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Abstract

A hybrid method utilizing the collocation technique with B-splines and Lie-Trotter splitting algorithm applied

for 3 model problems which include a single solitary wave, two solitary wave interaction, and a Maxwellian initial
condition is designed for getting the approximate solutions for the generalized equal width (GEW) equation.

Initially, the considered problem has been split into 2 sub-equations as linear Ut = Â(U) and nonlinear Ut = B̂(U)
in the terms of time. After, numerical schemes have been constructed for these sub-equations utilizing the finite

element method (FEM) together with quintic B-splines. Lie-Trotter splitting technique ÂoB̂ has been used
to generate approximate solutions of the main equation. The stability analysis of acquired numerical schemes

has been examined by the Von-Neumann method. Also, the error norms L2 and L∞ with mass, energy, and

momentum conservation constants I1, I2, and I3, respectively are calculated to illustrate how perfect solutions
this new algorithm applied to the problem generates and the ones produced are compared with those in the

literature. These new results exhibit that the algorithm presented in this paper is more accurate and successful,

and easily applicable to other non-linear partial differential equations (PDEs) as the present equation.
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1. Introduction

The current study plans to explore the (GEW) equation in the following form with a strategy of obtaining approx-
imate solutions superior according to other studies

Ut − µUxxt + εUpUx = 0, (1.1)

in which U stands for the amplitude of the surface of the water, ε and µ are non-negative parameters also p is a
non-negative integer. Physical boundary conditions need to be U → 0 when |x| → ∞ and here the initial-boundary
conditions for Eq. (1.1) with acceptable physically reasonable constraints are given as below:

U(xL, t) = U(xR, t) = 0, (1.2)

Ux(xL, t) = Ux(xR, t) = 0,

U(x, 0) = g(x), xL ≤ x ≤ xR.
It should also be noted that U is the negative of the electrostatic potential in plasma applications. Thus, the solitary
wave results given in Eq. (1.1) help find many physical phenomena that are nonlinear and have weak dispersion
waves. Also, it includes dispersion waves, examples of which are ion-acoustic and magneto-hydrodynamic waves in
plasma, phonon packets in nonlinear crystals, and nonlinear transverse waves in shallow water [29]. One wants to
figure out the physical mechanism of phenomena in nature defined by non-linear PDEs. Therefore, the analytical
solution for non-linear PDEs needs to be investigated. Especially, Traveling wave solutions of nonlinear evolution
equations (NLEEs), a special class of PDEs, play a significant role in the work of PDE models commonly seen in
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natural events, in applied sciences. For instance, the wave events observed in sciences including physics, chemistry,
and biology. The best-known models of such phenomena in nature, which include traveling waves, can be given as
examples the nonlinear Korteweg-de Vries (KdV) equation introduced by Benjamin et al. [8], regularized long wave
(RLW) equation presented by Peregrine [42] and equal width (EW) equation utilized by Morrison et al. [40], etc. The
(GEW) equation based on the EW equation is relevant to the generalized regularized long wave (GRLW) equation and
the generalized Korteweg-de Vries (GKdV) equation. These equations that have solitary solutions, pulse-like Raslan
[44], are non-linear wave equations with (p + 1)th nonlinearity. The EW equation, which is a one-dimensional PDE
likened by the RLW and KdV equations [3], is obtained for p = 1 in Eq. (1.1) and Eq. (1.1) for p = 2 submits the
MEW equation used in modeling non-linear events. One can look at the references [12, 14, 18, 19, 35, 47, 50] and
[4, 15, 16, 22, 33, 36, 45, 51] for studies on these equation. Moreover, the reader can refer to works in references
[2, 5–7, 10, 11, 13, 21, 28, 34, 37, 39] and [23, 25, 38]. Such equations mentioned above, such as the GEW equation
have been extensively analyzed and many important computer algorithms are coded to investigate such models. In
this study, the Matlab 2019b computer program with a memory 20GB and 64 bit has been used.

When a wide literature review is made, it has not been found as many studies for the GEW equation as for the
other nonlinear (PDE) equations. The analytical solitary wave results of the generalized EW and EW-Burges equation
were acquired by Hamdi et al. [24]. The GEW equation was worked collocation method with the quadratic and cubic
B-spline, respectively by Evans and Raslan [17] and Raslan [44]. Roshan [46] investigated with Petrov-Galerkin
(FEM) utilizing a linear hat one as the test function and a quadratic B-splines as the trial function. [28, 30–32] and
[52] obtained approximate results of the GEW equation utilizing Galerkin, collocation, subdomain, Petrov-Galerkin’s
(FEMs) with the help of B-splines, and also [9] disputed the existence and uniqueness of the problem. This mentioned
equation has been solved approximately with the usage of meshless method together with global collocation with
normal types of radial basis functions (RBFs) by Panahipour [41]. Abbaszadeh et al. [1] used the local meshless
collocation method. Taghizadeh et al. [49] constructed with the homogeneous balance method for the exact traveling

wave solutions of the GEW equation. İnan and Bahadır [27] submitted a fully implicit finite difference method.
This study is organized part by part as follows: First of all, a comprehensive literature review is made. Then, a

brief information for the splitting algorithm is submitted. To start the integration of the GEWE, the main equation is
split to have the couple equations then these are applied to the Lie-Trotter splitting algorithm utilizing the collocation
method with quintic B-splines. Then these partial differential equations are discretized in time so that the coupled
system of ordinary differential equations are obtained in terms of parameters described for the approximation of the
unknown of the (PDEs) using quintic B-splines. Then fully integration of the GEWE is managed using the Crank-
Nicolson time integrator. It has been reached coupled recursive algebraic system and mentioned in the manuscript
that the unknown variables of the algebraic system is found by using Lie Trotter splitting algorithm. To measure the
sturdiness and effectiveness of the technique used in the present study, 3 numerical test problems are taken and the
solutions obtained from these problems are compared with those in other methods. Finally, a brief conclusion is given
about the benefits of the algorithm attempted for the study and the data it produces.

2. The Splitting Method

The simplest splitting method, which degrades the solution of the Cauchy problem to the sequential solution of two
sub-problems, is the Lie-Trotter Splitting method. Let us now consider the Cauchy problem given below

U ′(t) = ΛU(t), U(0) = U0, t ≥ 0, (2.1)

in which Λ operator can be discretized such that Λ = Â+ B̂ as in [48] and (2.1) turns into the following form

U ′(t) = (Â+ B̂)U(t), U(0) = U0, t ≥ 0.

Here, U0 ∈ X is a vector which is found to be utilizing the initial condition, u(x, t) is solution vector, Λ, Â, and B̂ are

operators in X Banach space. In the Lie-Trotter schemes, the first sub-problem with operator Â is solved utilizing
the original initial condition given with the problem. Then, the solutions obtained with the operator Â are used as
the initial condition for the solution of the second sub-problem given with the operator B̂ and given as the solution of
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the main problem in the first time step. Thus, approximate results at the next time levels are obtained similarly to
those at the initial time level. The algorithm of the Lie-Trotter method, with t0 = 0 and tN = T,

dU∗(t)

dt
= ÂU∗(t), U∗(tn) = U0

n , t ∈ [tn, tn+1],

dU∗∗(t)

dt
= B̂U∗∗(t), U∗∗(tn) = U∗(tn+1) , t ∈ [tn, tn+1].

Here, U0
n is the original initial condition given in (2.1), ∆t is the time step, ∆t = tn+1 − tn, n = 0, 1, ..., N − 1. Thus,

the required results are found with U(tn+1) = u∗∗(tn+1). This approach (Â − B̂) is called as the splitting one. The
formal solution (2.1) can be given as follows

U(tn+1) = eΛ∆tU(tn) = e(Â+B̂)∆tU(tn). (2.2)

Taylor series expansion for this solution may be specified as

U(tn+1) = e∆t(Â+B̂)U(tn) =

∞∑
k=0

tk

k!

(
Â(u(t))

∂

∂U
+ B̂(u(t))

∂

∂U

)k
U(tn).

If the sum of operators Â and B̂ is calculated instead of Λ, a new approach to Equation (2.2) is obtained as follows

U(tn+1) = eÂ∆teB̂∆tU(tn). (2.3)

Using Eq. (2.3) instead of (2.2) produces an error. This is a local splitting error and it is given as follows

Te =
1

∆t
(e∆t(Â+B̂) − e∆tB̂e∆tÂ)U(tn)

=
1

∆t
[
∆t2

2
(ÂB̂ − B̂Â)U(tn) +O(∆t3)]

=
1

∆t
[Â, B̂)U(tn) +O(∆t2)],

here, [Â, B̂] = ÂB̂ − B̂Â is first order approximation as a commutator of two non-commuting operators. Thus, the

approximation (2.3) is a first order approximation unless the operators Â and B̂ are commutative. If the operators
are commutative, there is no splitting error and the method results in a precise solution [26].

It can be noted that a new splitting technique can be obtained as (B̂ − Â) if the Â and B̂ operators are swapped,
and the solutions are acquired by applying similar operations.

3. Implementation to the constructed numerical schemes of the method

First of all, the solution domain has been split into finite elements to apply the numerical approach to the equation
and it is limited to the closed interval [xL, xR]. This interval is divided into finite elements uniformly of length h by

the nodal xj such that xL = x0 ≤ x1 ≤ ... ≤ xN = xR, h = xj+1−xj =
xR − xL

N
for j = 0(1)N − 1. The set of quintic

B-splines ϕ−2(x), ϕ−1(x), . . . , ϕN+2(x) composed a base at the nodes xj for j = −2(1)N + 2 on the solution region
[xL, xR] may be stated as in [43]

ϕj(x) =
1

h5



p0 = (x− xj−3)5, x ∈ [xj−3, xj−2],

p1 = p0 − 6(x− xj−2)5, x ∈ [xj−2, xj−1],

p2 = p1 − 6(x− xj−2)5 + 15(x− xj−1)5, x ∈ [xj−1, xj ],

p3 = p2 − 6(x− xj−2)5 − 20(x− xj)5, x ∈ [xj , xj+1],

p4 = p3 − 6(x− xj−2)5 + 15(x− xj+1)5, x ∈ [xj+1, xj+2]

p5 = p4 − 6(x− xj−2)5 − 6(x− xj+2)5, x ∈ [xj+2, xmj3],

0, otherwise.

(3.1)



CMDE Vol. 12, No. 3, 2024, pp. 544-560 547

The approximate solution UN (x, t) can be represented in terms of the quintic B-splines as follows

UN (x, t) =

N+2∑
j=−2

ϕj(x)δj(t), (3.2)

in which the unknown time parameters δj(t) are found out using the boundary conditions and collocation requirements.
Quintic B-splines (3.1) on [0, h] in terms of ζ on a typical element [xj , xj+1] by the local coordinate transformation
defined as h = x− xj for 0 ≤ ζ ≤ h can be presented in the form given below

ϕj−2 = 1− 5ζ + 10ζ2 − 10ζ3 + 5ζ4 − ζ5,

ϕj−1 = 26− 50ζ + 20ζ2 + 20ζ3 − 20ζ4 + 5ζ5,

ϕj = 66− 60ζ2 + 30ζ4 − 10ζ5,

ϕj+1 = 26 + 50ζ + 20ζ2 − 20ζ3 − 20ζ4 + 10ζ5,

ϕj+2 = 1 + 5ζ + 10ζ2 + 10ζ3 + 5ζ4 − 5ζ5,

ϕj+3 = ζ5.

(3.3)

All of the quintic basis are null outside of φj−2, ϕj−1, ϕj , ϕj+1, ϕj+2 and ϕj+3. The nodal values Uj , U
′

j , U
′′

j utilizing
Eqs. (3.2) and (3.3) are submitted in terms of the parameter δj(t) by

Uj = δm−2 + 26δj−1 + 66δj + 26δj+1 + δj+2,

U
′

j =
5

h
(−δj−2 − 10δj−1 + 10δj+1 + δj+2),

U
′′

j =
20

h2
(δj−2 + 2δj−1 − 6δj + 2δ)j+1 + δj+2),

(3.4)

and the variation of U with the interval [xj , xj+1] is given as follows

U =

N+2∑
j=−2

ϕjδj . (3.5)

It is time to split the GEW equation as given below

Ut − µUxxt = 0, (3.6)

Ut − µUxxt + εUpUx = 0. (3.7)

Due to the implementation of the collocation method in the aforementioned work, and the collocation points with
the knots are defined and the Eqs. (3.6) and (3.7) are used to appraise Uj and its position derivatives given in (3.4),
and they are substituted in the Eqs. (3.6) and (3.7). Thus, the following ordinary differential equation systems are
acquired.

δ̇j−2 + 26δ̇j−1 + 66δ̇j + 26δ̇j+1 + δ̇j+2 −
20µ

h2
(δ̇j−2 + 2δ̇j−1 − 6δ̇j + 2δ̇j+1 + δ̇j+2) = 0, (3.8)

δ̇j−2 + 26δ̇j−1 + 66δ̇j + 26δ̇j+1 + δ̇j+2 −
20µ

h2
(δ̇j−2 + 2δ̇j−1 − 6δ̇j + 2δ̇j+1 + δ̇j+2)

+
5zj
h

(−δj−2 − 10δj−1 + 10δj+1 + δj+2) = 0,

(3.9)

in which first order derivative according to time t is presented with symbol ′′.′′ and zj is taken as

zj = ε(δj−2 + 26δj−1 + 66δj + 26δj+1 + δj+2)p,
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for linearization operation. When
δn+1
j + δnj

2
instead of the parameter δj and

δn+1
j − δnj

∆t
instead of the parameter δ̇j

in Eqs. (3.8) and (3.9) are written, equation systems submitted in the following are acquired

k1δ
n+1
m−2 + k2δ

n+1
m−1 + k3δ

n+1
m + k4δ

n+1
m+1 + k5δ

n+1
m+2 = k5δ

n
m−2 + k4δ

n
m−1 + k3δ

n
m + k2δ

n
m+1 + k1δ

n
m+2, (3.10)

l1δ
n+1
m−2 + l2δ

n+1
m−1 + l3δ

n+1
m + l4δ

n+1
m+1 + l5δ

n+1
m+2 = l5δ

n
m−2 + l4δ

n
m−1 + l3δ

n
m + l2δ

n
m+1 + l1δ

n
m+2, (3.11)

in which ki, li(i = 1(1)5), and zj are zj = εUp

k1 = 1− 20µ

h2
, k2 = 26− 40µ

h2
, k3 = 66 +

120µ

h2
, k4 = 26− 40µ

h2
, k5 = 1− 20µ

h2
,

l1 = 1− 20µ

h2
− 5zj∆t

2h
, l2 = 26− 40µ

h2
− 25zj∆t

h
, l3 = 66 +

120µ

h2
,

l4 = 26− 40µ

h2
+

25zj∆t

h
, l5 = 1− 20µ

h2
+

5zj∆t

2h
.

The systems submitted in (3.10) and (3.11) which have the generalized rows occur from unknown time-parameters δj
in (N + 5) quantity and equations (N + 1). Since the virtual parameters δ−2, δ−1, δN+1, and δN+2 in each system
are not in the solution region and they are annihilated first to obtain unique solution of each system. Because of this,
U and U

′
in Eq. (3.4) and the boundary conditions U(xL, t) = U(xR, t) = 0 and Ux(xL, t) = Ux(xR, t) = 0 must be

used. Therefore, matrix system (N + 1) x (N + 1) for systems (3.10) and (3.11) are acquired. The closed form of these
two matrix systems can be written as

A1δ
n+1 = AT1 δ

n,

B1λ
n+1 = BT1 λ

n,

with unknown time-dependent parameters δT = [δ0δ1...δN ] and λT = [λ0λ1...λN ] that need to be found and the
coefficient matrices A1 and B1.

A1 =



k̄3 k̄4 k̄5

k̄2 k̄3 k̄4 k5

k1 k2 k3 k4 k5

. . .

k1 k2 k3 k4 k5

1 k1
¯̄k2

¯̄k3
¯̄k4

¯̄k1
¯̄k2

¯̄k3


,

B1 =



l̄3 l̄4 l̄5
l̄2 l̄3 l̄4 l5
l1 l2 l3 l4 l5

. . .

l1 l2 l3 l4 l5
1 l1

¯̄l2
¯̄l3

¯̄l4
¯̄l1

¯̄l2
¯̄l3


,
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k̄3 =
165

4
k1 −

33

8
k2 + k3, k̄4 =

65

2
k1 −

9

4
k2 + k4, k̄5 =

9

4
k1 −

1

8
k2 + k5,

k̄2 = −33

8
k1 + k2, k̄3 = −9

4
k1 + k3, k̄4 = −1

8
k1 + k4,

¯̄k2 = −1

8
k5 + k2,

¯̄k3 = −9

4
k5 + k3,

¯̄k4 = −33

8
k5 + k4,

¯̄k1 =
9

4
k5 −

1

8
k4 + k1,

¯̄k2 =
65

2
k5 −

9

4
k4 + k2,

¯̄k3 =
165

4
k5 −

33

8
k4 + k3,

l̄3 =
165

4
l1 −

33

8
l2 + l3, l̄4 =

65

2
l1 −

9

4
l2 + l4, l̄5 =

9

4
l1 −

1

8
l2 + l5,

l̄2 = −33

8
l1 + l2, l̄3 = −9

4
l1 + l3, l̄4 = −1

8
l1 + l4,

¯̄l2 = −1

8
l5 + l2,

¯̄l3 = −9

4
l5 + l3,

¯̄l4 = −33

8
l5 + l4,

¯̄l1 =
9

4
l5 −

1

8
l4 + l1,

¯̄l2 =
65

2
l5 −

9

4
l4 + l2,

¯̄l3 =
165

4
l5 −

33

8
l4 + l3.

Solutions of these systems are realized by Lie-Trotter splitting technique. The nonlinear term zj in Eq. (3.11) are

applied 3 or 5 times inner iteration given by the formula (δ∗)n = δn +
1

2
(δn − δn−1) throughout run of the computer

code to provide that the numerical solutions are pretty close to the analytical ones.

4. The initial vector δ0
j

In order to start the solution process of the systems (3.10) and (3.11), the initial vector δ0
j must be determined.

This vector will be calculated using the initial condition U(xj , 0) = UN (xj , 0) = g0(xj), j = 0(1)N and first and
second order derivatives at the boundaries given in the main problem. At time t = t0 = 0, approximation (3.2) can
be rewritten as follows, with δ0

j being the parameters to be determined

UN (x, 0) =

N+2∑
j=−2

ϕj(x)δ0
j (t), (4.1)

and the following algebraic equations are obtained

Um = δ0
j−2 + 26δ0

j−1 + 66δ0
j + 26δ0

j+1 + δ0
j+2, j = 0(1)N,

U0 = δ0
−2 + 26δ0

−1 + 66δ0
0 + 26δ0

1 + δ0
2 ,

U1 = δ0
−1 + 26δ0

0 + 66δ0
1 + 26δ0

2 + δ0
3 ,

.

.

.

UN−1 = δ0
N−3 + 26δ0

N−2 + 66δ0
N−1 + 26δ0

N + δ0
N+1,

UN = δ0
N−2 + 26δ0

N−1 + 66δ0
N + 26δ0

N+1 + δ0
N+2.

(4.2)

As it can be seen, the above system is the matrix system in the form of (N + 1) × (N + 5). For linear independent
solutions of this system, the number of unknowns and equations have to be equalized. In order to this, the boundary
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conditions Ux(xL, t) = Ux(xR, t) = 0 and Uxx(xL, t) = Uxx(xR, t) = 0 are utilized as below

δ0
m−2 + 26δ0

m−1 + 66δ0
m + 26δ0

m+1 + δ0
m+2 = g0(xm),m = 0(1)N

−δ0
−2 − 10δ0

−1 + 10δ0
1 + δ0

2 = g
′

0(xL),

δ0
−2 + 2δ0

−1 − 6δ0
0 + 2δ0

1 + δ0
2 = g

′′

0 (xL),

δ0
N−2 + 2δ0

N−1 − 6δ0
N + 2δ0

N+1 + δ0
N+2 = g

′′

0 (xR),

−δ0
N−2 − 10δ0

N−1 + 10δ0
N+1 + δ0

N+2 = g
′

0(xR).

(4.3)

If the equalities in the system (4.2) are used, (N + 1)× (N + 1) dimensional matrix equation that may be happened
with variant of Thomas algorithm for the initial vector δ0 is gained as follows

54 60 6
25.25 67.5 26.25 1

1 26 66 26 1
. . .

1 26 66 26 1
1 26.25 67.5 25.25

6 60 54





δ0
0

δ0
1

δ0
2

.

.

.
δ0
N−2

δ0
N−1

δ0
N


=



U0

U1

U2

.

.

.
UN−2

UN−1

UN


.

Calculation of such matrices with existing symbolic programming languages is quite easy and practical. These char-
acteristics of the presented schemes reflect their reliable and robust properties.

5. Stability Analysis

The stability analysis of the two numerical schemes (3.10) and (3.11) obtained by splitting the GEW equation is
investigated by the Von Neumann method by applying the quintic B-spline collocation method. Firstly, the Fourier
modes, δnj = %n1 e

ijγh in approximation (3.10) and Ψn
j = %n2 e

ijγh in approximation (3.11), are substituted. Here,
where γ is the mode number and h is element size. For the system (3.11), the moment the εUp in the term εUpUx
is linearized, zj be going to act as a local constant and thus the von Neumann method becomes applicable for the
stability of the system (3.11). Using the Euler formula eiΦ = cosΦ + isinΦ, growth factors %1 and %2 presented as
follows are obtained

%1 =
A1 − iB1

A1 + iB1
, %2 =

A1 − iC1

A1 + iC1
, (5.1)

and for the expressions k1, k2, ..., k9, k10 and l1, l2, ..., l9, l10 in section 3

A1 = 2a1 −
40µ

h2
a2, B1 = 0, C1 =

5zj∆t

h
a3,

a1 = cos2γh+ 26cosγh+ 33, a2 = cos2γh+ 2cosγh− 3, a3 = sin2γh+ 10sinγh,

|%1| = |%2| = 1 from Eq. (5.1) and hence |%1|.|%2| = 1. Because the conditions |%1| ≤ 1, and |%2| ≤ 1 are satisfied, it
can be clearly expressed that the systems (3.10) and (3.11) with Lie Trotter-Splitting technique are unconditionally
stable.

6. Numerical experiments and discussion

The GEW equation, which is considered only with homogeneous boundary conditions are investigated and error
norms are calculated for them

L2 = ||U − UN ||2 =

√√√√h

N∑
j=0

(U − UN )2,
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and

L∞ = ||U − UN ||∞ = max
j
|U − UN |.

The exact solution of the GEW equation with the initial-boundary value problem is given as in [52]

U(x, t) =
(c(p+ 1)(p+ 2)

2ε
sech2[

p

2
√
µ

(x− ct− x0)]
)1/p

,

This solution is a solitary wave with initially x0 centered, amplitude
c(p+ 1)(p+ 2)

2ε
, wave velocity c, and width

p

2
√
µ
.

The preservation quantities of the GEW equation submitted as mass, momentum and energy are presented as follows
[17, 44, 52]

I1 =

∫ xR

xL

U(x, t)dx,

I2 =

∫ xR

xL

[U2(x, t) + µU2
x(x, t)]dx,

I3 =

∫ xR

xL

[U (p+2)(x, t)]dx.

After calculating the motion of solitary waves, the values I1, I2 and I3 are examined to evaluate the performance of
the approximate algorithm used for the calculation.

6.1. Example I: A single solitary wave movement. This section will deal with the solutions produced by applying
the numerical schemes presented in the study, in tables with five parameter sets for various values p, c and amplitude =(c(p+ 1)(p+ 2)

2ε

)1/p
. Throughout the study, the parameters h = 0.1,∆ = 0.2, ε = 3, µ = 1, x0 = 30 over the solution

area [0, 80] are selected for all of these five sets as in the studies in the tables. All numerical calculations are made
from 0 to 20 time levels in five time increments.
Implementation 1.1 In the first implementation, c = 1/32 and p = 2 are taken and hence the solitary wave amplitude
is 0.25. The error norms L2 and L∞, the three invariant values I1, I2, I3 are computed using the current algorithm and
the results produced are shown in Table 1. This table shows that all invariants are fixed and the error norm results
are as small as desired.
Implementation 1.2 In the second implementation, c = 1/2 and p = 2 are taken and hence the solitary wave
amplitude is 1. The error norms L2 and L∞, the three invariant values I1, I2, I3 are calculated using the current
algorithm and the results produced are exhibited in Table 2. It can be clearly viewed from Table 2 that the invariants
I1, I2 are almost the same, I3 constant and the error norms are quite small.
Implementation 1.3 Taking the parameters c = 0.001, p = 3, the solitary wave amplitude becomes 0.15. The error
norms L2 and L∞, the three invariant values I1, I2, I3 are calculated using the current algorithm and the results
generated are demonstrated in Table 3. It can be clearly observed from this table that the invariants are perfectly
preserved and the error norms are small as intended.
Implementation 1.4 If the parameters c = 0.3, p = 3 are selected, the solitary wave amplitude will be 1. The error
norms L2 and L∞, the three invariant values I1, I2, I3 are computed using the present algorithm. The newly obtained
results generated have been displayed in Table 4 and this table shows that the the invariants I1, I2 are almost the
same, I3 constant and the error norm results are fit for purpose.
Implementation 1.5 For values of p = 4 and c = 1, the solitary wave amplitude becomes 1. The error norms L2 and
L∞, the three invariant values I1, I2, I3 are computed via the present algorithm and he results generated are displayed
in Table 5. One may easily observe from this table that as it is hoped, the invariants I1, I2 are almost the same, I3
constant and the error norm values are quite small.
Implementation 1.6 In this application, the values of the error norms and invariants for numerical results studied
by Galerkin, Collocation , Petrov- Galerkin finite element methods by [17, 28, 31, 44, 46, 52] with the help of different
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Table 1. The invariants and error norms of the single solitary wave with h = 0.1,∆t = 0.2, ε =
3, µ = 1 on the region [0, 80] with the amplitudes 0.25 for p = 2.

method time I1 I2 I3 L2x105 L∞x105

Present p = 2 0 0.78539816 0.16666667 0.00520833 0.000000 0.000000
5 0.78539816 0.16666667 0.00520833 0.030210 0.023478
10 0.78539816 0.16666667 0.00520833 0.060360 0.048785
15 0.78539816 0.16666667 0.00520833 0.090395 0.075056
20 0.78539816 0.16666667 0.00520833 0.120270 0.101365

Table 2. The invariants and error norms of the single solitary wave with h = 0.1,∆t = 0.2, ε =
3, µ = 1 on the region [0, 80] with the amplitudes 1 for p = 2.

method time I1 I2 I3 L2 L∞

Present p = 2 0 3.14159265 2.66666666 1.33333333 0.00000000 0.00000000
5 3.14156224 2.66662603 1.33333333 0.00438756 0.00289477
10 3.14153186 2.66658546 1.33333333 0.00855926 0.00540459
15 3.14150149 2.66654489 1.33333333 0.01269506 0.00792951
20 3.14147112 2.66650433 1.33333333 0.01685700 0.01047330

Table 3. The invariants and error norms of the single solitary wave with h = 0.1,∆t = 0.2, ε =
3, µ = 1 on the region [0, 80] with the amplitudes 0.15 for p = 3.

method time I1 I2 I3 L2x107 L∞x107

Present p = 3 0 0.4189163 0.0549808 0.0000733 0.00000 0.00000
5 0.4189163 0.0549808 0.0000733 0.04111 0.05222
10 0.4189163 0.0549808 0.0000733 0.08222 0.01051
15 0.4189163 0.0549808 0.0000733 0.01233 0.01585
20 0.4189163 0.0549808 0.0000733 0.01644 0.02126

B-splines are compared with those of the algorithm presented in the present study at t = 20 and are displayed in Table
6. For p = 2, 3 and 4, it may be observed that the error norms produced by the numerical schemes in the study are
extremely small than all studies in the table, as desired. It has been found that the newly found invariant values are
in good harmony with those of the previous ones.
Implementation 1.7 The solitary amplitude wave becomes 1 with the parameters c=1/2 for p=2, c=0.3 for p=3,
and c=1 for p=4. Table 7 reports the values of invariants and error norms for various time levels. for single solitary
wave this last table submits a comparison of the values of the error norms and invariants with those previously worked
with the Galerkin, Collocation methods. From this table, besides expressing that the three conservation properties
remain almost the same as time progresses and are consistent with their peers, it can be said that their norms are
satisfactorily quite small. Figure 1 plots a simulation of a single solitary wave at times t = 0, 10, 20. with c = 0.3 for
values of p = 3, 4. This figure shows that as the solitary wave moves to the right, its velocity hardly changes and also
one may clearly visualize that the wave maintains its amplitude and shape as time progresses.
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Table 4. The invariants and also error norms of the single solitary wave with ∆t = 0.2, h = 0.1,
µ = 1, ε = 3 on the region [0, 80] with the amplitudes 1 for p = 3.

method time I1 I2 I3 L2 L∞

Present p = 3 0 2.80436421 2.46391383 0.98556555 0.00000000 0.00000000
5 2.80433498 2.46387067 0.98556555 0.00205514 0.00145533
10 2.80430576 2.46382753 0.98556555 0.00409713 0.00278287
15 2.80427655 2.46378441 0.98556555 0.00614498 0.00413034
20 2.80424735 2.46374129 0.98556555 0.00821984 0.00550017

Table 5. The invariants and also error norms of the single solitary wave with ∆t = 0.2, h = 0.1,
µ = 1, ε = 3 on the region [0, 80] with the amplitudes 1 for p = 4.

method time I1 I2 I3 L2 L∞

Present p = 4 0 2.62205755 2.35619437 0.78539816 0.00000000000 0.00000000000
5 2.62203468 2.35615854 0.78539816 0.00107282684 0.00079859296
10 2.62201182 2.35612272 0.78539816 0.00216193142 0.00154443834
15 2.62198896 2.35608691 0.78539816 0.00326704600 0.00230677859
20 2.62196610 2.35605110 0.78539816 0.00439458001 0.00308793394
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Figure 1. Graph for c = 0.3, x0 = 30, [0, 80] with p = 3, 4 at t = 0, 10, 20 of single solitary wave.

6.2. Example II: Two solitary wave Interactions. This section is going to examine two solitary wave interactions
with the parameter values ε = 3, µ = 1,∆t = 0.025, h = 0.1 over the region [0, 80] throughout the study. For this, the
following initial condition is used

U(x, 0) =

2∑
i=1

(ci(p+ 1)(p+ 2)

2ε
sech2[

p

2
√
µ

(x− xi)]
)1/p

,

The condition given at the initial time above models the propagation of two waves which have different amplitudes,
one at x1 and the other at x2 in which xi and ci (i=1,2) are arbitrary positive constants. Here, three parameter sets
in tables are considered for various values p, ci and these are presented in three applications.
Implementation 1.1 In the first application, invariants for p = 2 with those of the parameters c1 = 0.5, c2 = 0.125
are calculated and the amounts found are compared with the Petrov Galerkin method [46]. Numerical calculations
are made from 0 to 20 time levels in five time increments. The compared results are reported in Table 8. One may
obviously see that they do not change at all during the simulation and are very compatible with the reference being
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Table 6. The invariants and error norms of the single solitary wave with ∆t = 0.2, h = 0.1, µ =
1, ε = 3 on the region [0, 80] with the amplitudes 0.25, 0.15 and 1 for p = 2, 3 and 4.

method time I1 I2 I3 L2x103 L∞x103

Present p = 2 0 0.78539816 0.16666667 0.00520833 0.00000000 0.00000000
5 0.78539816 0.16666667 0.00520833 0.00030210 0.00023478
10 0.78539816 0.16666667 0.00520833 0.00060360 0.00048785
15 0.78539816 0.16666667 0.00520833 0.00090395 0.00075056
20 0.78539816 0.16666667 0.00520833 0.00120270 0.00101365

[17] 20 0.78528640 0.16658180 0.00520600 0.15695390 0.20214760
[28] 20 0.78539680 0.16666630 0.00520830 0.07833789 0.04448503
[44] 20 0.78466760 0.16643400 0.00519380 0.19588780 0.17443300
[46] 20 0.78539800 0.16666900 0.00520829 0.00250172 0.00275164
[31] 20 0.78539650 0.16666630 0.00520830 0.00127758 0.00068872
[52] 20 0.78539 0.16666 0.00520 0.00135 0.00091
Present p = 3 0 0.4189163 0.0549808 0.0000733 0.00000000 0.00000000

5 0.4189163 0.0549808 0.0000733 0.00000411 0.00000522
10 0.4189163 0.0549808 0.0000733 0.0000082 0.00000105
15 0.4189163 0.0549808 0.0000733 0.00000123 0.00000158
20 0.4189163 0.0549808 0.0000733 0.00000164 0.00000212

[17] 20 − − − − −
[28] 20 0.41891540 0.05498050 0.00007330 0.00282488 0.00183291
[44] 20 0.65908330 0.05938137 0.00006871 0.51496770 0.32060590
[46] 20 0.41891600 0.05497830 0.00007330 0.00006407 0.00008206
[31] 20 0.41891540 0.05498070 0.00007330 0.00000633 0.00000345
[52] 20 0.41891 0.05498 0.000073 0.000019 0.000023
Present p = 4 0 2.62205755 2.35619437 0.78539816 0.00000000 0.00000000

5 2.62203468 2.35615854 0.78539816 1.07282684 0.79859296
10 2.62201182 2.35612272 0.78539816 2.16193142 1.54443834
15 2.62198896 2.35608691 0.78539816 3.26704600 2.30677859
20 2.62196610 2.35605110 0.78539816 4.39458001 3.08793394

[17] 20 − − 0.00520600 − −
[28] 20 2.63278330 2.37300320 0.8023383 8.90617000 8.21991000
[44] 20 − − − − −
[46] 20 2.62206000 2.35615000 0.78534400 2.30499000 1.88285000
[31] 20 2.62192110 2.35590930 0.78511300 3.41485000 2.49360000
[52] 20 2.62192 2.35593 0.78513 3.39086 2.47031

compared.
Implementation 1.2 In the second implementation, invariants for p = 3 with the parameters c1 = 0.3, c2 = 0.0325
are computed and Numerical ones are made from 0 to 100 time levels in ten time increments. Calculated values are
compared with the Petrov Galerkin method [46] in Table 9. As requested, it can be seen to be in agreement with the
reference presented in the table. Figure 2 plots a simulation of two solitary waves generated at various time levels.
Implementation 1.3 In the last application, for p = 4, the invariants are calculated by choosing the parameters
c1 = 0.2, c2 = 1/80 and their values are compared with the Petrov Galerkin method [46] and displayed in Table 10.
This application shows that as a result of the numerical results and their comparisons obtained with the proposed
algorithm, the invariants are well preserved. Figure 3 plots a simulation of two solitary waves generated at various
time levels. For Figures 2 and 3, the wave with the smaller amplitude at the beginning is located to the right of the
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Table 7. Comprasions of The invariants and error norms of the single solitary wave with ∆t =
0.2, h = 0.1, µ = 1, ε = 3 on the region [0, 80] with the amplitude 1 for p = 2, 3 and 4. .

method time I1 I2 I3 L2 L∞

Present p = 2 0 3.14159265 2.66666666 1.33333333 0.0000000 0.0000000
5 3.14156224 2.66662603 1.33333333 0.0043875 0.0028947
10 3.14153186 2.66658546 1.33333333 0.0085592 0.0054045
15 3.14150149 2.66654489 1.33333333 0.0126950 0.0079295
20 3.14147112 2.66650433 1.33333333 0.0168570 0.0104733

[28] 20 3.1589605 2.6902580 1.3570299 0.0380303 0.0262900
[32] 20 3.1251634 2.6447698 1.3115241 0.0544214 0.0360834
[52]1 20 3.1253043 2.6445829 1.3113394 0.0513210 0.0341675
[52]2 20 3.1416722 2.6669051 1.3335718 0.0167509 0.0102639
Present p = 3 0 2.80436421 2.46391383 0.98556555 0.0000000 0.0000000

5 2.80433498 2.46387067 0.98556555 0.0020551 0.0014553
10 2.80430576 2.46382753 0.98556555 0.0040971 0.0027828
15 2.80427655 2.46378441 0.98556555 0.0061449 0.0041303
20 2.80424735 2.46374129 0.98556555 0.0082198 0.0055001

[28] 20 2.8187398 2.4852249 0.0070200 0.0165563 0.0137045
[32] 20 2.7911063 2.4444001 0.9661645 0.0460246 0.0333820
[52]1 20 2.8043570 2.4639086 0.9855602 0.0080147 0.0053823
[52]2 20 2.8042943 2.4637495 0.9854011 0.0070855 0.0048047
Present p = 4 0 2.62205755 2.35619437 0.78539816 0.0000000 0.0000000

5 2.62203468 2.35615854 0.78539816 1.0728268 0.7985929
10 2.62201182 2.35612272 0.78539816 2.1619314 1.5444383
15 2.62198896 2.35608691 0.78539816 3.2670460 2.3067785
20 2.62196610 2.35605110 0.78539816 4.3945800 3.0879339

[28] 20 2.63278330 2.37300320 0.8023383 0.0089061 0.0082199
[32] 20 2.6122055 2.3408135 0.7701119 0.0375343 0.0287549
[52]1 20 2.6220508 2.3561901 0.7853939 0.0042169 0.0029795
[52]2 20 2.6219284 2.3559327 0.7851364 0.0033908 0.0024703
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Figure 2. p = 3 of two solitary wave interactions.

wave with the larger amplitude. Later on, the interaction between the waves begins and then they overlap with each
other. Then, with the time t = 50, those waves initialy start taking their original shapes.

6.3. Example III: Evolution process of solitons. This example will handle the Eq. (1.1) together with the
Maxwellian condition presented at the initial time [17, 44, 46]

U(x, 0) = exp(−x2), [−20, 20].
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Table 8. Calculated invariants of two solitary waves for p = 2 with values x1 = 15, x2 = 30, c1 =
0.5, c2 = 0.125, ε = 3,∆t = 0.025, h = 0.1 over [0, 80] at various times.

method [46]

t I1 I2 I3 I1 I2 I3

0 4.71239 3.33333 1.41666 4.71239 3.33324 1.14166
10 4.71239 3.33333 1.41666 4.71239 3.33324 1.14166
20 4.71239 3.33333 1.41666 4.71239 3.33324 1.14166
30 4.71239 3.33333 1.41666 4.71239 3.33324 1.14166
40 4.71239 3.33333 1.41666 4.71239 3.33333 1.14166
50 4.71239 3.33333 1.41666 4.71239 3.33338 1.14166
60 4.71239 3.33333 1.41666 4.71239 3.33333 1.14166

Table 9. Computed two solitary wave invariants for p = 3 with values x1 = 15, x2 = 30, c1 =
0.3, c2 = 0.0325, ε = 3,∆t = 0.025, h = 0.1 over [0, 80] at various times.

method [46]

t I1 I2 I3 I1 I2 I3

0 4.20655 3.07989 1.01636 4.20655 3.97977 1.01634
10 4.20655 3.07989 1.01636 4.20655 2.07986 1.01634
20 4.20655 3.07989 1.01636 4.20655 3.07982 1.01634
30 4.20655 3.07989 1.01636 4.20655 3.07980 1.01634
40 4.20655 3.07989 1.01636 4.20655 3.07986 1.01634
50 4.20655 3.07989 1.01636 4.20655 3.07981 1.01633
60 4.20655 3.07989 1.01636 4.20655 3.07987 1.01633
70 4.20655 3.07989 1.01636 4.20655 3.07976 1.01634
80 4.20655 3.07989 1.01636 4.20655 3.07991 1.01633
90 4.20655 3.07989 1.01636 4.20655 3.07974 1.01633
100 4.20655 3.07989 1.01636 4.20655 3.07972 1.01634

Table 10. Computed two solitary wave invariants for p = 4 with values x1 = 15, x2 = 30, c1 =
0.2, c2 = 1/80, ε = 3,∆t = 0.025, h = 0.1 over [0, 80] at various times.

method [46]

t I1 I2 I3 I1 I2 I3

0 3.93309 2.94524 0.797671 3.93309 2.94512 0.797614
20 3.93309 2.94524 0.797671 3.93309 2.94517 0.797611
40 3.93309 2.94524 0.797671 3.93309 2.94515 0.797612
60 3.93309 2.94524 0.797671 3.93309 2.94505 0.797622
80 3.93309 2.94524 0.797671 3.93309 2.94506 0.797613
100 3.93309 2.94524 0.797671 3.93309 2.94508 0.797611
120 3.93309 2.94524 0.797671 3.93308 2.94511 0.797611

It is taken the parameter values ε = 3, h = 0.05,∆t = 0.01 on the domain [0, 80] throughout the study for p = 2, 3, 4
with different values of µ = 0.01, 0.025, 0.05 and µ = 0.1. For numerical simulations, the code has been run till t = 12.
The results generated are compared with the Petrov–Galerkin and collocation techniques and reported in Table 11.
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Figure 3. p = 4 of two solitary wave interactions.

This table concludes that the proposed algorithm yields results consistent with [17, 44, 46]. Figures 4 and 5 indicate
the evolution of the Maxwell initial condition to solitary waves for p = 3, 4 with different values of µ at t = 12. One
can observe from this figure that the smaller solitary wave located to the left of the larger one. Figures 4 and 5 depict
only one stable soliton with (a) for p = 3 and 4 when µ = 0.1, and two stable solitary waves with (b) when µ = 0.05
for p = 3, 4. Also, these figures depicts three and five stable solitary waves with (c) and (d) for p = 3, 4 when µ = 0.025
and µ = 0.01, respectively. From Figure 4 and 5, one may coclude that the number of stable solitary waves increases
as the value µ decreases.

Table 11. The invariant values of Maxwellian initial condition with ∆t = 0.01, h = 0.05 for different
values of µ.

p 2 3 4

I1 I2 I3 I1 I2 I3

test test 1.7724 1.2658 0.7926 1.7724 1.2658 0.7236
4 1.7724 1.2655 0.8868 1.7721 1.2649 0.7928 1.7720 1.2648 0.7265

I1 8 1.7723 1.2653 0.8863 1.7717 1.2641 0.7907 1.7712 1.2636 0.7242
12 1.7721 1.2651 0.8858 1.7711 1.2626 0.7862 1.7693 1.2582 0.7051

[52] 12 1.7739 1.2711 0.9123 1.7813 1.2901 0.8664 1.8156 1.3901 1.2707

0 1.7724 1.2846 0.8862 1.7724 1.2846 0.7927 1.7724 1.2846 0.7236
4 1.7724 1.2846 0.8864 1.7724 1.2845 0.7929 1.7724 1.2846 0.7243

0.025 8 1.7724 1.2846 0.8864 1.7724 1.2845 0.7929 1.7724 1.2845 0.7238
12 1.7724 1.2846 0.8864 1.7724 1.2845 0.7928 1.7724 1.2844 0.7237

[52] 12 1.7725 1.2846 0.8881 1.7730 1.2837 0.7946 1.7791 1.3056 0.8198

0 1.7724 1.3159 0.8862 1.7724 1.3159 0.7926 1.7724 1.3159 0.7236
4 1.7724 1.3159 0.8863 1.7724 1.3159 0.7927 1.7724 1.3159 0.7237

0.05 8 1.7724 1.3159 0.8863 1.7724 1.3159 0.7927 1.7724 1.3159 0.7237
12 1.7724 1.3159 0.8863 1.7724 1.3159 0.7928 1.7724 1.3159 0.7237

[52] 12 1.7724 1.3159 0.8864 1.7725 1.3160 0.7940 1.7735 1.3188 0.7345

0 1.7724 1.3786 0.8862 1.77245 1.87997 0.88623 1.7724 1.3786 0.7236
4 1.7724 1.3786 0.8862 1.77245 1.87997 0.88623 1.7724 1.3786 0.7236

0.1 8 1.7724 1.3786 0.8862 1.77245 1.87997 0.88623 1.7724 1.3786 0.7236
12 1.7724 1.3786 0.8862 1.77245 1.87997 0.88623 1.7724 1.3786 0.7236

[52] 12 1.7724 1.3786 0.8862 1.7724 1.3786 0.7928 1.7725 1.3786 0.7243
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Figure 4. Maxwellian initial condition p = 3 at t = 12.
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Figure 5. Maxwellian initial condition p = 4 at t = 12.

7. Conclusion

The Lie-Trotter splitting techniques together with the quintic B-spline collocation method have been used for
approximate solutions of the (GEW) equation. Three model problems have been applied to the proposed algorithm
and a comparison is carried out with the values of Petrov Galerkin, Galerkin, and collocation methods by computing
the error norms L2 and L∞ and invariant values I1,I2 and I3 representing mass, energy, and momentum to measure its
accuracy, practicality and usefulness. For the invariants and error norms calculated with the method applied in this
study, it can be said that the invariants are well preserved and the error norms are satisfactorily small according to
Petrov Galerkin, Galerkin, some collocation methods and this situation indicates the success of the proposed algorithm.
Additionally, numerical algorithms are shown to be unconditionally stable. Therefore, readers may be encouraged to
utilize the present method about the other nonlinear models stated by PDEs in applied sciences such as engineering,
physics.
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[6] A. Başhan, A novel outlook to the an alternative equation for modelling shallow water wave: Regularised Long
Wave (RLW) equation,Indian J. Pure Appl. Math., (2022).
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[28] S. B. G. Karakoç and H. Zeybek, A cubic B-spline Galerkin approach for the numerical simulation of the GEW
equation, Stat. Optim. Inf. Comput., 4 (2016) 30–41.
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