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Abstract
In this article, Katugampola fractional kinetic equation (KE) has been expressed in terms of polynomials along
with incomplete H-function, incomplete Meijer’s G-function, incomplete Fox-Wright function, and incomplete

generalized hypergeometric function, weighing the novel significance of the fractional KE that appear in a variety

of scientific and engineering scenarios. τ -Laplace transform is used to solve the Kathugampola fractional KE.
The obtained solutions have been presented with some real values and the simulation was done via MATLAB.

Furthermore, the numerical and graphical interpretations are also mentioned to illustrate the main results. Each

of the obtained conclusions is of a general nature and is capable of generating the solutions to several fractional
KE.
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1. Introduction

To evaluate fractional-order differ-integral equations, fractional calculus is a useful mathematical technique. It has
been established and advanced in engineering and scientific areas [22, 24, 41]. Applications of fractional differential
equations have significantly enhanced biology, physics, chemistry, mathematical modeling [20], applied science, and en-
gineering [2, 4, 7]. Additionally, the application of fractional calculus to real-world issues such as modeling phenomena
using fractals [19], solving wave-like equations [21, 23], biological populations [5], random walk processes [40], fractal
brownian motion, continuous time random walk [30], control theory and in the theory of time scales [1]. In order to
study the rate of change of a star’s chemical composition for each order, KE create a set of differential equations in
the form of reaction rates for destruction and production, respectively.

The generalization and expansion of kinetic fractional equations [9, 16], that contain numerous fractional operators,
has increased interest in applied mathematics as well as physics [3], chemistry, biology, engineering [38, 39], heat
transfer, dynamical systems [33], and control systems [6, 11]. This has allowed for the mathematical modeling of
a variety of physical phenomena like diffusion in porous media and kinetics in viscoelastic media [12, 31]. Kinetic
fractional equations, which can take many different forms, have been extensively used in recent decades to describe
and address a broad range of significant astrophysics and physics (see, e.g. [8, 25, 26, 32]) problems. Additionally, the
Laplace transform, the Mellin transform, the Sumudu transform, the Fourier transform, the pathway-type transform,
Prabhakar-type operators, and alternative methods are the most commonly used strategies for solving fractional kinetic
equations. In particular, the Laplace transform method, which has been present in this paper is one of the effective
way of finding analytical solutions of fractional kinetic equations. When solving fractional differential equations and
special functions are utilized together with their applications. Because kinetic fractional equations are efficient and
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helpful in astrophysical calculations, they are related to every issue in a broad variety of mathematical physics and
areas.

The use of the incomplete special functions in this new fractional generalization of the KE adds an additional aspect
to the research. Katugampola fractional KE [29] has been expressed in terms of polynomial along with incomplete H-
function, incomplete Meijer’s G-function, incomplete Fox-Wright function and incomplete generalized hypergeometric
function. Using the τ -Laplace transformation method, the solution to these fractional KE is obtained. Severalspecial
instances are also be discussed briefly.

The fractional KE given by Haubold and Mathai [14] is as follows (see [8, 10]):

dN̊

dt
= −δ(N̊t) + p(N̊t), (1.1)

where N̊ = N̊(t) represents the rate of change of reaction, δ(N̊t) represents the destruction rate and p(N̊t) represents

the growth rate. Moreover, N̊t is stated as N̊t(t
∗) = N̊(t − t∗) for t∗ > 0. We also obtained some appropriate case

of (1.1), when the quantity of homogeneities or spatial variation of N̊(t) is ignored, is provided by the subsequent
equation:

dN̊k
dt

= −mkN̊k(t), (1.2)

where N̊k(t = 0) = N̊0 express the varity of species density k at t = 0, mk > 0 time. Ignoring the index k and
integrating equation (1.2), we get:

N̊(t)− N̊0 = −m 0D
−1
t N̊(t), (1.3)

where 0D
−1
t is the particular instance of the Riemann-Liouville (R-L) fractional integral operator 0D

−µ
t and it is

described as:

0D
−µ
t g(t) =

1

Γ(µ)

∫ t

0

(t− w)µ−1g(w) dw, t, <(µ) > 0. (1.4)

Houbold and Mathai [14] established the fractional generalization of the classical KE (1.3) and is defined as:

N̊(t)− N̊0 = −mµ
0D
−µ
t N̊(t), m ∈ R+, (1.5)

have the following as the solution to Equation (1.5):

N̊(t) = N̊0

∞∑
s=0

(−1)s

Γ(sµ+ 1)
(mt)µs = N̊0Eµ(−mµtµ), µ > 0, (1.6)

where Eµ(z) is Mittag Leffler function [13, 28], that is described as:

Eµ(z) =

∞∑
r=0

zr

Γ(µr + 1)
, µ > 0. (1.7)

The ordinary and generalized Mittag-Leffler functions interpolate between a purely exponential law and power-like
behavior of phenomena governed by ordinary kinetic equations and their fractional counterparts.

Moreover, Saxena and Kalla [34] thought of the following fractional KE as:

N̊(t)− N̊0g(t) = −mµ
0D
−µ
t N̊(t), (1.8)

where g(t) ∈ L(0,∞), N̊(t) represents the species’ population density at time t and N̊0 = N̊(0) is the the species’
population density at time t = 0.

The following is the laplace transformation of the R-L fractional integration of g(t) stated in (1.4) equation:

L[0D
−µ
t g(t) : u] = u−µG(u), t > 0,<(µ), <(u) > 0. (1.9)
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The Laplace transform of g(t) is denoted by the function G(u) and specified by:

G(u) = L[g(t), u] =

∫ ∞
0

e−utg(t)dt, t, <(u) > 0. (1.10)

The following is the description of the lower and upper incomplete gamma functions γ(r, t) and Γ(r, t) respectively:

γ(r, t) =

∫ t

0

ur−1 e−u du,
(
t ≥ 0;<(r) > 0

)
, (1.11)

and

Γ(r, t) =

∫ ∞
t

ur−1 e−u du,
(
<(r) > 0; t ≥ 0

)
. (1.12)

The following relation is satisfied by the incomplete gamma functions:

γ(r, t) + Γ(r, t) = Γ(r),
(
<(r) > 0

)
. (1.13)

Using the previously mentioned incomplete gamma functions in Equation (1.11) and (1.12), Srivastava et al. [37] in
the recent past presented a pair of Mellin-Barnes contour integral representations of the incomplete H-function γr,s

u,v

and Γr,s
u,v described as follows [15]:

γr,s
u,v(z) = γr,s

u,v

[
z

∣∣∣∣∣ (f1,F1, x), (fj ,Fj)2,u

(ej ,Ej)1,v

]

= γr,s
u,v

[
z

∣∣∣∣∣ (f1,F1, x), (f2,F2), · · · , (fu,Fu)
(e1,E1), (e2,E2), · · · , (ev,Ev)

]

=
1

2πi

∫
L
ψ(l, x) z−l dl, (1.14)

where,

ψ(l, x) =

γ(1− f1 − F1l, x)
r∏

j=1

Γ(ej + Ej l)
s∏

j=2

Γ(1− fj − Fj l)

v∏
j=r+1

Γ(1− ej − Ej l)
u∏

j=s+1

Γ(fj + Fj l)
, (1.15)

and

Γr,s
u,v(z) = Γr,s

u,v

[
z

∣∣∣∣∣ (f1,F1, x), (fj ,Fj)2,u

(ej ,Ej)1,v

]

= Γr,s
u,v

[
z

∣∣∣∣∣ (f1,F1, x), (f2,F2), · · · , (fu,Fu)
(e1,E1), (e2,E2), · · · , (ev,Ev)

]

=
1

2πi

∫
L

Ψ(l, x) z−l dl, (1.16)

where,

Ψ(l, x) =

Γ(1− f1 − F1l, x)
r∏

j=1

Γ(ej + Ej l)
s∏

j=2

Γ(1− fj − Fj l)

v∏
j=r+1

Γ(1− ej − Ej l)
u∏

j=s+1

Γ(fj + Fj l)
. (1.17)

The incomplete H-functions γm, np, q (z) and Γm, np, q (z) in (1.14) and (1.16) exists ∀x ≥ 0 within the similar contour
and circumstances as described in Mathai and Saxena [27]. The denotations (1.14) and (1.16) readily yield the
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decomposition formula:

γm, np, q (z) + Γm, np, q (z) = Hm, n
p, q (z), (1.18)

for the familiar H-function.
The Srivastava [35] investigated a broader class of polynomials, which is summarised as follows:

SUV [t] =

[V/U ]∑
O=0

(−V )UO

O!
AV,O tO, (1.19)

where U ∈ Z+ and AV,O are real or complex numbers arbitrary constants. The notations [k] indicate the floor function
and (κ)µ indicate the pochhammer symbol described by:

(κ)0 = 1 and (κ)µ =
Γ(κ+ µ)

Γ(κ)
, µ ∈ C,

in the form of the gamma function.
In this article, to solve the Katugampola fractional KE, we will consider the τ -Laplace transform [1, 17] that involves

incomplete H-function, incomplete extended hypergeometric function, and incomplete Fox-wright functions described
within the same group of circumstances defined in [36, 37].

2. Mathematical Preliminaries

Definition 2.1. The R-L integral operator is generalized into a distinct form by the Katugampola fractional operator,
which was given by U. N. Katugampola [18] such as for r ∈ C, then:

[τ Irb+f](y) =
τ1−r

Γ(r)

∫ y

b

uτ−1g(u)

(yτ − uτ )(1−r) du, (<(r), τ > 0). (2.1)

The left-sided fractional integral is the name given to the above integral.

[τ Irc−f](y) =
τ1−r

Γ(r)

∫ c

y

uτ−1g(u)

(uτ − yτ )(1−r) du, (<(r), τ > 0). (2.2)

The right-sided fractional integral is the name given to the above integral.

Definition 2.2. Let g : [0,∞) → R be a real-valued function that is piecewise continuous and is of τ - exponential

order exp
(
d t

τ

τ

)
, where d is a non-negative constant, then its τ -Laplace transform exists for w > d and is defined as:

Lτ{g(t);w} =

∫ ∞
0

exp

(
d
tτ

τ

)
g(t)

t(1− τ)
dt, (τ > 0). (2.3)

There are numerous physical implementations that depend on the convolution of the functions of g(t) and h(t),
that are expressed for t > 0. The following integral gives the τ -Laplace convolution of functions g(t) and h(t):

g(t) ∗τ h(t) =

∫ ∞
0

g{(tτ − ρτ )
1
τ } h(ρ)

ρ1−τ dρ, (τ > 0), (2.4)

which remains exists if the function g(t) and h(t) are at least piece-wise continuous. The fact that the τ -laplace
transform of a convolution of two functions is the product of their transforms is one of the most crucial characteristics
procured by the convolution in connection with the τ -Laplace transform (see, e.g [1, 17]).
τ-Laplace Convoluation Theorem: If g(t) and h(t) are two piecewise continuous functions on [0,∞) and have

exponential order d, when t→∞, then

L{g(t) ∗τ h(t);w} = L{g(t);w}.L{h(t);w}, (<(w) > 0). (2.5)
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We define the τ -Laplace transform for Katugampola fractional integral:

Lτ{τ Ir0g(t);w} =
τ1−r

Γ(r)
Lτ{tτ(r−1) ∗τ g(t);w}

=
τ1−r

Γ(r)
Lτ{tτ(r−1);w}.Lτ{g(t);w}

= w−rLτg(t). (2.6)

by using the identity

Lτ{tu;w} = τ
u
τ

Γ
(
1 + u

τ

)
w(1+u

τ )
, (u ∈ R, w > 0). (2.7)

⇐⇒ L−1
τ

(
1

w(1+u
τ )

)
=

1

τ
u
τ Γ
(
1 + u

τ

) tu, (2.8)

in which L−1
τ considered as the τ -inverse Laplace transform.

3. FRACTIONAL KINETIC EQUATIONS: GENERALIZED SOLUTION

Theorem 3.1. For all %,$, a,b, ϕ > 0, U ∈ Z+, r ∈ C, and AV,O are arbitrary real or complex constant, then the
equation

N̊(t)− N̊0t
ϕ−1SUV [at%] Γr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t), (3.1)

has solution:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/U ]∑
O=0

(−V )UO

O!
AV,O (a t%)O

× Γr, s+1
u+1, v+1

bt$

∣∣∣∣∣ (f1,F1, x),
(

1− ( τ+ϕ+%O−1
τ ), $τ

)
, (fj ,Fj)2,u(

−ϕ−%O+1−ξiτ
τ , $τ

)
, (ej ,Ej)1,v

 . (3.2)

Proof. Applying τ -Laplace transform both side of Equation (3.1), we get:

Lτ{N̊(t);w}+ Lτ{dξ τ Iξ0 N̊(t);w} = Lτ{N̊0t
ϕ−1SUV [at%] Γr,s

u,v[bt$];w}. (3.3)

Use Equation (2.7) in Equation (3.3) and replace Srivastava polynomial and incomplete H-function with Equations
(1.19) and (1.16) respectively, we get:

N̊τ (w)(1 + dξw−ξ) = N̊0

[V/U ]∑
O=0

(−V )UO

O!
AV,O (a)O

1

2πi

∫
L

Ψ(l, x) (b)−l

× τ
ϕ+%O−$l−1

τ

Γ
(

1 + ϕ+%O−$l−1
τ

)
w(1+ϕ+%O−$l−1

τ )
dl. (3.4)

After some adjustment of terms and use of (1 + x)−1 =
∑∞
r=0(−1)rxr in Equation (3.4), we may write:

N̊τ (w) = N̊0τ
ϕ−1
τ

[V/U ]∑
O=0

(−V )UO

O!
AV,O (aτ

%
τ )O

1

2πi

∫
L

Ψ(l, x) (bτ
$
τ )−l

× Γ

(
1 +

ϕ+ %O−$l − 1

τ

) ∞∑
i=0

(−dξ)i 1

w(1+ϕ+%O−$l+ξiτ−1
τ )

dl. (3.5)
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Apply τ -inverse Laplace transform both side of Equation (3.5) and use Equation (2.8), we have:

N̊τ (t) = N̊0 t
ϕ−1

∞∑
i=0

(
−
(
d tτ

τ

)ξ)i [V/U ]∑
O=0

(−V )UO

O!
AV,O (at%)O

× 1

2πi

∫
L

Ψ(l, x)
Γ( τ+ϕ+%O−$l−1

τ )

Γ
(

1 + ϕ−$l+ξiτ+%O−1
τ

) (b t$)−ldl. (3.6)

After some adjustment of terms, we obtain the intended outcomes. �

Theorem 3.2. For all %,$, a,b, ϕ > 0, U ∈ Z+, r ∈ C, and AV,O are arbitrary real or complex constant, then the
equation

N̊(t)− N̊0t
ϕ−1SUV [at%] γr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t), (3.7)

has solution:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/U ]∑
O=0

(−V )UO

O!
AV,O (a t%)O

× γr, s+1
u+1, v+1

bt$

∣∣∣∣∣ (f1,F1, x),
(

1− ( τ+ϕ+%O−1
τ ), $τ

)
, (fj ,Fj)2,u(

−ϕ−%O+1−ξiτ
τ , $τ

)
, (ej ,Ej)1,v

 . (3.8)

Proof. The proof is the immediate consequences of the definitions (1.16), (1.19), and parallel to the Theorem 3.1.
Consequently, we exclude the proof. �

(i) Incomplete Meijer G-Function: If we take the particular values in Equation (1.16), that is Fj = 1(j =
1, 2, ..., u),Ej(j = 1, , 2, ..., v) and using the relation, namely:

Γr,s
u,v

[
z

∣∣∣∣∣ (f1, 1, x), (fj , 1)2,u

(ej , 1)1,v

]
= (Γ)Gr,s

u,v

[
z

∣∣∣∣∣ (f1, x), (fj)2,u

(ej)1,v

]
=

1

2πi

∫
L

Ψ(l, x) z−l dl, (3.9)

where,

Ψ(l, x) =

Γ(1− f1 − l, x)
r∏

j=1

Γ(ej + l)
s∏

j=2

Γ(1− fj − l)

v∏
j=r+1

Γ(1− ej − l)
u∏

j=s+1

Γ(fj + l)
, (3.10)

in Equation (3.1) and (3.2), we obtain the following corollaries:

Corollary 3.3. For all %,$, a,b, ϕ > 0, U ∈ Z+, r ∈ C, and AV,O are arbitrary real or complex constant, then the
equation

N̊(t)− N̊0t
ϕ−1SUV [at%] (Γ)Gr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t) (3.11)

has solution:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/U ]∑
O=0

(−V )UO

O!
AV,O (a t%)O

× (Γ)Gr, s+1
u+1, v+1

bt$

∣∣∣∣∣ (f1, x),
(

1− ( τ+ϕ+%O−1
τ ), $τ

)
, (fj)2,u(

−ϕ−%O+1−ξiτ
τ , $τ

)
, (ej)1,v

 . (3.12)
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Corollary 3.4. For all %,$, a,b, ϕ > 0, U ∈ Z+, r ∈ C, and AV,O are arbitrary real or complex constant, then the
equation

N̊(t)− N̊0t
ϕ−1SUV [at%] (γ)Gr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t) (3.13)

has solution:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/U ]∑
O=0

(−V )UO

O!
AV,O (a t%)O

× (γ)Gr, s+1
u+1, v+1

bt$

∣∣∣∣∣ (f1, x),
(

1− ( τ+ϕ+%O−1
τ ), $τ

)
, (fj)2,u(

−ϕ−%O+1−ξiτ
τ , $τ

)
, (ej)1,v

 . (3.14)

(ii) Incomplete Fox-Wright Function: If we take the substitution b = −b, r = 1, s = u, v = v + 1, fj →
(1− fj) (j = 1, 2, ...,u), and ej → (1− ej) (j = 1, 2, ..., v) in Equation (3.1) and (3.2), using the following relation [37]:

Γ1,u
u,v+1

[
−z

∣∣∣∣∣ (1− f1,F1, x), (1− fj ,Fj)2,u

(0, 1), (1− ej ,Ej)1,v

]
= uΨ(Γ)

v

[
(f1,F1, x), (fj ,Fj)2,u

(ej ,Ej)1,v
; z

]
, (3.15)

and using the definition:

uΨ(Γ)
v

[
(f1,F1, x), (fj ,Fj)2,u

(ej ,Ej)1,v
; z

]
=

∞∑
l=0

Γ(f1 + F1l, x)
∏u
j=2 Γ(fj + Fj l)∏v

j=1 Γ(ej + Ej l)

zl

l!
, (3.16)

and

uΨ(γ)
v

[
(f1,F1, x), (fj ,Fj)2,u

(ej ,Ej)1,v
; z

]
=

∞∑
l=0

γ(f1 + F1l, x)
∏u
j=2 Γ(fj + Fj l)∏v

j=1 Γ(ej + Ej l)

zl

l!
, (3.17)

then we get the following corollaries:

Corollary 3.5. For all %,$, a,b, ϕ > 0, U ∈ Z+, r ∈ C, and AV,O are arbitrary real or complex constant, then the
equation

N̊(t)− N̊0t
ϕ−1SUV [at%] uΨ(Γ)

v [bt$] = −dξ τ Iξ0 N̊(t), (3.18)

has solution:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/U ]∑
O=0

(−V )UO

O!
AV,O (a t%)O

× u+1Ψ
(Γ)
v+1

 (f1,F1, x),
(
τ+ϕ+%O−1

τ , $τ

)
, (fj ,Fj)2,u(

τ+ϕ+%O−1+ξiτ
τ , $τ

)
, (ei,Ej)1,v

; bt$

 . (3.19)

Corollary 3.6. For all %,$, a,b, ϕ > 0, U ∈ Z+, r ∈ C, and AV,O are arbitrary real or complex constant, then the
equation

N̊(t)− N̊0t
ϕ−1SUV [at%] uΨ(γ)

v [bt$] = −dξ τ Iξ0 N̊(t), (3.20)

has solution:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/U ]∑
O=0

(−V )UO

O!
AV,O (a t%)O

× u+1Ψ
(γ)
v+1

 (f1,F1, x),
(
τ+ϕ+%O−1

τ , $τ

)
, (fj ,Fj)2,u(

τ+ϕ+%O−1+ξiτ
τ , $τ

)
, (ei,Ej)1,v

; bt$

 . (3.21)
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(iii) Incomplete Generalized Hypergeometric Function: If we take the particular substitution Fj = 1 (j =
1, 2, ...,u) and Ej = 1 (j = 1, 2, ..., v) in Corollary 3.5 and Corollary 3.6, making use of the relation [37]:

Γ1,u

u, ˚v+1

[
−z

∣∣∣∣∣ (1− f1, 1, x), (1− fj , 1)2,u

(0, 1), (1− ej , 1)1,v

]
= Cu

v uΓv

[
(f1, x), (fj)2,u

(ej)1,v
; z

]
= uΨ(Γ)

v

[
(f1, 1, x), (fj , 1)2,u

(ej , 1)1,v
; z

]
, (3.22)

where Cu
v is defined by:

Cu
v =

∏u
j=1 Γ(fj)∏v
j=1 Γ(ej)

, (3.23)

and using the definition:

uΓv

[
(f1, x), (fj)2,u

(ej)1,v
; z

]
=

∏v
j=1 Γ(ej)∏u
j=1 Γ(fj)

∞∑
l=0

Γ(f1 + l, x)
∏u
j=2 Γ(fj + l)∏v

j=1 Γ(ej + l)

zl

l!

=

∞∑
l=0

(f1, x)l, (f2)l...(fu)l
(e1)l, ...(ev)l

.
zl

l!
, (3.24)

and

uγv

[
(f1, x), (fj)2,u

(ej)1,v
; z

]
=

∏v
j=1 Γ(ej)∏u
j=1 Γ(fj)

∞∑
l=0

γ(f1 + l, x)
∏u
j=2 Γ(fj + l)∏v

j=1 Γ(ej + l)

zl

l!

=

∞∑
l=0

(f1, x)l, (f2)l...(fu)l
(e1)l, ...(ev)l

zl

l!
, (3.25)

then we get the following corollaries:

Corollary 3.7. For all %,$, a,b, ϕ > 0, U ∈ Z+, r ∈ C, and AV,O are arbitrary real or complex constant, then the
equation

N̊(t)− N̊0t
ϕ−1SUV [at%] uΓv[bt$] = −dξ τ Iξ0 N̊(t), (3.26)

has solution:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/U ]∑
O=0

(−V )UO

O!
AV,O (a t%)O

× Cu+1
v+1 u+1Γv+1

 (f1,F1, x),
(
τ+ϕ+%O−1

τ

)
, (fj ,Fj)2,u(

τ+ϕ+%O−1+ξiτ
τ

)
, (ei,Ej)1,v

; bt$

 , (3.27)

where Cu
v is defined in Equation (3.23) and Cu+1

v+1 = Cu
v

Γ( τ+ϕ+%O−1
τ )

Γ( τ+ϕ+%O−1+ξiτ
τ )

.

Corollary 3.8. For all %,$, a,b, ϕ > 0, U ∈ Z+, r ∈ C, and AV,R are arbitrary real or complex constant, then the
equation

N̊(t)− N̊0t
ϕ−1SUV [at%] uγv[bt$] = −dξ τ Iξ0 N̊(t), (3.28)
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has solution:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/U ]∑
O=0

(−V )UO

O!
AV,O (a t%)O

× Cu+1
v+1 u+1γv+1

 (f1,F1, x),
(
τ+ϕ+%O−1

τ

)
, (fj ,Fj)2,u(

τ+ϕ+%O−1+ξiτ
τ

)
, (ei,Ej)1,v

; bt$

 , (3.29)

where Cu
v is defined in Equation (3.23) and Cu+1

v+1 = Cu
v

Γ( τ+ϕ+%O−1
τ )

Γ( τ+ϕ+%O−1+ξiτ
τ )

.

4. Applications

A few implications and uses of the aforementioned findings are addressed in this section. By properly specializing
the coefficient AV,O to produce a wide number of the existing polynomials, certain unique instances of the resultant
discoveries can be developed. We look at the following instances to illustrate this:

Example 4.1. Prove that the solution of

N̊(t)− N̊0t
ϕ−1 Γr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t), (4.1)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i
Γr, s+1

u+1, v+1

[
bt$

∣∣∣∣∣ (f1,F1, x),
(
1− ( τ+ϕ−1

τ ), $τ
)
, (fj ,Fj)2,u(

−ϕ+1−ξiτ
τ , $τ

)
, (ej ,Ej)1,v

]
, (4.2)

N̊(t)− N̊0t
ϕ−1 (Γ)Gr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t), (4.3)

is obtained as

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i
(Γ)Gr, s+1

u+1, v+1

[
bt$

∣∣∣∣∣ (f1, x),
(
1− ( τ+ϕ−1

τ ), $τ
)
, (fj)2,u(

−ϕ+1−ξiτ
τ , $τ

)
, (ej)1,v

]
, (4.4)

N̊(t)− N̊0t
ϕ−1

uΨ(Γ)
v [bt$] = −dξ τ Iξ0 N̊(t), (4.5)

is obtained as

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i
u+1Ψ

(Γ)
v+1

[
(f1,F1, x),

(
τ+ϕ−1

τ , $τ
)
, (fj ,Fj)2,u(

τ+ϕ+−1+ξiτ
τ , $τ

)
, (ei,Ej)1,v

; bt$

]
(4.6)

and

N̊(t)− N̊0t
ϕ−1

uΓv[bt$] = −dξ τ Iξ0 N̊(t), (4.7)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i
Cu+1

v+1 u+1Γv+1

[
(f1,F1, x),

(
τ+ϕ−1

τ

)
, (fj ,Fj)2,u(

τ+ϕ−1+ξiτ
τ

)
, (ei,Ej)1,v

; bt$

]
, (4.8)

where Cu
v is defined in equation (3.23) and Cu+1

v+1 = Cu
v

Γ( τ+ϕ−1
τ )

Γ( τ+ϕ−1+ξiτ
τ )

.

Solution: If we set U = 1, a = 1, % = 0, AV,0 = 1 and AV,O = 0 ∀ O 6= 0 (i.e SUV [at%] = 1) in Equations (3.1), (3.11),
(3.18), and (3.26). The assertions (4.1), (4.3), (4.5), and (4.7) of this example follow from the Theorem 3.1, Corollary
3.3, Corollary 3.5, and Corollary 3.7 respectively.
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Example 4.2. Prove that the solution of

N̊(t)− N̊0t
ϕ+V

2 −1HV

(
1

2
√
t

)
Γr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t), (4.9)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/2]∑
O=0

(−1)O
V !

O!(V − 2O)!
(2t)O

× Γr, s+1
u+1, v+1

bt$

∣∣∣∣∣ (f1,F1, x),
(

1− ( τ+ϕ+O−1
τ ), $τ

)
, (fj ,Fj)2,u(

−ϕ−O+1−ξiτ
τ , $τ

)
, (ej ,Ej)1,v

 , (4.10)

N̊(t)− N̊0t
ϕ+V

2 −1HV

(
1

2
√
t

)
(Γ)Gr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t), (4.11)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/2]∑
O=0

(−1)O
V !

O!(V − 2O)!
(2t)O

× (Γ)Gr, s+1
u+1, v+1

bt$

∣∣∣∣∣ (f1, x),
(

1− ( τ+ϕ+O−1
τ ), $τ

)
, (fj)2,u(

−ϕ−O+1−ξiτ
τ , $τ

)
, (ej)1,v

 , (4.12)

N̊(t)− N̊0t
ϕ+V

2 −1HV

(
1

2
√
t

)
uΨ(Γ)

v [bt$] = −dξ τ Iξ0 N̊(t), (4.13)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/2]∑
O=0

(−1)O
V !

O!(V − 2O)!
(2t)O

× u+1Ψ
(Γ)
v+1

 (f1,F1, x),
(
τ+ϕ+O−1

τ , $τ

)
, (fj ,Fj)2,u(

τ+ϕ+O−1+ξiτ
τ , $τ

)
, (ei,Ej)1,v

; bt$

 . (4.14)

and

N̊(t)− N̊0t
ϕ+V

2 −1HV

(
1

2
√
t

)
uΓv[bt$] = −dξ τ Iξ0 N̊(t), (4.15)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i [V/2]∑
O=0

(−1)O
V !

O!(V − 2O)!
(2t)O (4.16)

× Cu+1
v+1 u+1Γv+1

 (f1,F1, x),
(
τ+ϕ+O−1

τ

)
, (fj ,Fj)2,u(

τ+ϕ+O−1+ξiτ
τ

)
, (ei,Ej)1,v

; bt$

 . (4.17)

where Cu
v is defined in Equation (3.23) and Cu+1

v+1 = Cu
v

Γ( τ+ϕ+O−1
τ )

Γ( τ+ϕ+O−1+ξiτ
τ )

.
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Solution: If we set a = 1, % = 0, AV,O = (−1)O and U = 2 (i.e S2
V [t] → tV/2HV

(
1

2
√
t

)
, where HV (t) is Hermite

polynomial) and making use of the connection, that is (see [35]):

HV (t) =

[V/2]∑
O=0

(−1)O
V !

O!(V − 2O)!
(2t)V−2O, (4.18)

in Equations (3.1), (3.11), (3.18), and (3.26). The assertions (4.9), (4.11), (4.13), and (4.15) of this example follow
from the Theorem 3.1, Corollary 3.3, Corollary 3.5, and Corollary 3.7 respectively.

Example 4.3. Prove that the solution of

N̊(t)− N̊0t
ϕ−1LαV (at%) Γr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t), (4.19)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i V∑
O=0

(
V + α

V −O

)
(−at%)O

O!

× Γr, s+1
u+1, v+1

bt$

∣∣∣∣∣ (f1,F1, x),
(

1− ( τ+ϕ+%O−1
τ ), $τ

)
, (fj ,Fj)2,u(

−ϕ−%O+1−ξiτ
τ , $τ

)
, (ej ,Ej)1,v

 , (4.20)

N̊(t)− N̊0t
ϕ−1LαV (at%) (Γ)Gr,s

u,v[bt$] = −dξ τ Iξ0 N̊(t), (4.21)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i V∑
O=0

(
V + α

V −O

)
(−at%)O

O!

× (Γ)Gr, s+1
u+1, v+1

bt$

∣∣∣∣∣ (f1, x),
(

1− ( τ+ϕ+%O−1
τ ), $τ

)
, (fj)2,u(

−ϕ−%O+1−ξiτ
τ , $τ

)
, (ej)1,v

 , (4.22)

N̊(t)− N̊0t
ϕ−1LαV (at%) uΨ(Γ)

v [bt$] = −dξ τ Iξ0 N̊(t), (4.23)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i V∑
O=0

(
V + α

V −O

)
(−at%)O

O!

× u+1Ψ
(Γ)
v+1

 (f1,F1, x),
(
τ+ϕ+%O−1

τ , $τ

)
, (fj ,Fj)2,u(

τ+ϕ+%O−1+ξiτ
τ , $τ

)
, (ei,Ej)1,v

; bt$

 . (4.24)

and

N̊(t)− N̊0t
ϕ−1LαV (at%) uΓv[bt$] = −dξ τ Iξ0 N̊(t), (4.25)

is obtained as:

N̊(t) = N̊0t
ϕ−1

∞∑
i=0

((
−d t

τ

τ

)ξ)i V∑
O=0

(
V + α

V −O

)
(−at%)O

O!
(4.26)

× Cu+1
v+1 u+1Γv+1

 (f1,F1, x),
(
τ+ϕ+%O−1

τ

)
, (fj ,Fj)2,u(

τ+ϕ+%O−1+ξiτ
τ

)
, (ei,Ej)1,v

; bt$

 . (4.27)

where Cu
v is defined in Equation (3.23) and Cu+1

v+1 = Cu
v

Γ( τ+ϕ+%O−1
τ )

Γ( τ+ϕ+%O−1+ξiτ
τ )

.
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Solution: If we set AV,O =
(
V+α
V

)
1

(α+1)O
and U = 1 (i.e S1

V [t] → L
(α)
V (t), where L

(α)
V (t) is Laguerre polynomial)

and making use of the connection, that is (see [35]).

LαV (t) =

V∑
O=0

(
V + α

V −O

)
(−t)O

O!
, (4.28)

in Equations (3.1), (3.11), (3.18), and (3.26). The assertions (4.9), (4.11), (4.13), and (4.15) of this example follow
from the Theorem 3.1, Corollary 3.3, Corollary 3.5, and Corollary 3.7 respectively.

Remark 4.4. Numerous additional outcomes can be obtained by applying the findings from results (3.7), (3.13),
(3.20), and (3.28).

5. Graphical Results and Discussions

This section uses MATLAB to draw and simulate graphs of the numerical solution for fractional kinetic equation
(3.1) for various values of different parameters, which are presented in Figures 1, 2, and 3. Figures show that, depending

on the fractional parameters, the reaction rate N̊(t) continuously declines with time t. A valid region of convergence

is defined as 0 ≤ t ≤ 2 in terms of time interval. It is also seen that the equivalent value of N̊(t) first increases as the
value of ξ grows, but eventually exhibits the reverse behavior.

Figure 1. Plots of solution N̊(t) for the fractional kinetic Equation (3.1) when d = 0.5, τ = 5, and

N̊0 = 4.

Figure 2. Plots of solution N̊(t) for the fractional kinetic Equation (3.1) when d = 1, τ = 4, and N̊0 = 8.
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Figure 3. Plots of solution N̊(t) for the fractional kinetic Equation (3.1) when d = 0.5, τ = 3, and

N̊0 = 5.

6. Conclusion

This study attempts to establish a novel fractional generalization of the classical KE and analyze its solution using
the τ -Laplace transformation method. A family of functions, incomplete H-function, Meijer’s G-function, incomplete
Fox-Wright function, and the incomplete generalized hypergeometric function along with the family of polynomials
have all been studied in addition to several other novel fractional KE and their solutions. The major conclusions
contained in Theorems 3.1, 3.2, and their corollaries are all of a general type.

In a similar manner, numerous fractional KE and their outcomes found in previous research can be bought as special
instances of the primary findings. Also, Srivastava polynomial generalize various other polynomials like the Hermite
polynomial, Jacobi polynomial, Laguerre polynomial, Gegenbauer polynomial, Legendre polynomial, Tchebycheff
polynomial, Gould-Hopper polynomial and several other polynomials. Based on this study, we can conclude that
it may be helpful in astrophysics to compute the change in the chemical composition in stars. The behavior of the
obtained solutions is studied with the help of graphs. The main findings can therefore be used to create a variety of
KE and their potential solutions by applying arbitrary constraints to the appropriate basic values. Future work will
continue this investigation into the more generalized KE and the suggested solutions.
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