
Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 13, No. 1, 2025, pp. 271-281
DOI:10.22034/cmde.2024.57337.2396

Extended hyperbolic function method for the model having cubic-quintic-septimal nonlinear-
ity in weak nonlocal media

Hamood Ur Rehman1, Ifrah Iqbal1 , Mostafa Eslami2,∗, Mohammad Mirzazadeh3, Sajjad A. Jedi Abduridha4, and Mir

Sajjad Hashemi5

1Department of Mathematics, University of Okara, Okara, Pakistan.

2Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.

3Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran.

4Department of Mathematics, Faculty of Basic Education, University of Kufa,Najaf, Iraq.

5Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran.

Abstract

Optical solitons are self-trapped light beams that maintain their shape and transverse dimension during propa-

gation. This paper investigates the propagation of solitons in an optical material with a weak nonlocal media,

modeled by a cubic-quintic-septimal nonlinearity. The dynamics of solitons in optical waveguides are described
by the cubic nonlinear Schrödinger equation and its extensions. This equation model applies to both the spatial

propagation of beams and the temporal propagation of pulses in a medium exhibiting cubic nonlinearity. The

novelty of the paper lies in the application of the extended hyperbolic function method to derive soliton solutions
in optical materials with weak nonlocal media in the form of the periodic, bright, kink, and singular type solitons.

The obtained solutions provide explicit expressions for the behavior of optical waves in media. These results shed
light on the dynamics of nonlinear waves in optical materials and contribute to a better understanding of soliton

propagation. The findings contribute to a more comprehensive understanding of the role of nonlocal nonlinearity

and time constants in soliton solutions. Our findings provide a better understanding of the dynamics of the nonlin-
ear waves in optical media and have many application for the field of optical communication and signal processing.

The role of nonlocal nonlinearity and time constant on soliton solutions is also discussed with the help of graphs.
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1. Introduction

Optical solitons have attracted significant attention due to their potential applications in various fields of op-
tics and photonics [5, 24, 31, 47]. Various models have been formulated to explore this phenomenon, encompassing
equations such as the Biswas-Arshed equation [32], perturbed NLSE [15], Klein-Gordon equation [27], bi-harmonic
coupled NLSE [18], (2+1)-dimensional shallow water wave model [6], complex Ginzburg Landau-equation [7], frac-
tional Jaulent Miodek [43], generalized Kadomestev-Petviashili equation [13], (2+1)-dimensional variable-coefficient
Sawada-Kotera system [25], (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation [20], generalized nonlinear frac-
tional integro-differential equation [3], (4+ 1)-dimensional Fokas and (2+ 1)-dimensional breaking soliton equations
[26], Kraenkel-Manna-Merle (KMM) equation [49], and KP hierarchy equations [19]. The investigation of solitons has
yielded numerous exciting discoveries and advancements, including the development of new techniques for generating
and controlling the localized light beams [22, 23, 34]. Moreover, researchers have explored the properties and behaviors
of solitons in different types of nonlinear media, opening up new avenues for potential applications [1]. For instance,
solitons in photo-refractive materials have been shown to exhibit interesting dynamics and have potential uses in image
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processing and holography [11, 12]. As researchers continue to explore the possibilities offered by optical solitons, we
can expect to see further progress and advancement in this exciting field.

The dynamics of solitons in optical theory are governed by the cubic NLSE and its extension [2, 4, 35, 37, 46, 53].
This equation is valid for both spatially propagating beams and temporally pulses in media with cubic nonlinearity
[8]. Interestingly, solitons can arise in a wide range of nonlinear systems, from Kerr-type [45] to liquid crystal [30], as
well as a nonlocal cubic response in media [9].

Various studies have explored the stable propagation of solitons in media with modification of cubic-quintic non-
linearities [14, 50]. The septimal nonlinearity including cubic and quintic terms have important role in the formation
of solitons. Recently, bright solitons were observed in metal colloids having quintic-septimal nonlinearity, modeled
by NLSE with dissipative terms [38]. The management of nonlinear system, achieved by adjusting the strength of
nonlinear terms can enable a controlled interplay between different nonlinear terms, leading to the enhancement or
suppression of specific high-order nonlinearities [39, 40]. This technique has been experimentally demonstrated in
various media such as metal colloids with a suppressed cubic nonlinearity and a septimal media induced by destructive
interplay between cubic and quintic nonlinearities [40].

The propagation of solitons in septimal media is a topic that requires further examination. The highly unstable
behavior is expected from the seventh-order nonlinearity, hence, the use of higher-order nonlinearities can lead the
collapse of beam. Therefore, there is a need to investigate the cubic-quintic-septimal nonlinear model to supplement
past studies and additional possibilities for experiments. This study focuses on analyzing the stable propagation of
solitons in media that demonstrate nonlinearities up to the seventh order and is described as [28, 41, 48, 54]

ι
∂φ

∂t
+ β

∂2φ

∂x2
+ δ|φ|2φ+ µ|φ|4φ+ λ|φ|6φ+ νφ

∂2|φ|2

∂x2
= 0, (1.1)

where φ, t and x represent amplitude, propagation distance , and transverse spatial coordinate. The equation includes
several coefficients, including β which represents the diffraction coefficient whereas δ, µ, and λ denote the coefficient of
cubic, quintic, and sepitmal nonlinearity respectively. Additionally, the term ν is linked to weak nonlocal nonlinearity.
In the literature, it has been noted that (1.1) expands upon the equation typically used for analyzing the propagation
of beams in cubic-quintic-septic media [42]. This is achieved by adding the effects of nonlocal nonlinearity, represented

by the term φ∂
2|φ|2
∂x2 .

The governed equation stands as a vital optical model because it emerges under specific conditions, typically in
scenarios devoid of the fiber loss. They have found widespread applications in nonlinear optics, plasma physics,
biomedicine, and ocean dynamics. In practical optical fibers, the introduction of loss explains the exponential decay of
optical pulse power as it propagates through the fiber. This loss disrupts the delicate equilibrium between nonlinearity
and dispersion, making the idealized scenario unattainable. This is the reason why the majority of optical fibers are
non-uniform in nature. However, it’s only when the dispersive and nonlinear effects balance each other that solitons
with consistent pulse shapes can form. These equations are commonly employed to describe the transmission char-
acteristics of optical solitons due to their attributes of high bit rates, long-distance propagation, and high capacity.
In long-distance transmission, the waveform, amplitude, and velocity of optical solitons remain remarkably stable,
making them essential for characterizing the dynamic features of optical pulses. As the primary solutions to the
proposed equation, optical solitons are extensively applied in the realm of optical fiber communication. The origin of
the nonlinear Kerr law can be traced to the nonlinear responses of light waves within optical fibers, arising from the
non-harmonic motion of electrons bound in molecules under the influence of external electric fields. Several studies
have delved into the analysis of the Equation (1.1), each employing distinct methods to explore its soliton solutions.
In [28], the authors utilized the ansatz technique and identified bright and kink-type solitons. Another approach was
taken by [48], where dark solitary waves were exclusively identified using a specialized ansatz.
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In contrast to the existing literature, our paper employs the application of the EHFM to scrutinize the Equation
(1.1). By applying this method, the set of explicit solutions are obtained that describe the propagation of beams in
the medium. This approach has been shown to be effective in solving a wide range of nonlinear partial differential
equations (NLPDEs) [10, 17, 33, 52]. These solutions encompass a wide spectrum, including kink, bright, singular, and
periodic-singular solitons. The versatility of EHFM showcased in our work is a significant advancement, providing a
richer understanding of the dynamics governed by (1.1). It is important to acknowledge that our analysis is conducted
within specific parameter ranges. The use of certain conditions in our methods may occasionally pose challenges in
finding solutions to the equations.

The remaining paper is structured as follows: Section 2 presents the concrete steps of the method. The method
is applied to obtain the solution of proposed model for the construction of light beams in materials with nonlocal
nonlinearity in section 3. Section 4 presents the graphical representation of the obtained results and discusses the
effects of different parameters on the solutions. Last section summarizes the key findings of the study.

2. Extended hyperbolic function method

In this section, the steps of EHFM [16, 36, 44, 51] are briefly presented.
Assume, the NLPDE

G(φ, φt, φx, φtt, φtx, ...) = 0, (2.1)

where G is polynomial along its derivatives. Now, apply the following transformation on (2.1)

φ(x, t) = Υ(ε)ei(kt−fx+θ), ε = x− ct, (2.2)

where k and f and θ are unknown constants while Υ(ε) is the analytic function. This transformation reduces the (2.1)
into the following equation written as

Y (Υ,Υ′,Υ′′, ...) = 0. (2.3)

Suppose, the solution of (2.3) is

Υ(ε) =

m∑
i=0

αiρ
i(ε), (2.4)

where αi 6= 0 and m is determined with the aid of homogeneous balancing principle. Now, ρ(ε) indulges two types of
equations.
Type 1:

ρ′(ε) = ρ(ε)
√
~1 + ~2ρ2(ε), ~1, ~2 ∈ R. (2.5)

The (2.5) gives the following solutions:
Case 1: When ~1 > 0, ~2 > 0,

ρ1(ε) = −
√

~1
~2
csch

√
~1(ε).

Case 2: When ~1 < 0, ~2 > 0,

ρ2(ε) =

√
−~1
~2

sec
√
−~1(ε).

Case 3: When ~1 > 0, ~2 < 0,

ρ3(ε) =

√
~1
−~2

sech
√
~1(ε).

Case 4: When ~1 < 0, ~2 > 0,

ρ4(ε) =

√
−~1
~2

csc
√
−~1(ε).
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Case 5: When ~1 < 0, ~2 > 0,

ρ5(ε) = cos
√
−~1(ε) + ιsin

√
−~1(ε).

Case 6: When ~1 = 0, ~2 > 0,

ρ6(ε) =
1√
~2(ε)

.

Case 7: When ~1 = 0, ~2 < 0,

ρ7(ε) =
1√
−~2(ε)

.

Type 2:

ρ′(ε) = ~1 + ~2ρ2(ε), ~1, ~2 ∈ R. (2.6)

Case 1: When ~1~2 > 0,

ρ8(ε) = sgn(~1)

√
~1
~2
tan(

√
~1~2(ε)).

Case 2: When ~1~2 > 0,

ρ9(ε) = -sgn(~1)

√
~1
~2
cot(

√
~1~2(ε)).

Case 3: When ~1~2 < 0,

ρ10(ε) = sgn(~1)

√
−~1
~2

tanh(
√
−~1~2(ε)).

Case 4: When ~1~2 < 0,

ρ11(ε) = sgn(~1)

√
−~1
~2

coth(
√
−~1~2(ε)).

Case 5: When ~1 = 0, ~2 > 0,

ρ12(ε) = − 1

~2(ε)
.

Case 6: When ~1 < 0, ~2 = 0,

ρ14(ε) = ~1(ε).

At the end, by inserting (2.4) into (2.3) along (2.5) and (2.6), the algebraic system of equations are acquired and
values of constants are determined.

3. Application of EHFM

By using the (2.4) in (1.1), the following equation is obtained

βΥ′′(ε)−
(
βf2 − 2νΥ′(ε)2 + k

)
Υ(ε)− i(2βf + c)Υ′(ε) + δΥ(ε)3 + µΥ(ε)5 + λΥ(ε)7 + 2νΥ(ε)2Υ′′(ε) = 0. (3.1)

Splitting (3.1), the real part is

βΥ′′(ε)−
(
βf2 − 2νΥ′(ε)2 + k

)
Υ(ε) + δΥ(ε)3 + µΥ(ε)5 + λΥ(ε)7 + 2νΥ(ε)2Υ′′(ε) = 0, (3.2)

while the imaginary part is

−(2βf + c)Υ′(ε) = 0. (3.3)

By solving the above equation, we get

c = −2βf. (3.4)
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By using balancing rule in (3.2), we acquire m= 1
2 . So, another transformation

Υ(ε) = Θ(ε)
1
2 , (3.5)

is applied on (3.2), which yields the following equation

−4Θ(ε)2
(
βf2 + k − νΘ′′(ε)

)
+ 2βΘ(ε)Θ′′(ε)− βΘ′(ε)2 + 4δΘ(ε)3 + 4λΘ(ε)5 + 4µΘ(ε)4 = 0. (3.6)

By the implementation of balancing rule on above equation, we get m = 1. Hence, we assume the solution of (3.6) is

Θ(ε) = α0 + α1ρ(ε), α1 6= 0. (3.7)

Type 1
Now, by putting (3.7) and (2.5) into (3.6), the system of equations is attained. By resolving this system, the obtained
values of constants are written as below

α0 = 0,

α1 =

√
−2~2ν
λ

,

δ = −~1ν,

f =
1

2

√
−3λk + 2µ~1

2µν
,

β =
8µν

3λ
.

Now, by using these values of constants along solutions of (2.5) in (3.7) and by means of (3.5), the following solutions
of (1.1) are obtained
Case 1: When ~1 > 0, ~2 > 0,

φ1(x, t) =

(
−
√
−2~1ν
λ

csch
√
~1(ε)

) 1
2

ei(kt−fx+θ).

Case 2: When ~1 < 0, ~2 > 0,

φ2(x, t) =

(√
2~1ν
λ

sec
√
−~1(ε)

) 1
2

ei(kt−fx+θ).

Case 3: When ~1 > 0, ~2 < 0,

φ3(x, t) =

(√
2~1ν
λ

sech
√
~1(ε)

) 1
2

ei(kt−fx+θ).

Case 4: When ~1 < 0, ~2 > 0,

φ4(x, t) =

(√
2~1ν
λ

csc
√
−~1(ε)

) 1
2

ei(kt−fx+θ).

Type 2:
Similary for type 2, by solving system of equations which is obtained by inserting (3.7) and (2.6) into (3.6), the
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following values of constants are obtained

α0 = α0,

α1 =

√
−~2α0

~1
,

λ =
2µ~1~2
α2
0

,

µ = −3~1~2 (8να0 − β)

4α2
0

,

f =

√
~1~2β − k

β
,

δ =
2~1~2(−β + 2να0)

α0
.

By using these values of constants, the solutions of (1.1) is obtained as like type 1.
Case 1: When ~1~2 > 0,

φ5(x, t) =
(
α0 +

(
sgn(~1)

√
−α0tan(

√
~1~2(ε))

)) 1
2

ei(kt−fx+θ).

Case 2: When ~1~2 > 0,

φ6(x, t) =
(
α0 −

(
sgn(~1)

√
−α0cot(

√
~1~2(ε))

)) 1
2

ei(kt−fx+θ).

Case 3: When ~1~2 < 0,

φ7(x, t) =
(
α0 +

(
sgn(~1)

√
α0tanh(

√
−~1~2(ε))

)) 1
2

ei(kt−fx+θ).

Case 4: When ~1~2 < 0,

φ8(x, t) =
(
α0 +

(
sgn(~1)

√
α0coth(

√
−~1~2(ε))

)) 1
2

ei(kt−fx+θ).

4. Results and Discussion

The primary objective of this study is to introduce comprehensive closed-form solutions for a wide range of NLPDEs.
These closed-form solutions are intended to serve as efficient tools, acting as versatile solvers that can greatly benefit
mathematicians, engineers, and physicists. The significance of these solutions lies in their ability to elucidate complex
phenomena in various applied scientific disciplines. Specifically, in the field of optical fiber propagation, the dynamics
of bright and dark solitons are intricately linked to the delicate balance between self-phase modulation and group
velocity dispersive effects [29]. The nature of these solutions, whether they manifest as solitons, periodic patterns, or
dissipative structures, depending on the specific values of physical parameters present in the dispersion and nonlinear
coefficients. This paper is dedicated to the exploration and discovery of diverse solution types, including periodic
structures, optical dark solitons, optical bright solitons, and singular optical solutions. This section gives graphical
representation to visualize the behavior of soliton waves in the cubic-quintic-septimal equation having nonlocal non-
linearity. By using the EHFM, the 3D graphs with projection and 2D graphs are generated to provide a clear and
intuitive representation of the dynamics of solitons waves under different parameters values. The effect of changing
parameters values on the behavior of solitons waves is demonstrated through 2D plots to show the dependence of
wave’s amplitude and speed on the parameters.

Figure 1 shows the the graph of φ2(x, t) under the values of the c = 0.5, h1 = −1, θ = 1, λ = 0.1, k = −0.98,
f = 0.8, δ = 0.5 and h2 = 1. The clear periodicity can be observed in the graph. The graph of φ3(x, t) exhibits a
localized and stable waveform with a high intensity feature, known as “bright soliton” for the values of c = 0.5, h1 = 1,



CMDE Vol. 13, No. 1, 2025, pp. 271-281 277

θ = 1, λ = 0.1, k = −0.98 ν = 1, f = 0.8, δ = 0.5 and h2 = −1. The cubic-quintic-septimal equation having nonlocal
nonlinearity has additional coefficient that determines the nonlocal behavior of the equation. By changing the value
of ν, it is observed that the soliton solutions can be adjusted to move up or down as shown in 2D graphs of Figures 1
and 2.
Figures 3 and 4 present the graphical representation for φ7(x, t) and φ8(x, t) respectively. The considered parameters
are c = 0.5, h1 = −1, θ = 1, λ = 0.1, k = −0.98, f = 0.8,δ = 0.5, a0 = 1, and h2 = 1. The φ7(x, t) and φ8(x, t)
display the kink soliton and singular soliton which show sharp change and discontinuity in the wave form respectively.
By changing the values of constant of time in the traveling wave transformation, the soliton wave move left or right.
Hence, the following outcomes are drawn:

• The up and down movement of soliton wave refer to a change in amplitude of the wave. It is observed that by
increasing the coefficient of nonlocal nonlinearity leads to an increase in amplitude while decreasing it leads to de-
crease in amplitude of soliton.

• On the other hand, when the wave moves left or right, it means there is a change in position of soliton. This
is due to change of constant of time in traveling wave transformation. Increasing and decreasing of the value leads to
rightward and leftward movement respectively.

Figure 1. Structures of the solution of φ2(x, t), describe periodic soliton solutions (a) 3D plot with
projection within interval −10 ≤ x ≤ 10, and −10 ≤ t ≤ 10 and (b) 2D plot at different ν within
interval −5 ≤ x ≤ 10 and t = 1.

Figure 2. Structures of the solution of φ3(x, t), describe bright soliton solutions (a) 3D plot with
projection within −10 ≤ x ≤ 10, and −10 ≤ t ≤ 10 and (b) 2D plot at different ν within interval
−5 ≤ x ≤ 10 and t = 1.
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Figure 3. Structures of the solution of φ7(x, t), describe kink soliton solutions (a) 3D plot with
projection within −10 ≤ x ≤ 10, and −10 ≤ t ≤ 10 and (b) 2D plot at different c within interval
−10 ≤ x ≤ 10 and t = 1.

Figure 4. Structures of the solution of φ8(x, t), describe singular soliton solutions (a) 3D plot with
projection within −20 ≤ x ≤ 20, and −20 ≤ t ≤ 20 and (b) 2D plot at different c within interval
−5 ≤ x ≤ 10 and t = 1.

5. Conclusion

In this study, we have studied the propagation of beams in materials using (1.1), which is the generalized equation
of NLSE that accounts for the effects of nonlocal nonlinearity. To analyze this equation, EHFM is employed to obtain
the solutions in the form of bright, periodic, singular, and kink soliton solutions. The obtained results provide a
better understanding of the dynamics of light propagation in materials where nonlocal effects play a significant role
meta-materials. So, the current work contributes to the development of more comprehensive models for the study of
light-matter interactions and provides a direction for future research in this area. The utilization of both 3D graphs
with projections and 2D graphs has significantly enhanced our comprehension of the dynamics governing soliton waves
across various parameter values. Through these visual representations, we have gained a clear and intuitive insight
into how soliton waves behave under distinct parameter settings. The pivotal role of these graphical representations
lies in demonstrating the effects induced by changes in parameter values on the behavior of soliton waves. Specifically,
the 2D plots effectively illustrate the interdependence between the wave’s amplitude and speed with alterations in the
parameters. In future investigations, the inclusion of fractional order parameters offers the potential for solving the
equation presented in terms of various operators, such as the conformable derivative, M-truncated fractional derivative,
beta derivative, and others.
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[39] A. S. Reyna and C. B. de Araújo, Nonlinearity management of photonic composites and observation of spatial-
modulation instability due to quintic nonlinearity, Physical Review A, 89 (6) (2014), 063803.
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[41] A. S. Reyna, B. A. Malomed, and C. B. de Araújo, Stability conditions for one-dimensional optical solitons in
cubic-quintic-septimal media, Physical Review A, 92(3) (2015), 033810.
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