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Abstract
The Boussinesq equation and its related types are able to provide a significant explanation for a variety of different
physical processes that are relevant to plasma physics, ocean engineering, and fluid flow. Within the framework of

shallow water waves, the aim of this research is to find solutions for solitary waves using newly developed nonlocal
models of Boussinesq’s equations. The extraction of bright and dark solitary wave solutions along with bright–

dark hybrid solitary wave solutions is accomplished through the implementation of two integration algorithms.

The general projective Riccati equations method and the enhanced Kudryashov technique are the ones that have
been implemented as techniques. The enhanced Kudryashov method combines the benefits of both the original

Kudryashov method and the newly developed Kudryashov method, which may generate bright, dark, and singular

solitons. The Projective Riccati structure is determined by two functions that provide distinct types of hybrid
solitons. The solutions get increasingly diverse as these functions are combined. The techniques that were applied

are straightforward and efficient enough to provide an approximation of the solutions discovered in the research.

Furthermore, these techniques can be utilized to solve various kinds of nonlinear partial differential equations
in mathematical physics and engineering. In addition, plots of the selected solutions in three dimensions, two

dimensions, and contour form are provided.
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1. Introduction

Wave and nonlinear evolution equations, also known as NLEEs, include first- or second-order derivatives concerning
the time variable are occupied a significant role in various scientific fields, including water waves, nonlinear optics,
plasma physics, electronic devices, fluid mechanics, and so on [2, 20–26, 31, 33]. In recent years, there has been a
surge in interest in these equations due to the complexity associated with finding a solution to NLPDEs. In recent
years, various computational tools and direct algebraic approaches have gradually emerged due to the progression of
scientific research and the ongoing development of computational computer software [1, 3–5, 7, 10, 12, 13, 15, 32].
Coastal engineers need to understand the nonlinear and shallow-water wave characteristics in order to assess the im-
pact of shallow-water waves on nonlinear forms in coastal and ocean engineering. Because the world will need energy
to do things in the future, people worldwide are studying how to design wave energy devices that can get energy from
natural sources like waves. Aside from analyzing different environmental and design conditions, it is important to use
different analytical methods to analyze nonlinear wave loads on floating structures. This enables us to gain insight
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into the interactions between nonlinear waves and structures. In significant work, Boussinesq successfully derived an
equation that describes the propagation of water waves within a rectangular channel [6]. The equation under consid-
eration is an important feature in the field of water wave theory, specifically in the modeling of nonlinear dispersive
long waves characterized by small amplitudes [11].

Boussinesq demonstrated that a delicate interaction between the steepening effect of the nonlinearity and the flatten-
ing effect of the dispersion preserves the shape of a wave. He derived the equation to model shallow water wave action
read as

utt =
(
u− αu2 + βuxx

)
xx
. (1.1)

Eq. (1.2) holds significant importance not only in the field of fluid dynamics but also in various other physical phenom-
ena. It has been observed to accurately describe nonlinear lattice waves in the continuum limit [30], the propagation
of ion-sound waves in a uniform isotropic plasma [19], and the dynamics of the anharmonic lattice in the Fermi-Pasta-
Ulam (FPU) problem. These diverse applications highlight the versatility and wide-ranging implications of Eq. (1.2)
in different areas of physics.

Hence, various Boussinesq models have been created to examine the interaction between nonlinear waves and float-
ing objects in various water depths. These models can be applied to marine operations and wave energy conversion
[6, 8, 16–18]. It characterizes the motion of water with tiny amplitudes and long waves. Boussinesq-type equations
combine dispersion, time dependence, and weak nonlinearity and have emerged as essential equations for predicting
wave transformations in coastal locations. In coastal and ocean engineering, the Boussinesq equation is commonly em-
ployed. Some of the applications of this equation in ocean engineering are tsunami wave simulations and mathematical
modeling of tidal swings. The equation can also be found in other domains and applications [9, 27–29]. Bang-Qing Li
et al. [14] developed two new types of nonlocal Boussinesq equations as follows:

The first nonlocal Boussinesq type equation is considered as{
ut = vx,

vt = αux − vx − (u2)x +
(
v2+ux

2

u−α2

)
x
.

(1.2)

The second nonlocal Boussinesq type equation is considered as{
ut = vx,

vt = αux − vx − uxxx − (u2)x +
(
v2+uv+ux

2

u−α2

)
x
.

(1.3)

In water waves, u = u(x, t) and v = v(x, t) represent two wave envelopes in two direction at different layers. The
following sections are structured: In section 2, we will go over the core procedure of the enhanced Kudryashov’s (EK)
technique and the general projective Riccati equations (GPRES) algorithm. Section 3 and section 4 implement the
two integration techniques to two nonlocal models of Boussinesqs equations. Finally, the conclusion of the present
investigation is reported in section 4.

2. Methods Summary

Exact solutions of nonlinear differential equations refer to solutions that can be expressed in a closed-form mathe-
matical expression, rather than as a numerical approximation. These solutions are often sought after as they provide
deeper insight into the underlying physical or mathematical systems being described by the differential equation. There
are various methods for finding exact solutions of nonlinear differential equations, including analytical techniques such
as separation of variables, reduction of order, and substitution methods, as well as numerical methods like the shooting
method and finite difference method. The choice of method depends on the specific form of the differential equation
and the desired level of accuracy. Exact solutions can provide valuable information about the behavior of the system,
including its stability, periodicity, and bifurcation points.
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Let us now proceed to provide a detailed explanation of these methods.

2.1. EK Procedure. The EK technique is a method for solving nonlinear differential equations. The technique starts
by transforming the nonlinear differential equation into a polynomial of unknown functions and their derivatives, along
with unknown parameters. The polynomial is then simplified by collecting terms with the same power and equating
them to zero. This results in an over-determined system of algebraic equations that can be solved using software such
as Mathematica to determine the unknown parameters and functions. By balancing the highest-order derivatives and
nonlinear terms in the original differential equation, the EK technique can determine the value of a positive integer
parameter that controls the degree of the polynomial. The resulting solutions of the differential equation are then
expressed in terms of elementary functions. The EK method combines the benefits of the original Kudryashov method,
which can obtain dark and singular solitons, and the newly developed Kudryashov method, which can give bright and
dark solitons. Our proposed techniques can generate both bright and dark solitons and singular solitons. The EK
technique has been shown to be effective in solving a wide range of nonlinear differential equations and has been widely
used in various fields of science and engineering.
Taking into consideration the following form of the NLEE.

G(y, yx, yt, yxt, yxx, ...) = 0. (2.1)

The central procedure of the EK method involves a polynomial, G, that is defined based on the variable y, as well as
independent variables of time and space. The unknown function, y = y(x, t), is represented by y.
By employing the transformation:

y(x, t) = Y ($), $ = µ(x− υt), (2.2)

where µ and υ are variables to be determined later, the Eq. (2.1) is thus transformed to the NLODE.

P (Y,−µυY ′, µY ′, µ2Y ′′, ...) = 0. (2.3)

Step–1: Considering that the solution to (2.3) may be stated as [3]

Y ($) = λ0 +

N∑
l=1

∑
i+j=l

λijQ
i($)Rj($), (2.4)

the constants λ0, λij(i, j = 0, 1, ..., N) need to be found and the functions Q($) and R($) must satisfy the following
ODEs:

Q′($) = Q($)(ηQ($)− 1), (2.5)

R′($)
2

= R($)
2
(1− χR($)

2
). (2.6)

The solutions to Equations (2.5) and (2.6) can be found by using these formulas:

Q($) =
1

η + be$
, (2.7)

R($) =
4a

4a2e$ + χe−$
, (2.8)

where a, b, η and χ are arbitrary constants.
Step–2: To find the positive integer value N in Eq. (2.4), the highest order derivatives and the nonlinear term in Eq.
(2.3) must be balanced.
Step–3: By substituting Equations (2.4), (2.6), and (2.5) into Eq. (2.3), a polynomial expression is obtained that
involves the functions R($), R′($), and Q($). By equating all terms of equal power in this polynomial to zero, an
over-determined system of algebraic equations is created. This system can be solved using Mathematica to determine
the unknown parameters k, v, a, b, η, χ, λ0, λij(i, j = 0, 1, ..., N). This results in the solutions of Eq. (2.1).
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2.2. GPREs Procedure. Moreover, the GPREs technique is a method for solving nonlinear differential equations.
It involves transforming the original nonlinear equation into a set of algebraic equations by using a projective change
of variables. The transformed equation is then solved using Mathematica to determine the unknown parameters.
The solutions obtained from the transformed equation are then used to find the solutions of the original nonlinear
equation. The Projective Riccati structure is determined by two functions that provide distinct and unique types of
hybrid solitons which give it m. The solutions get increasingly diverse as these functions are combined. The GPREs
technique has been used to solve a wide range of nonlinear differential equations, including those in mathematical
physics, engineering, and other fields, and has been found to be a reliable and effective method for finding solutions.

Step–1: Assuming That Eq. (2.1) has solution of the form [15]

Y ($) = α0 +

N∑
i=1

αiφ
i($) + βiφ

i−1($)ψ($), (2.9)

the constants α0, αi, and βi (for i = 0, 1, ..., N) need to be determined, and the functions ψ($) and φ($) must fulfill
the following system of ODEs:

ψ′($) = σ + εψ2($)− δφ($),

φ′($) = εφ($)ψ($), (2.10)

where

ψ2($) = −ε
(
σ − 2δφ($) +

δ2 + ϑ

σ
φ2($)

)
, (2.11)

In Eq. (2.10), σ is a positive constant and δ is an arbitrary constant. The solutions to this equation are presented
below:
Case-1: ε = ϑ = −1

φ($) =
σsech [

√
σ$]

δsech [
√
σ$] + 1

, ψ($) =

√
σ tanh [

√
σ$]

δsech [
√
σ$] + 1

, (2.12)

Case-2: ε = −ϑ = 1

φ($) =
σcsch [

√
σ$]

δcsch [
√
σ$] + 1

, ψ($) =

√
σ coth [

√
σ$]

δcsch [
√
σ$] + 1

, (2.13)

Case-3: ε = −ϑ = −1

φ($) =
σ sec [

√
σ$]

δ sec [
√
σ$] + 1

, ψ($) =

√
σ tan [

√
σ$]

δ sec [
√
σ$] + 1

, (2.14)

Case-4: ε = ϑ = 1

φ($) =
σ csc [

√
σ$]

δ csc [
√
σ$] + 1

, ψ($) = −
√
σ cot [

√
σ$]

δ csc [
√
σ$] + 1

. (2.15)

Step–2: Balance the highest order derivatives and the nonlinear term in Eq. (2.3) to get the positive integer value N
in Eq. (2.9).
Step–3: By substituting Eqs. (2.9), (2.10), and (2.11) into Eq. (2.3), a polynomial expression is obtained that involves
the functions φ($) and ψ($). By equating all terms of equal power in this polynomial to zero, an over-determined
system of algebraic equations is created. This system can be solved using Mathematica to determine the unknown
parameters k, v, σ, δ, α0, αi and βi (for i = 0, 1, ..., N). This results in the solutions of Eq. (2.1).
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3. First Nonlocal Boussinesq’s Type Equation

We start by introducing two transformations to Eq. (1.2) as follows:

u = φx, v = φt. (3.1)

φtt = αφxx − φxt − ((φx)2)x +

(
φt

2 + φxx
2

φx − α
2

)
x

. (3.2)

We then present a travelling wave transformation to (3.2) as

φ(x, t) = U(η), η = k(x− νt), (3.3)

k

(
3α

2
+ ν

)
U ′2 − 1

2
α(α+ (1− ν)ν)U ′ + k3U ′′2 − k2U ′3 = 0. (3.4)

Replace U ′ by V

k

(
3α

2
+ ν

)
V 2 − 1

2
α(α+ (1− ν)ν)V + k3V ′2 − k2V 3 = 0. (3.5)

3.1. Application of EK Procedure. The balance between V ′2 and V 3 gives N = 2. As a results

V ($) = λ0 + λ01R($) + λ10Q($) + λ11Q($)R($) + λ02R($)2 + λ20Q($)2. (3.6)

By substituting Equations (3.6), (2.6), and (2.5) into Eq.(3.5), a polynomial expression is obtained that involves the
functions Q($), R($) and R′($). The following results can be obtained by solving the over-determined system of
algebraic equations generated by this polynomial using Mathematica:

Result (1):

λ0 = λ01 = λ02 = 0, λ10 = ±2η
√

2(3α+ 2ν), λ20 = −ηλ10, k = ∓
√
−1

2
(3α+ 2ν). (3.7)

Plugging Eq. (3.7) along with Eq. (2.7) into Eq. (3.6) provides

u(x, t) = −2b
√
−(3α+ 2ν)2

{ η b exp

[
∓
√
− 1

2 (3α+ 2ν)(x− νt)
]

(
η + b exp

[
∓
√
− 1

2 (3α+ 2ν)(x− νt)
])2

}
, (3.8)

v(x, t) = 2b
√
−(3α+ 2ν)2ν

{ η b exp

[
∓
√
− 1

2 (3α+ 2ν)(x− νt)
]

(
η + b exp

[
∓
√
− 1

2 (3α+ 2ν)(x− νt)
])2

}
. (3.9)

When η = ± b, Eq. (3.8) and Eq. (3.9) give complex solutions

u(x, t) = −1

2

√
−(3α+ 2ν)2 sech2

[√
−1

8
(3α+ 2ν)(x− νt)

]
, (3.10)

v(x, t) =
ν

2

√
−(3α+ 2ν)2 sech2

[√
−1

8
(3α+ 2ν)(x− νt)

]
, (3.11)

and

u(x, t) =
1

2

√
−(3α+ 2ν)2 csch2

[√
−1

8
(3α+ 2ν)(x− νt)

]
, (3.12)



754 I. SAMIR, A. H. ARNOUS, A. M. ELSHERBENY, M. MIRZAZADEH, M. S. HASHEMI, AND M. ESLAMI

v(x, t) = −ν
2

√
−(3α+ 2ν)2 csch2

[√
−1

8
(3α+ 2ν)(x− νt)

]
. (3.13)

Result (2):

λ0 = ∓
√

6α2 − 3α+ (4α− 2)ν

2α− 1
, λ02 = ±χ

√
6α2 − 3α+ (4α− 2)ν

2α− 1
,

k = ∓1

4

√
6α2 − 3α+ (4α− 2)ν

2α− 1
, λ01 = λ10 = λ20 = 0, . (3.14)

Plugging Eq. (3.14) along with Eq. (2.8) into Eq. (3.6) provides

u(x, t) =
6α2 − 3α+ (4α− 2)ν

4(2α− 1)
×{

1− 16a2χ(
4a2 exp

[
∓ 1

4

√
6α2−3α+(4α−2)ν

2α−1 (x− νt)
]

+ χ exp

[
± 1

4

√
6α2−3α+(4α−2)ν

2α−1 (x− νt)
])2

}
, (3.15)

v(x, t) = − (6α2 − 3α+ (4α− 2)ν)ν

4(2α− 1)
×{

1− 16a2χ(
4a2 exp

[
∓ 1

4

√
6α2−3α+(4α−2)ν

2α−1 (x− νt)
]

+ χ exp

[
± 1

4

√
6α2−3α+(4α−2)ν

2α−1 (x− νt)
])2

}
, (3.16)

when χ = ±4a2, Eqs. (3.15) and (3.16) give solitary wave solutions with (6α2 − 3α+ (4α− 2)ν)(2α− 1) > 0.

u(x, t) =
6α2 − 3α+ (4α− 2)ν

4(2α− 1)
tanh2

[
1

4

√
6α2 − 3α+ (4α− 2)ν

2α− 1
(x− νt)

]
, (3.17)

v(x, t) = − (6α2 − 3α+ (4α− 2)ν)ν

4(2α− 1)
tanh2

[
1

4

√
6α2 − 3α+ (4α− 2)ν

2α− 1
(x− νt)

]
, (3.18)

and singular soliton solutions

u(x, t) =
6α2 − 3α+ (4α− 2)ν

4(2α− 1)
coth2

[
1

4

√
6α2 − 3α+ (4α− 2)ν

2α− 1
(x− νt)

]
, (3.19)

v(x, t) = − (6α2 − 3α+ (4α− 2)ν)ν

4(2α− 1)
coth2

[
1

4

√
6α2 − 3α+ (4α− 2)ν

2α− 1
(x− νt)

]
. (3.20)

3.2. Application of GPREs Procedure. The balance between V ′2 and V 3 in Eq. (3.5) yields N = 2. As a result,
we obtain:

V ($) = α0 + α1φ($) + β1ψ($) + α2φ
2($) + β2φ($)ψ($), (3.21)

with the aid of Step-4 which is presented in the preceding section, the following results are obtained

Case-1: ε = ϑ = −1

α0 = 0, α1 = −2δk, α2 = −
4
(
δ2 − 1

)
k3

3α+ 2ν
, β1 = 0, β2 = 2k2

√
−2 (δ2 − 1)

3α+ 2ν
, σ = −3α+ 2ν

2k2
.

(3.22)
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So then, consider the following solutions:

u(x, t) =

{
δ + sech

[√
−1

2
(2ν + 3α)(x− νt)

]
−
√
δ2 − 1 tanh

[√
−1

2
(3α+ 2ν)(x− νt)

]}

×
(3α+ 2ν) sech

[√
− 1

2 (3α+ 2ν)(x− νt)
]

(
δ sech

[√
− 1

2 (2ν + 3α)(x− νt)
]

+ 1
)2 , (3.23)

v(x, t) =

{
δ + sech

[√
−1

2
(3α+ 2ν)(x− νt)

]
−
√
δ2 − 1 tanh

[√
−1

2
(3α+ 2ν)(x− νt)

]}

×
−ν (3α+ 2ν) sech

[√
− 1

2 (3α+ 2ν)(x− νt)
]

(
δ sech

[√
− 1

2 (3α+ 2ν)(x− νt)
]

+ 1
)2 . (3.24)

Case-2: ε = −ϑ = 1

α0 = 0, α1 = −2δk, α2 = −
4
(
δ2 + 1

)
k3

3α+ 2ν
, β1 = 0, β2 = 2k2

√
−2 (δ2 + 1)

3α+ 2ν
, σ = −3α+ 2ν

2k2
.

(3.25)

Then, the following solutions are obtained

u(x, t) =

{
− δ + csch

[√
−1

2
(3α+ 2ν)(x− νt)

]
+
√
δ2 + 1 coth

[√
−1

2
(3α+ 2ν)(x− νt)

]}

×
−(3α+ 2ν) csch

[√
− 1

2 (3α+ 2ν)(x− νt)
]

(
δ csch

[√
− 1

2 (3α+ 2ν)(x− νt)
]

+ 1
)2 , (3.26)

v(x, t) =

{
− δ + csch

[√
−1

2
(3α+ 2ν)(x− νt)

]
+
√
δ2 + 1 coth

[√
−1

2
(3α+ 2ν)(x− νt)

]}

×
ν (3α+ 2ν) csch

[√
− 1

2 (3α+ 2ν)(x− νt)
]

(
δ csch

[√
− 1

2 (3α+ 2ν)(x− νt)
]

+ 1
)2 . (3.27)

Case-3: ε = −ϑ = −1

α0 = 0, α1 = 2δk, α2 = −
4
(
δ2 − 1

)
k3

3α+ 2ν
, β1 = 0, β2 = 2k2

√
−2 (δ2 − 1)

2ν + 3α
, σ =

3α+ 2ν

2k2
.

(3.28)

Then, the following solutions are obtained

u(x, t) =

{
δ + sec

[√
1

2
(3α+ 2ν)(x− νt)

]
+
√

1− δ2 tan

[√
1

2
(3α+ 2ν)(x− νt)

]}

×
(3α+ 2ν) sec

[√
1
2 (3α+ 2ν)(x− νt)

]
(
δ sec

[√
1
2 (3α+ 2ν)(x− νt)

]
+ 1
)2 , (3.29)
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v(x, t) =

{
δ + sec

[√
1

2
(3α+ 2ν)(x− νt)

]
+
√

1− δ2 tan

[√
1

2
(3α+ 2ν)(x− νt)

]}

×
−ν (3α+ 2ν) sec

[√
1
2 (3α+ 2ν)(x− νt)

]
(
δ sec

[√
1
2 (3α+ 2ν)(x− νt)

]
+ 1
)2 . (3.30)

Case-4: ε = ϑ = 1

α0 = 0, α1 = 2δk, α2 = −
4
(
δ2 + 1

)
k3

3α+ 2ν
, β1 = 0, β2 = −2k2

√
−2 (δ2 + 1)

3α+ 2ν
, σ =

3α+ 2ν

2k2
.

(3.31)

Then, the following solutions are raised

u(x, t) =

{
δ − csc

[√
1

2
(3α+ 2ν)(x− νt)

]
+
√
−δ2 − 1 cot

[√
1

2
(3α+ 2ν)(x− νt)

]}

×
(3α+ 2ν) csc

[√
1
2 (3α+ 2ν)(x− νt)

]
(
δ csc

[√
1
2 (3α+ 2ν)(x− νt)

]
+ 1
)2 , (3.32)

v(x, t) =

{
δ − csc

[√
1

2
(3α+ 2ν)(x− νt)

]
+
√
−δ2 − 1 cot

[√
1

2
(3α+ 2ν)(x− νt)

]}

×
−ν (3α+ 2ν) csc

[√
1
2 (3α+ 2ν)(x− νt)

]
(
δ csc

[√
1
2 (3α+ 2ν)(x− νt)

]
+ 1
)2 . (3.33)

4. Second Nonlocal Boussinesq’s Type Equation

We begin by presenting two transformations to Eq. (1.3) as follows

u = φx, v = φt, (4.1)

φtt = αφxx − φxt − φxxxx − ((φx)2)x +

(
φt

2 + φxφt + φxx
2

φx − α
2

)
x

. (4.2)

We then present a travelling wave transformation to (4.2) as

φ(x, t) = U($), $ = k(x− νt), (4.3)

3kα

2
U ′2 − k3U ′U ′′′ − 1

2
α(α+ (1− ν)ν)U ′ +

αk2

2
U ′′′ + k3U ′′2 − k2U ′3 = 0, (4.4)

Replace U ′ by V

3kα

2
V 2 − k3V V ′′ − 1

2
α(α+ (1− ν)ν)V +

αk2

2
V ′′ + k3V ′2 − k2V 3 = 0. (4.5)
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4.1. Application of EK Procedure. The balance between V V ′′ and V 3 in Eq. (4.5) gives N = 2 . Consequently,
we reach

V ($) = λ0 + λ01R($) + λ10Q($) + λ11Q($)R($) + λ02R($)2 + λ20Q($)2, (4.6)

By inserting Eq. (4.6) into Eq. (4.5), along with Equations (2.6) and (2.5), a polynomial is obtained that consists of
Q($), R($), and R′($). An over-determined system of algebraic equations is generated by this polynomial, which
can be solved using Mathematica to obtain the following results:

λ0 = 0, λ02 = ±χ
√
α− ν2 + ν, k = ±1

2

√
α− ν2 + ν, λ01 = λ10 = λ20 = λ11 = 0. (4.7)

Plugging Eq. (4.7) along with Eq. (2.8) into Eq. (4.6) provides

u(x, t) =
α− ν2 + ν

2

{
16a2χ(

4a2 exp

[
± 1

2

√
α− ν2 + ν(x− νt)

]
+ χ exp

[
∓ 1

2

√
α− ν2 + ν(x− νt)

])2
}
,

(4.8)

v(x, t) = − (α− ν2 + ν)ν

2

{
16a2χ(

4a2 exp

[
± 1

2

√
α− ν2 + ν(x− νt)

]
+ χ exp

[
∓ 1

2

√
α− ν2 + ν(x− νt)

])2
}
.

(4.9)

When χ = ±4a2, Eq. (4.8) and Eq. (4.9) give solitary wave solutions for α− ν2 + ν > 0

u(x, t) =
α− ν2 + ν

2
sech2

[
1

2

√
α− ν2 + ν(x− νt)

]
, (4.10)

v(x, t) = − (α− ν2 + ν)ν

2
sech2

[
1

2

√
α− ν2 + ν(x− νt)

]
, (4.11)

and singular soliton solutions for α− ν2 + ν > 0

u(x, t) =
α− ν2 + ν

2
csch2

[
1

2

√
α− ν2 + ν(x− νt)

]
, (4.12)

v(x, t) = − (α− ν2 + ν)ν

2
csch2

[
1

2

√
α− ν2 + ν(x− νt)

]
. (4.13)

4.2. Application of GPRES Procedure. Balancing V ′2 with V 3 in Eq. (4.5) gives N = 2 . Consequently, we
reach

V ($) = α0 + α1φ($) + β1ψ($) + α2φ
2($) + β2φ($)ψ($), (4.14)

With the aid of Step-4 which is presented in the preceding section, the following results are obtained

Case-1: For ε = −1 and ϑ = −1

α0 = 0, α1 = δk, α2 =

(
δ2 − 1

)
k3

−α+ ν2 − ν
, β1 = 0, β2 = k2

√
1− δ2

−α+ ν2 − ν
, σ =

α− ν2 + ν

k2
.

(4.15)



758 I. SAMIR, A. H. ARNOUS, A. M. ELSHERBENY, M. MIRZAZADEH, M. S. HASHEMI, AND M. ESLAMI

Then, we have the following solutions

u(x, t) =

{
δ + sech

[√
α− ν2 + ν(x− νt)

]
+
√
δ2 − 1 tanh

[√
α− ν2 + ν(x− νt)

]}

×
−(−α+ ν2 − ν) sech

[√
α− ν2 + ν(x− νt)

](
δ sech

[√
α− ν2 + ν(x− νt)

]
+ 1
)2 , (4.16)

v(x, t) =

{
δ + sech

[√
α− ν2 + ν(x− νt)

]
+
√
δ2 − 1 tanh

[√
α− ν2 + ν(x− νt)

]}

×
ν(−α+ ν2 − ν) sech

[√
α− ν2 + ν(x− νt)

](
δ sech

[√
α− ν2 + ν(x− νt)

]
+ 1
)2 , (4.17)

Case-2: For ε = −1 and ϑ = 1

α0 = 0, α1 = δk, α2 =

(
δ2 + 1

)
k3

−α+ ν2 − ν
, β1 = 0, β2 = −k2

√
−1− δ2
−α+ ν2 − ν

, σ =
α− ν2 + ν

k2
.

(4.18)

Then, the following solutions are obtained

u(x, t) =

{
− δ + csch

[√
α− ν2 + ν(x− νt)

]
+
√
δ2 + 1 coth

[√
α− ν2 + ν(x− νt)

]}

×
(−α+ ν2 − ν) csch

[√
α− ν2 + ν(x− νt)

](
δ csch

[√
α− ν2 + ν(x− νt)

]
+ 1
)2 , (4.19)

v(x, t) =

{
− δ + csch

[√
α− ν2 + ν(x− νt)

]
+
√
δ2 + 1 coth

[√
α− ν2 + ν(x− νt)

]}

×
−ν(−α+ ν2 − ν) csch

[√
α− ν2 + ν(x− νt)

](
δ csch

[√
α− ν2 + ν(x− νt)

]
+ 1
)2 . (4.20)

Case-3: For ε = 1 and ϑ = −1

α0 = 0, α1 = −δk, α2 =

(
δ2 − 1

)
k3

−α+ ν2 − ν
, β1 = 0, β2 = k2

√
1− δ2

−α+ ν2 − ν
, σ = −α− ν

2 + ν

k2
.

(4.21)

Then, the following solutions are obtained

u(x, t) =

{
− δ − sec

[√
−α+ ν2 − ν(x− νt)

]
+
√

1− δ2 tan
[√
−α+ ν2 − ν(x− νt)

]}

×
(−α+ ν2 − ν) sec

[√
−α+ ν2 − ν(x− νt)

](
δ sec

[√
−α+ ν2 − ν(x− νt)

]
+ 1
)2 , (4.22)

v(x, t) =

{
− δ − sec

[√
−α+ ν2 − ν(x− νt)

]
+
√

1− δ2 tan
[√
−α+ ν2 − ν(x− νt)

]}

×
−ν(−α+ ν2 − ν) sec

[√
−α+ ν2 − ν(x− νt)

](
δ sec

[√
−α+ ν2 − ν(x− νt)

]
+ 1
)2 . (4.23)
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Case-4: For ε = 1 and ϑ = 1

α0 = 0, α1 = −δk, α2 =

(
δ2 − 1

)
k3

−α+ ν2 − ν
, β1 = 0, β2 = k2

√
1− δ2

−α+ ν2 − ν
, σ = −α− ν

2 + ν

k2
.

(4.24)

Then, the following solutions are raised

u(x, t) =

{
− δ + csc

[√
−α+ ν2 − ν(x− νt)

]
+
√
−δ2 − 1 cot

[√
−α+ ν2 − ν(x− νt)

]}

×
(−α+ ν2 − ν) csc

[√
−α+ ν2 − ν(x− νt)

](
δ csc

[√
−α+ ν2 − ν(x− νt)

]
+ 1
)2 , (4.25)

v(x, t) =

{
− δ + csc

[√
−α+ ν2 − ν(x− νt)

]
+
√
−δ2 − 1 cot

[√
−α+ ν2 − ν(x− νt)

]}

×
−ν(−α+ ν2 − ν) csc

[√
−α+ ν2 − ν(x− νt)

](
δ csc

[√
−α+ ν2 − ν(x− νt)

]
+ 1
)2 . (4.26)

5. Physical Interpretation

In the realm of understanding solitons in real life, an understanding of their dynamics is of greatest significance. A
crucial aspect in this process is the analysis of graphs depicting specific solitons, as they hold a significant role in the
overall interpretation. This study focuses on the soliton vector u and its corresponding counterpart v, as demonstrated
by Equations (5)(6). Significantly, u is defined as dark, while v is categorized as bright, with both vectors displaying
equal directions of movement. This study aims to examine the interconnected properties of mutual limitations seen
in water wave solitons across various strata. Through analyzing the interaction between these solitons, our objective
is to elucidate their intricate dynamics and comprehend the fundamental mechanisms that dictate their behavior. We
conduct thorough analysis and experiments to investigate the consequences of these mutual limitations, offering vital
insights into the characteristics of water wave solitons and their possible uses in other industries. Figure 1 displays
the wave profile for solution (3.17) and (3.18). The 3D graphs (a) and (c) depict the structural properties of u(x, t)
and v(x, t), respectively, while the contours (b) and (d) aid in characterizing their propagation. Figure 2 displays the
wave profile for solution (4.10) and (4.11). The 3D graphs (a) and (c) depict the structural properties of u(x, t) and
v(x, t), respectively, while the contours (b) and (d) aid in characterizing their propagation. The water soliton layers
show conjugate features of mutual constraints, as depicted in the illustration of the included figures.

6. Conclusions

This study paper discussed the investigation of solitary waves, dark solitons, and bright-dark hybrid solitary waves
within the framework of water waves. The study addresses two nonlocal Boussinesq’s type equations that were pro-
posed in 2022 [14]. The study seeks to expand our comprehension of the dynamics and behavior of water waves by
conducting a comprehensive investigation of these equations. This will provide insights into the complex nature of
solitary wave events. Overall, this research study has effectively utilized two integration strategies, specifically the
augmented Kudryashov’s methodology and the general projective Riccati equations algorithm, to achieve the intended
outcomes. These strategies have demonstrated efficacy in retrieving the required data for the investigation.

The water soliton layers show conjugate features of mutual constraints, as depicted in the illustration of the included
figures. The findings of the study are highly novel, suggesting significant potential for future research in this field.
In the future, some aspects will be considered, such as the integrability and multiple soliton solutions. Also, some
effects on nonlinear partial differential equations recently studied may be considered for this model. Also, the two
implemented methods will be employed for many nonlinear evolution equations that model some nonlinear phenomena.
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Figure 1. Wave profile for solution (3.17) and (3.18).
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Figure 2. Wave profile for solution (4.10) and (4.11).
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