for a2(x) and h = 1
10×2n

.

Without Correction With Correction
i Coi

Λ2
i

Coi
Λ2

i
Coi

Λ2
i

Coi
Λ̃2

i

Coi
Λ̃2

i

Coi
Λ̃2

i

2 4.870 4.869 4.868 0.648 0.646 0.645
3 4.141 4.140 4.140 2.236 2.223 2.220
4 4.109 4.107 4.107 1.668 1.649 1.644
5 4.063 4.061 4.060 1.879 1.855 1.849
6 4.050 4.047 4.046 1.657 1.610 1.598
7 4.035 4.030 4.029 1.931 1.878 1.864
8 4.028 4.023 4.021 2.048 1.982 1.966
9 4.027 4.020 4.018 1.962 1.873 1.851
10 4.024 4.016 4.014 2.072 1.968 1.942
11 4.024 4.014 4.012 2.121 1.998 1.951
12 4.025 4.013 4.010 2.138 1.992 1.954
13 4.025 4.012 4.009 2.187 2.019 1.975
14 4.027 4.012 4.008 2.227 2.034 1.984
15 4.028 4.012 4.007 2.264 2.045 1.988
16 4.030 4.012 4.007 2.306 2.060 1.996
17 4.032 4.012 4.006 2.348 2.074 2.001
18 4.034 4.013 4.006 2.391 2.087 2.006
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the ai and therefore the cross sectional area, a(x). Using (2.5), we can approximate Λ2
i as follows:

Λ2
i ' λi − ε2(i, h), i = 1, 2, . . . , n. (3.1)

Thus, we try to construct {ai}ni=1 in such a way that the eigenvalues {Λ2
i }ni=1 given by (3.1) will be the eigenvalues of

the pair (K2,M2). So, {ai}ni=1 must be the solution of the following nonlinear system:

fi(a) = 0, i = 1, 2, · · ·n, (3.2)

where

fi(a) := Λ2
i (a)− λi(a(x)) + ε2(i, h), i = 1, 2, . . . n, (3.3)

and a = [a1, a2, · · · , an].

We solve the system (3.2) by using the modified Newton’s method. The recursive formula for Newton’s method is
as follows:

ak+1 = ak − [Df ]−1f(ak), k = 0, 1, . . . , a0 = [1, 1, . . . , 1]. (3.4)

where

Df(i, j) =
∂Λ2

i (a)

∂aj

∣∣∣∣
a=a0

,

is the Jacobian matrix corresponding to the nonlinear system (3.2).

The following lemma holds for the Jacobian matrix.

Lemma 3.1. The entries of the Jacobian matrix Df are as follows:

Df(i, 1) := 2( 1
h −

Λ02
i h
3 )u2

1i, i = 1, 2, . . . , n,

Df(i, j) := 2( 1
h −

Λ02
i h
3 )(u2

j−1,i + u2
j,i)− 4( 1

h +
Λ02

i h
6 )uj−1,iuj,i,

j = 2, 3, . . . , n, i = 1, 2, . . . , n,

(3.5)

where uij and Λ02
i are defined in Lemma 2.2 and uij is the j-th entries of the eigenvector corresponding to Λ02

i .

Proof. From the matrix eigenvalue problem (K2 − Λ2M2)u = 0 we must have

K2(a)ui(a) = Λ2
i (a)M2(a)ui(a), i = 1, 2, . . . , n.

Differentiating both sides with respect to aj we obtain

∂K2

∂aj
ui +K2

∂ui
∂aj

=
∂Λ2

i

∂aj
M2ui + Λ2

i

∂M2

∂aj
ui + Λ2

iM2
∂ui
∂aj

.

Multiplying both sides of the last equation by uti and using the orthonormal property of the eigenvectors, we find

∂Λ2
i

∂aj
= uti(

∂K2

∂aj
− Λ2

i

∂M2

∂aj
)ui.

Computing ∂K2

∂aj
and ∂M2

∂aj
at a = a0 and doing some matrix calculations, relations (3.5) are obtained. �

Remark 3.2. The matrix Df is a nonsingular constant matrix that is independent of the cross section a(x). The
condition number of Df is given in Table 6 for different values of n. For some large values of n, we may need to
apply a regularization method for solving the nonlinear system (3.2). Here we apply a quasi-Newton’s method by first
defining

ak+1 = ak − αk(GtG+ σI)−1Gtf(ak), G = Df , (3.6)

where αk satisfy the Wolf conditions [16] and σ > 0 is a regularization parameter.
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Table 6. Condition number of Jacobian matrix Df .

n 4 8 16 32 64

Cond(Df) 25.749 105.284 419.481 1.66e+ 3 6.63e+ 3

Remark 3.3. Equation (1.1) is a special case of the general Sturm-Liouville equation (p(x)y′)′+(λw(x)−q(x))y = 0.
It is proved in [43] that, in an appropriate Banach space, the eigenvalue λ is a differentiable function of 1

p(x) , w(x)

and q(x). Thus, the eigenvalue λ of Equation (1.1) is a differentiable function of a(x).

Theorem 3.4. Let p ≥ 1 and ‖.‖p denotes the Lp norm on interval [0, 1], there exists a constant number cp > 0 such
that if ‖a(x)− 1‖p < cp and the sequence ak obtained from (3.4) is positive, then the iteration (3.4) with initial point
a0 converges to a solution of the system (3.2).

Proof. Let ‖.‖ be a norm on Rn and Sr(a0) := {a : ‖a− a0‖ < r}. The positivity of ak implies that the matrices K2

and M2 are positive definite and the eigenvalues Λ2
i (a) are positive and simple, ([17], Chapter 3). Thus, f(a) is an

analytic function of a [41]. Since Df is nonsingular, there exists a constant K > 0 such that

‖[Df ]−1.(Df(a)−Df(a0))‖ ≤ K‖a−a0‖. Suppose that η = ‖[Df ]−1.f(a0)‖, ρ = Kη and r1 = 1−
√

1−2ρ
K . Now consider

the variation of eigenvalues λi(a(x)) with respect to a(x). By Remark 3.3, the eigenvalues λi(a(x)) are differentiable
functions of a(x). Also if ‖a(x)− 1‖p = 0, then we have,

fi(a0) = Λ02
i (a0)− λi(a(x)) + ε2(i, h) = 0, i = 1, 2, . . . , n.

Thus, for all p ≥ 1, there exists cp, such that for all a ∈ Lp[0, 1] satisfying
‖a(x) − 1‖p ≤ cp, we have 0 < ρ < 1

2 . By the theory of the modified Newton’s method [40], we conclude that all ak
lie in Sr1(a0) and the sequence {ak} converges to a solution of f(a) = 0. �

Now we present the following algorithm for solving Inverse Problem I:

Algorithm 1:

1. Input the eigendata {λi}ni=1,
2. Compute the functions fi from (3.3),
3. Compute the matrix Df from Lemma 3.1,
4. Compute the recursive Newton’s sequence (3.4).

3.2. Construction of nonsymmetric cross sectional area. It is well-known that for a nonsymmetric cross sec-
tional area, two sets of eigenvalues corresponding to two boundary conditions are required to determine a(x) uniquely,
[6, 17]. Now we consider Equation (1.1) with fixed-fixed and fixed-free boundary conditions and solve the following
inverse problem:

Inverse Problem II. Given two sets of real, distinct, positive numbers {λi}ni=1 and {µi}ni=1, such that

µi < λi < µi+1, i = 1, 2, . . . , n− 1, µn < λn,

construct a nonsymmetric cross sectional area a(x) such that {µi}ni=1 are the first n eigenvalues of the problem (1.1)
with fixed-free boundary condition and such that {λi}ni=1 are the first n eigenvalues of the problem (1.1)) with fixed-fixed
boundary condition.

NOTE: If n is large, the eigenvalues λn and µn must satisfy the asymptotic relations (2.4) or, at the very least,
lower/upper bounds for the eigenvalues for a Sturm-Liouville problem with fixed-fixed boundary conditions.

Let N = 2n+1. Using the finite element method, Equation (1.1) with fixed-free boundary conditions is transformed
to the system (K1 − Λ1M1)u = 0. In the nonsymmetric case we are given 2n data and 2n + 1 unknown parameters
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{ai}2n+1
i=1 . For a unique solution a(x), we choose a2n+1 = 1. Using (2.5), we can approximate Λ1

i and Λ2
i as follows:

Λ1
i ' µi − ε1(i, h), i = 1, 2, . . . , n,

Λ2
i ' λi − ε2(i, h), i = 1, 2, . . . , n. (3.7)

Now, we want to construct {ai}2ni=1 such that Λ1
i and Λ2

i , defined by (3.7), are the eigenvalues of (K1,M1) and
(K2,M2), respectively. Thus, we must solve the following nonlinear system:

gi(a) = 0, i = 1, 2, . . . , 2n, (3.8)

where,

gi(a) := Λ2
i (a)− λi + ε2(i, h) i = 1, 2, . . . , n,

gn+i(a) := Λ1
i (a)− µi + ε1(i, h), i = 1, 2, . . . , n,

(3.9)

and a = [a1, a2, · · · , a2n].

As before, we solve the system (3.8) by using a modified Newton’s method where the recursion formula is given by,

ak+1 = ak − [Dg]−1g(ak), k = 0, 1, . . . , a0 = [1, 1, . . . , 1]. (3.10)

The Jacobian matrix of the system (3.8) is given by,

Lemma 3.5. The entries of Dg are as follows:

Dg(i, 1) =
(

1
h −

Λ02
i h
3

)
u2
i1, i = 1, 2, . . . , n,

Dg(n+ i, 1) =
(

1
h −

Λ01
i h
3

)
v2
i,1, i = 1, . . . , n,

Dg(i, j) =
(

1
h −

Λ02
i h
3

)
(u2
i,j−1 + u2

i,j)− 2( 1
h +

Λ02
i h
6 )ui,j−1uij ,

i = 1, 2, . . . , n, j = 2, . . . , 2n

Dg(n+ i, j) =
(

1
h −

Λ01
i h
3

)
(v2
i,j−1 + v2

i,j)− 2( 1
h +

Λ01
i h
6 )vi,jvi,j−1,

i = 1, . . . , n, j = 2, . . . , 2n.

where Λ02
i , uij are defined by (2.10) and Λ01

i , vij are defined by (2.24).

Proof. The proof is similar to Lemma 3.1 and so is left to the reader. �

The convergence of the modified Newton iteration (3.10) can be proved in the same way as in Theorem 3.4. Now
we can solve Inverse problem II using the following algorithm:

Algorithm 2

1. Input the eigendata {λi}ni=1 and {µi}ni=1,
2. Compute the functions gi from (3.9),
3. Compute the matrix Dg from Lemma 3.5,
4. Compute the recursive Newton sequence (3.10).
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Table 7. Error for a1(x) with different values of n.

n ‖a− an‖2 ‖a− an‖∞ ‖f‖∞ C-order
4 0.1860 0.0826 2.6e− 13
8 0.0865 0.0382 8.7e− 12 1.3025
16 0.0378 0.0176 1.4e− 10 1.3017
32 0.0169 0.0082 1.6e− 10 1.2136
64 0.0079 0.0039 2.5e− 10 1.1218
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Figure 1. Plot of a1(x) with n = 16.

3.3. Numerical results for inverse problem. In this subsection we present some numerical experiments for the
solutions of Inverse problems I and II so as to display the efficiency of the proposed methods. In the following
numerical examples we study the effect of the correction terms ε1(i, h), and ε2(i, h), in the nonlinear systems (3.2) and
(3.8) . In Examples 3.6-3.9 the cross sectional area a(x) without the correction terms is constructed by solving the
nonlinear system Λ2

i (a)−λi = 0 for Inverse problem I and Λ2
i (a)−λi = 0, Λ1

i (a)−µi = 0 for Inverse problem II.
Numerical results (Figures 3.6-3.9, part (a)) suggest that Newton’s method without the correction terms diverges. Our
results show that using the FEM together with correction technique to solve the inverse problem of the rod equation
is quite efficient.

The Computational order, denoted by ”C-order”, is defined by

C-order =
log( e1e2 )

log(h1

h2
)
,

where ei = ‖a − an‖2 denotes the L2 error corresponding to hi. From the results it can be seen that the numerical
convergence rate is close to 1.

Example 3.6. Consider problem (1.1) with cross sectional area a1(x) which is a symmetric function. Thus, we can
construct it by using Algorithm 1. Table 7 presents errors in finding a1(x) for various values of n. In Figure 3.6,
the exact and computed cross sectional area are plotted. In Figure 3.6, the errors of the computed cross sectional
area with and without the correction terms are plotted. The direct problem for a1(x) is solved in [13], but the inverse
problem is not solved by the method of [13]. Here we construct a1(x) using regularized quasi-Newton’s method (3.6).
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Figure 2. Error of a1(x) with n = 32.

Table 8. Error for a2(x) with different values of n.

n ‖a− an‖2 ‖a− an‖∞ ‖g‖∞ C-order
4 0.1960 0.1770 5.4e− 13
8 0.1068 0.0906 9.5e− 13 0.95
16 0.0549 0.0443 2.04e− 12 1.00
32 0.0281 0.0217 1.03e− 10 0.99
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Figure 3. Plot of a2(x) with n = 16.

Example 3.7. Consider problem (1.1) with cross sectional area a2(x). The function a2(x) is nonsymmetric so that
we can construct it using Algorithm 2. The errors in approximating a2(x) for various values of n are presented in
Table 8. The exact and computed cross sectional area are plotted in Figure 3. In Figure 3.7, the error with correction
terms and without correction terms are plotted.
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Figure 4. Error of a2(x) with n = 16.

Table 9. Error for a3(x) with different values of n.

n ‖a− an‖2 ‖a− an‖∞ ‖g‖∞ C-order
4 0.0495 0.0436 9.2e− 14
8 0.028 0.0234 1.2e− 12 0.89
16 0.0152 0.0121 6.9e− 12 0.92
32 0.008 0.0061 2.4e− 11 0.94
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Figure 5. Plot of a3(x) with n = 16.

Example 3.8. Consider problem (1.1) with cross sectional area a3(x). The function a3(x) is nonsymmetric thus we
can construct it using Algorithm 2. The errors of a3(x) for various values of n presented in Table 9. The exact
and computed cross sectional area are plotted in Figure 5. The error of computed cross sectional area with correction
terms and without correction terms are shown in Figure 3.8.
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Figure 6. Error of a3(x) with n = 16.

Table 10. Errors for a4(x) with different values of n.

n ‖a− an‖2 ‖a− an‖∞ ‖f‖∞ C-order ‖a− an‖2 [13] ‖a− an‖∞ [13]
4 0.0834 0.0572 9.2e− 14 0.3532 0.2471
8 0.0523 0.0305 3.4e− 13 0.79 0.2183 0.1468
16 0.0303 0.0234 1.2e− 12 0.89 0.1315 0.0809
32 0.0167 0.0098 4.7e− 11 0.90 0.0805 0.0426
64 0.0089 0.0050 1.8e− 10 0.93

Example 3.9. Consider problem (1.1) with cross sectional area a4(x) = (cosh(πx)−tanh(π2 ) sinh(πx))2. Construction
of a4(x) was studied in [13]. This is a symmetric cross sectional area, thus we can construct it by using the eigenvalues
{λi}ni=1 of problem (1.1) with fixed-fixed boundary condition. Table 10, presents error of a4(x) for various values of
n. Also the results compared with the results of [13]. In Figure 3.9, the exact and computed cross sectional area are
plotted for different values of n. In Figure 3.9, the error of computed cross sectional area with correction terms and
without correction terms are plotted.

4. Conclusion

In this paper, the direct and inverse spectral problems of the rod equation are studied using the FEM along with a
correction technique. Our main purpose is to examine the ability of the FEM together with the correction technique
to improve the results in solving direct and inverse problems for Equation (1.1). We observed that the correction
terms play an important role in estimating the eigenvalues and in constructing the unknown cross sectional area.
Two algorithms based on the correction technique and a modified Newton’s method for constructing symmetric and
nonsymmetric cross sectional areas are proposed. The convergence of Newton’s method is proved and computational
orders are obtained. Numerical results demonstrate the efficiency of our algorithms in both symmetric and nonsym-
metric cases. A weak point in this study is the large condition number of a related Jacobian matrix which makes
Newton’s method does not work for some cross sections. Here we solved this problem by using a regularization method.

In future work, we will extend the proposed method for Equation (1.1) to the case of general boundary conditions.
Also, this method may be adapted to the study of a fourth order Euler-Bernoulli beam equation.
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Figure 7. Results for a4(x) with different values of n.
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