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Abstract
The primary objective of this research is to develop and analyze a robust computational method based on expo-
nential B-splines for solving fractional sub-diffusion equations. The fractional operator includes the Mittag-Leffler

function of one parameter in the form of a kernel that is non-local and non-singular in nature. The current ap-
proach is based on an effective finite difference method for discretizing in time, and the exponential B-spline

functions for discretizing in space. The proposed scheme is proven to be unconditionally stable and conver-

gent. Also, the unique solvability of the method is established. Numerical simulations conducted for multiple
test examples validate the agreement between the obtained theoretical results and the corresponding numerical

outcomes.
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1. Introduction

The roots of fractional calculus can be traced back to the 17th century, making its history as ancient and rich as
its integer-order counterpart. However, it was during the mid of the last century that the realm of fractional-order
differential equations (FODEs) began to flourish. This remarkable development has paved the way for the accurate
modeling of numerous phenomena that classical ordinary differential equations (ODEs) struggle to capture. As a
result, FODEs have found widespread applications in diverse fields such as chemistry, mathematics, biology, finance,
and beyond [1, 2, 40, 44]. The time-fractional subdiffusion equation has diverse applications across scientific and
engineering domains due to its ability to characterize anomalous diffusion phenomena with fractional order behavior
in time [19]. In biology and medicine, the equation is employed to model drug dispersion in tissues and describe
cellular transport [12], providing insights into drug delivery system design and understanding particle movement
within biological structures.

Environmental science benefits from the equation’s use in studying contaminant transport in soil and groundwater,
as well as in air pollution modeling, offering a more accurate representation of dispersion dynamics. In material
science, the equation finds application in analyzing diffusion in porous media and studying phase transformations in
materials [5]. Economics and finance benefit from modeling asset prices and financial indicators with fractional order
diffusion, enhancing risk assessment in financial markets. Geophysics applications include investigating subsurface
flow in underground reservoirs and understanding earthquake dynamics. The propagation of mechanical diffusive
wave in viscoelastic media [29], random walk [7, 15] can also be modeled using fractional sub-diffusion equation.
In telecommunications, the equation is utilized to analyze wireless communication signal propagation and network
routing [4].

Finally, chemical engineering employs the equation to model reaction-diffusion processes and diffusion in catalytic
systems, reflecting its versatility in addressing diverse diffusion-related phenomena [26, 31, 45]. So, the model problem

Received: 04 July 2023 ; Accepted: 06 March 2024.
∗ Corresponding author. Email: anshima.singh.rs.mat18@itbhu.ac.in.

719



720 A. SINGH, S. KUMAR, AND H. RAMOS

considered here is the one-dimensional time-fractional Atangana-Baleanu diffusion equation describing subdiffusive
phenomena with a non-homogeneous term

ABC
0 Dµ

t v(y, t) = pvyy(y, t) + F (y, t), (y, t) ∈ Ω,
v(y, 0) = G(y), y ∈ [L1, L2],
v(L1, t) = α1(t), t ∈ [0, T ],
v(L2, t) = α2(t), t ∈ [0, T ],

(1.1)

where 0 < µ ≤ 1
2 , p > 0, Ω := [L1, L2] × [0, T ], G, α1, α2 are sufficiently smooth functions and ABC

0 Dµ
t is as

defined in section 2. When we deal with different definitions of fractional operators such as the Caputo operator,
Grunwald-Letnikov operator, Riemann-Liouville operator, etc, we are faced with the problem of the singularity of
kernels, due to which we cannot model many real-world problems. To overcome this drawback, Caputo and Fabrizio
gave a new fractional operator, known as the Caputo-Fabrizio fractional operator, having a nonsingular kernel, but
this derivative illustrates the localization problem [9]. To overcome this drawback, Atangana and Baleanu introduced
a new definition, called Atangana-Baleanu-Caputo (ABC) fractional operator. There is a wide range of applications of
the ABC fractional operator in the real world, and recent years this definition has revolutionized the field of fractional
calculus. Due to the beauty and importance of the ABC fractional operator, researchers have been attracted to work
with it. Ghanbari and Kumar [14] proposed a predator-prey model with the ABC operator. An important application
of ABC fractional operator is related with non-linear fuzzy fractional differential equations [3]. Karaagac et al. [24]
analyse the use of illicit drug with the ABC operator. In [46], the authors qualitatively and quantitatively analyse
COVID-19 pandemic with the help of a mathematical model using the ABC fractional operator. A significant role of
ABC fractional operator in the modeling of the hepatitis E virus is discussed in [33].

Cubic B-splines are considered to approximate different types of differential equations (see [10, 17, 20–22, 25, 41]
and the references therein). Note that the undesirable inflexion points often arise, using piecewise cubic polynomial
spline interpolation. Exponential splines generalize cubic splines and provide a solution to the issue of inflexion points.
They offer distinct advantages over other spline types in certain applications. Their use of exponential basis functions
allows for the creation of smooth curves with continuous derivatives, making them particularly well-suited for scenarios
where a high degree of smoothness is essential. The local support property of exponential splines enables localized
adjustments to the curve without affecting the entire spline, providing flexibility in modeling. Additionally, their
efficient representation is characterized by a rapid decay of basis functions, allowing for a compact representation
with fewer control points. The numerical stability associated with exponential functions can be advantageous in
computational tasks. These characteristics, coupled with their widespread application in fields like computer-aided
design and computer graphics, make exponential splines a valuable tool for capturing complex and visually appealing
shapes. McCartin [30], Pruess [34, 35], and de Boor [8], studied the exponential splines thoroughly. There are a
few papers available in the literature where exponential splines have been used to numerically solve different types of
differential equations (see [23, 36, 38, 42, 43] and the references therein).

Analytical and numerical treatments of fractional sub-diffusion equations with different time fractional derivatives
are considered in [11, 13, 16, 18, 27, 28, 50, 51], while the numerical treatment of the Atangana-Baleanu fractional
sub-diffusion equation appears to be lacking. The superiority of exponential B-splines over cubic B-splines motivates
us to use exponential B-splines to approximate the solution of problem (1.1). As far as we are aware (according
to available literature), there is no result on approximations for Atangana-Baleanu fractional sub-diffusion equations
based on exponential B-spline functions. Therefore, the main contribution in this paper is as follows:

• We develop a new method based on exponential B-splines to approximate the problem’s solution (1.1).
• We prove that the proposed scheme is uniquely solvable and stable unconditionally.
• Convergence analysis of the method is rigorously discussed and error bounds in the maximum norm are

obtained.
• Numerical simulations are done to show the accuracy and efficiency of the proposed scheme.

The remaining work is structured as follows. Section 2 includes some basic definitions from the fractional calculus. In
section 3, we have given a brief description of the exponential B-spline functions that are helpful for the construction
of the numerical scheme. After that, the numerical scheme is presented in this section. The theoretical analysis
(stability and convergence) of the proposed method is discussed in detail in section 4. The numerical results of three
test problems are given in section 5, which confirm our theoretical findings. Finally, a brief conclusion is provided in
section 6.
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2. Some basic definitions from fractional calculus

In this section, we discuss some definitions from fractional calculus.

Definition 2.1. Fractional integral of Riemann-Liouville type [32]
The Riemann-Liouville definition of fractional order integral of order µ > 0 is given in the following way

aD
−µ
t χ(t) =

1

Γ(µ)

∫ t

a

(t− ψ)µ−1χ(ψ)dψ, t > 0.

Definition 2.2. Fractional operator of Riemann-Liouville type [32]
The Riemann-Liouville definition of fractional order derivative of order µ > 0 is given in the following way

RL
0 Dµ

t χ(t) =
1

Γ(n− µ)

dn

dtn

∫ t

0

(t− ψ)n−µ−1χ(ψ)dψ, t > 0,

where 0 ≤ n− 1 < µ < n, n ∈ N.

Definition 2.3. Fractional operator of Caputo type [32]
The Caputo definition of fractional order derivative of order µ > 0 is given in the following way

C
0 Dµ

t χ(t) =

{
1

Γ(n−µ)

∫ t

0
(t− ψ)n−µ−1χn(ψ)dψ, n− 1 < µ < n,

dnχ(t)
dtn , µ = n ∈ N.

Definition 2.4. Fractional operator of Caputo-Fabrizio type [9]
The Caputo-Fabrizio fractional derivative of the order 0 < µ < 1 is given in the following way

CFC
0 Dµ

t φ(y, t) =
X (µ)

(1− µ)

∫ t

0

∂φ(y, ψ)

∂ψ
exp

(
−µ

1− µ
(t− ψ)

)
dψ,

where the normalization function X (µ) meets the condition X (0) = X (1) = 1.

Definition 2.5. Fractional operator of ABC type [6]
The ABC fractional operator of order 0 < µ < 1 is given as

ABC
0 Dµ

t v(y, t) =
B(µ)

(1− µ)

∫ t

0

∂v(y, ψ)

∂ψ
Eµ

(
−µ

1− µ
(t− ψ)µ

)
dψ, (2.1)

where B(µ) is the normalization function meets the conditions B(0) = B(1) = 1 and Eµ(Ψ) is the one-parameter
Mittag-Leffler function defined by [32]

Eµ(Ψ) =

∞∑
l=0

Ψl

Γ(µl + 1)
,

where µ > 0, Ψ ∈ C, and Γ denotes the Euler Gamma function. Also, the two parameter Mittag-Leffler function is
defined by [32]

Eµ,γ(Ψ) =

∞∑
l=0

Ψl

Γ(µl + γ)
, (2.2)

where µ > 0, γ ∈ R, and Ψ ∈ C.

3. Numerical Scheme

The numerical scheme designed for the fractional sub-diffusion equation with ABC time fractional operator is presented
in this section. Let Dy : L1 = y0 < y1 < · · · < yM−1 < yM = L2 and Dt : 0 = t0 < t1 < · · · < tN−1 < tN = T be

uniform partitions of [L1, L2] and [0, T ] respectively. Denote hy = (L2−L1)
M and ht = T

N , where hy and ht are the mesh
spacing in the spatial and temporal directions respectively.
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3.1. Discretization of the ABC fractional operator . Here we first approximate the ABC time fractional operator
at tn, n = 0, 1, . . . , N , following [49] as follows

[
ABC
0 Dµ

t v(y, t)
]
t=tn

=
B(µ)

(1− µ)

∫ tn

t0

∂v(y, ψ)

∂ψ
Eµ

[
−µ

1− µ
(tn − ψ)µ

]
dψ

=
B(µ)

(1− µ)

n−1∑
l=0

∫ tl+1

tl

v(y, tl+1)− v(y, tl)

ht
Eµ

[
−µ

1− µ
(tn − ψ)µ

]
dψ + T n

=
B(µ)

(1− µ)

n∑
l=0

Snl v(y, tl) + T n, (3.1)

where the coefficients Snl are given as

Snl =



(n− 1)Eµ,2

(
−µ
1−µ (n− 1)µhµt

)
− nEµ,2

(
−µ
1−µn

µhµt

)
, l = 0,

(n− l + 1)Eµ,2

(
−µ
1−µ (n− l + 1)µhµt

)
− 2(n− l)Eµ,2

(
−µ
1−µ (n− l)µhµt

)
+(n− l − 1)Eµ,2

(
−µ
1−µ (n− l − 1)µhµt

)
, 0 < l < n,

Eµ,2

(
−µ
1−µh

µ
t

)
, l = n,

(3.2)

and the truncation error T n is bounded by

T n ≤ c∗B(µ)

(1− µ)

h2
t

2

[
max

t0≤t≤tn−1

∣∣∣∣∂2v(y, t)

∂t2

∣∣∣∣] , (3.3)

where c∗ is a positive constant.

Lemma 3.1. The coefficients Snk defined in Equation (3.2) satisfy
(a). Snk ≤ 0, 0 ≤ k ≤ n− 1,
(b). Snn > 0,

(c).
∑n−1
k=0 S

n
k = −Snn .

Proof. The ineqality (a) can be proved following [48, Lemma 2]. Next, for the inequality (b) we have

Snn = Eµ,2

(
−µ

1− µ
hµt

)
, (3.4)

which on using (2.2) leads to

Snn =

∞∑
i=0

(−1)i
(

µ
1−µh

µ
t

)i
Γ(µi+ 2)

=

1−

(
µ

1−µh
µ
t

)
Γ(µ+ 2)

+


(

µ
1−µht

)2

Γ(2µ+ 2)
−

(
µ

1−µht

)3

Γ(3µ+ 2)

+ · · · .

Now, for i ∈ {0} ∪N, we have (
µ

1−µh
µ
t

)i+1

Γ(µ(i+ 1) + 2)
<

(
µ

1−µh
µ
t

)i
Γ(µi+ 2)

, (3.5)

since Γ(z) is an increasing function in [α,∞), α ∈ (1, 2) and using the assumption 0 < hµt <
(

1
µ − 1

)
, which is not

restrictive at all. Therefore, using (3.5), we have Snn > 0.
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Further, to prove (c) we call φ(l) = Eµ,2

(
−µ
1−µ l

µhµt

)
, and proceed as follows

n−1∑
k=0

Snk = Sn0 + Sn1 + Sn2 + · · ·+ Snn−3 + Snn−2 + Snn−1

= [(n− 1)φ(n− 1)− nφ(n)] + [nφ(n)− 2(n− 1)φ(n− 1) + (n− 2)φ(n− 2)]

+[(n− 1)φ(n− 1)− 2(n− 2)φ(n− 2) + (n− 3)φ(n− 3)] + · · ·+ [4φ(4)

−2(3φ(3)) + 2φ(2)] + [3φ(3)− 2(2φ(2)) + φ(1)] + [2φ(2)− 2φ(1)]

= −φ(1) = −Snn .

This completes the proof. �

Now using approximation of ABC time-fractional operator from Eq. (3.1) in Eq. (1.1) we get

Snnv
n = −

n−1∑
k=0

Snk v
k +

p(1− µ)

B(µ)

∂2vn

∂x2
+

(1− µ)

B(µ)
Fn.

Thus, we get the time semi-discrete problem as follows

Lyv
n = −

n−1∑
k=0

Snk v
k +

(1− µ)

B(µ)
Fn, (3.6)

with  v0(y) = G(y), x ∈ [L1, L2],
vn(L1) = αn1 , 0 ≤ n ≤ N,
vn(L2) = αn2 , 0 ≤ n ≤ N,

(3.7)

where

Ly = SnnI −
p(1− µ)

B(µ)

∂2

∂x2
,

Fn = F (y, tn),

αn1 = α1(tn),

αn2 = α2(tn).

Here, vn approximates v(y, t) at tn.

3.2. Exponential B-spline functions. We define the exponential B-spline functions Bi(y) on the partition Dy

along with six extra nodes ym, −3 ≤ m ≤ M + 3, which are ghost points beyond the interval [L1, L2]. Taking ρ as a
non-negative parameter, let us denote

s = sinh(ρhy),

c = cosh(ρhy),

The exponential B-spline functions Bi(y) are defined as follows [30]

Bi(y) =



E (yi−2 − y)− E
ρ sinh(ρ(yi−2 − y)), y ∈ [yi−2, yi−1],

a′ + b′(yi − y) + c′eρ(yi−y) + d′e−ρ(yi−y), y ∈ [yi−1, yi],

a′ + b′(y − yi) + c′eρ(y−yi) + d′e−ρ(y−yi), y ∈ [yi, yi+1],

E (y − yi+2)− E
ρ sinh(ρ(y − yi+2)), y ∈ [yi+1, yi+2],

0, else,

(3.8)

where −1 ≤ i ≤M + 1, and

E =
ρ

2(ρhyc− s)
, a′ =

ρhyc

ρhyc− s
, b′ =

ρ

2

[
c(c− 1) + s2

(ρhyc− s)(1− c)

]
,
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c′ =
1

4

[
e−ρhy(1− c) + s(e−ρhy − 1)

(ρhyc− s)(1− c)

]
,

d′ =
1

4

[
eρhy(c− 1) + s(eρhy − 1)

(ρhyc− s)(1− c)

]
.

At every mesh point, the values of Bi(y), B′i(y), and B′′i (y) given as following

Bi(yj) =


1, if j = i,
s−ρhy

2(ρhyc−s) , if j = i± 1,

0, otherwise.

B′i(yj) =


0, if j = i,
∓ρ(c−1)

2(ρhyc−s) , if j = i± 1,

0, otherwise.

B′′i (yj) =


−ρ2s
ρhyc−s , if j = i,

ρ2s
2(ρhyc−s) , if j = i± 1,

0, otherwise.

(3.9)

The exponential B-spline functions {Bi(y)}M+1
i=−1 ∈ C2(R). The set {Bi(y)}M+1

i=−1 makes a basis for the exponential
B-spline space WM+3 over the interval [L1, L2].

3.3. Fully discrete Exponential B-spline scheme. Let us consider V n(y) be the approximate solution of problem
(3.6) and (3.7) at the nth time level given as

V n(y) =

M+1∑
m=−1

C n
mBm(y), (3.10)

where the unknown coefficients C n
m are required to be determined. Further, we get the values of V n(ym), V n

y (ym),
and V n

yy(ym) for m = 0, 1, . . . ,M using (3.9) having C n
m in the following manner

V n(ym) = qC n
m−1 + C n

m + qC n
m+1, (3.11)

V n
y (ym) = ē(c− 1)[C n

m+1 − C n
m−1], (3.12)

V n
yy(ym) = q̄[C n

m−1 − 2C n
m + C n

m+1], (3.13)

where

q =
s− ρhy

2(ρhyc− s)
, ē =

ρ

2(ρhyc− s)
, q̄ =

ρ2s

2(ρhyc− s)
.

Now, using the approximation (3.10) in Eqs. (3.6) and (3.7) at y = ym yield

SnnV n(ym) = −
n−1∑
k=0

SnkV k(ym) +
p(1− µ)

B(µ)

∂2V n(ym)

∂x2
+

(1− µ)

B(µ)
Fn(ym), (3.14)

with  V 0(ym) = G(ym), 0 ≤ m ≤M,
V n(y0) = αn1 , 0 ≤ n ≤ N,
V n(yM ) = αn2 , 0 ≤ n ≤ N.

(3.15)

Further substituting the Eqs. (3.11) and (3.13) in Eqs. (3.14) and (3.11) in Eq. (3.15), we have

(Snnq − d)C n
m−1 + (Snn + 2d)C n

m + (Snnq − d)C n
m+1

= −Sn0 (qC 0
m−1 + C 0

m + qC 0
m+1)−

n−1∑
k=1

Snk (qC k
m−1 + C k

m + qC k
m+1) + d1F

n
m, (0 ≤ m ≤M, 0 ≤ n ≤ N), (3.16)
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and

qC n
−1 = αn1 − C n

0 − qC n
1 , (3.17)

qC n
M+1 = αn2 − C n

M − qC n
M−1, (3.18)

where

d =
p(1− µ)

B(µ)
q̄, d1 =

(1− µ)

B(µ)
.

The unknown coefficients C n
−1 and C n

M+1 can be eliminated in system (3.16) using the Eqs. (3.17) and (3.18),
respectively. Finally, a tri-diagonal system of order (M + 1) for each n is obtained

AC n = B

(
−Sn0 C 0 −

n−1∑
k=1

SnkC k

)
+R, (3.19)

where

A =



d(2 + 1
q ) 0 0 .. 0 0 0

(Snnq − d) (Snn + 2d) (Snnq − d) .. 0 0 0
0 (Snnq − d) (Snn + 2d) .. 0 0 0

..
0 0 0 .. (Snn + 2d) (Snnq − d) 0
0 0 0 .. (Snnq − d) (Snn + 2d) (Snnq − d)
0 0 0 .. 0 0 d(2 + 1

q )


,

C n =



C n
0

C n
1

.

.

.
C n
M−1

C n
M


, B =



0 0 0 ..... 0 0 0
q 1 q ..... 0 0 0
0 q 1 ..... 0 0 0

.....
0 0 0 ..... 1 q 0
0 0 0 ..... q 1 q
0 0 0 ..... 0 0 0


,

and

R =



d1F
n
0 −

∑n−1
k=0 S

n
kα

k
1 − 1

q (Snnq − d)αn1
d1F

n
1

d1F
n
2

.

.

.
d1F

n
M−1

d1F
n
M −

∑n−1
k=0 S

n
kα

k
2 − 1

q (Snnq − d)αn2


.

It is clear that the systems in (3.19) for 0 ≤ n ≤ N , can be solved recursively after knowing the initial vector C 0.
Further, notice that C 0

−1 and C 0
M+1 can be then evaluated using Eqs. (3.17) and (3.18) respectively.

3.4. Initial vector estimation. From the initial condition given in (1.1), we have

Vy(L1, 0) = G′(L1), Vy(L2, 0) = G′(L2).

Using Equation (3.12) in above equations

Vy(y0, 0) = Vy(L1, 0) = ē(c− 1)[C 0
1 − C 0

−1] = G′(L1), (3.20)

Vy(yM , 0) = Vy(L2, 0) = ē(c− 1)[C 0
M+1 − C 0

M−1] = G′(L2). (3.21)

We get an algebraic system of (M+1) equations by substituting relation (3.11) into initial condition given in Equation
(1.1)

V (ym, 0) = qC 0
m−1 + C 0

m + qC 0
m+1 = G(ym), m = 0, 1, · · · ,M, (3.22)
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with unknowns C 0
−1,C

0
0 ,C

0
1 , ......,C

0
M−1,C

0
M ,C

0
M+1. Here, C 0

−1 and C 0
M+1 can be eliminated using Equations (3.20)

and (3.21) respectively. Thus, we get

DC 0 = Q, (3.23)

where

D =



1 2q 0 ..... 0 0 0
q 1 q ..... 0 0 0
0 q 1 ..... 0 0 0

.....
0 0 0 ..... 1 q 0
0 0 0 ..... q 1 q
0 0 0 ..... 0 2q 1


,

C 0 =



C 0
0

C 0
1

.

.

.
C 0
M−1

C 0
M


, Q =



G(y0) + q
ē(c−1)G

′(L1)

G(y1)
.
.
.

G(yM−1)
G(yM )− q

ē(c−1)G
′(L2)


.

4. Theoretical analysis

Here we will discuss the theoretical analysis which includes stability and convergence of the proposed numerical
method.

Lemma 4.1. The coefficient matrices A and D are strictly diagonally dominant, and hence the method provides a
unique solution.

Proof. We have

|(Snn + 2d)| − 2|(Snnq − d)| = Snn + 2d− 2|Snnq − d|
≥ Snn + 2d− 2(Snnq + d) (∵ 2|Snnq − d| ≤ 2Snnq + 2d)

= Snn(1− 2q).

We also have (1−2q) > 0, as can be easily checked, since it is (s−ρhy) > 0, (ρhyc−s) > 0, and (s−ρhy) < (ρhyc−s).
This can be verified by taking the series expansions of cosh(y) and sinh(y). Further, we note that Snn > 0 from Lemma
3.1. Therefore, we get

|(Snn + 2d)| − 2|(Snnq − d)| > 0.

Thus, the matrix A is strictly diagonally dominant. It is also evident that matrix D is strictly diagonally dominant.
This completes the proof. �

4.1. Stability analysis.

Theorem 4.1.1. The numerical scheme (3.16) is unconditionally stable.

Proof. We will show the stability of proposed scheme using the von Neumann method.
Let the system (3.16) having a perturbed solution C̄ , then we will examine how the perturbation ψnm = C n

m − C̄ n
m

evolves over time. Note that ψnm satisfies the following equation

(Snnq − d)ψnm−1 + (Snn + 2d)ψnm + (Snnq − d)ψnm+1

= −Sn0 (qψ0
m−1 + ψ0

m + qψ0
m+1)−

n−1∑
k=1

Snk (qψkm−1 + ψkm + qψkm+1). (4.1)

Now, we assume that

ψnm = ηneiηmhy , (4.2)
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where η is the wave number and i =
√
−1. Putting the Eq. (4.2) in (4.1) gives

ηn = −W n
n−1∑
k=0

Snk η
k, (4.3)

where

W n =
1 + 2q cos(ηhy)

Snn(1 + 2q cos(ηhy)) + 2d(1− cos(ηhy))
is a non-negative value.

With the help of mathematical induction, we show that |ηn| ≤ |η0|. For n = 1, we have

|η1| = | −W 1S1
0η

0|
= |W 1S1

1η
0|, (∵ S1

0 = −S1
1).

Using Lemma 3.1, we have |W 1S1
1 | ≤ 1. Therefore, |η1| ≤ |η0|. Moreover, we suppose that

|ηj | ≤ |η0|, 1 ≤ j ≤ n− 1. (4.4)

Again, using Lemma 3.1 with the assumption (4.4), the Equation (4.3) leads to

|ηn| =

∣∣∣∣∣−W n
n−1∑
k=0

Snk η
k

∣∣∣∣∣
≤ |W n|

∣∣∣∣∣
n−1∑
k=0

−Snk

∣∣∣∣∣ max
0≤k≤n−1

|ηk|

≤ |W n||Snn ||η0|.

Using Lemma 3.1, it can be easily seen that |W nSnn | ≤ 1, and consequently,

|ηn| ≤ |η0|,∀n.

Thus, we see that the perturbation is bounded unconditionally at every time level. �

4.2. Convergence analysis. We now provide the error bounds of the proposed numerical method by using the
procedure adopted in [37, 38, 43]. We shall use the following results.

Lemma 4.2. [36] The elements of the base {Bm(y)}M+1
m=−1 of WM+3 (the exponential B-spline space), meet the

following inequality

M+1∑
m=−1

|Bm(y)| ≤ 5

2
, L1 ≤ y ≤ L2.

Theorem 4.2.1. [34] Let Ṽ n(y) be a unique exponential B-spline interpolant to the solution vn(y) of problem (3.6)-
(3.7). If vn ∈ C4([L1, L2]) and Fn ∈ C2([L1, L2]) then there exist constants ki such that∣∣∣∣∣∣∣∣ ∂j∂yj

(
vn(y)− Ṽ n(y)

)∣∣∣∣∣∣∣∣ t∞ ≤ kjh4−i
y , j = 0, 1, 2.

Theorem 4.2.2. Let V n(y) be the exponential B-spline collocation approximation in (3.10) to the solution v(y, tn)
of the time-fractional sub-diffusion Equations (1.1). If v ∈ C4,0(Ω) and F ∈ C2,0(Ω), then for each tn there exist
positive constants c1 and c2 such that

‖v(y, tn)− V n(y)‖∞ ≤ c1h2
y + c2h

2
t .

Proof. Let Ṽ n(y) be the unique exponential B-spline interpolant to the exact solution vn(y) of the problem (3.6)-(3.7)
given by

Ṽ n(y) =

M+1∑
m=−1

δnmBm(y). (4.5)
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Table 1. Errors L2, L∞ and corresponding experimental orders of convergence yEOC2, yEOC∞ with
N = 500, ρ = 1 for Example 5.1.

µ M L2− error yEOC2 L∞− error yEOC∞

0.2 2 1.2444e− 01 1.7598e− 01
22 3.5049e− 02 1.8280 4.9566e− 02 1.8280
23 8.9849e− 03 1.9638 1.2707e− 02 1.9638
24 2.2598e− 03 1.9913 3.1958e− 03 1.9913
25 5.6578e− 04 1.9979 8.0014e− 04 1.9979
26 1.4149e− 04 1.9995 2.0010e− 04 1.9995

0.3 2 1.2401e− 01 1.7538e− 01
22 3.4912e− 02 1.8287 4.9372e− 02 1.8287
23 8.9484e− 03 1.9640 1.2655e− 02 1.9640
24 2.2505e− 03 1.9914 3.1827e− 03 1.9914
25 5.6345e− 04 1.9979 7.9684e− 04 1.9979
26 1.4090e− 04 1.9996 1.9926e− 04 1.9996

0.5 2 1.2260e− 01 1.7338e− 01
22 3.4451e− 02 1.8313 4.8722e− 02 1.8313
23 8.8259e− 03 1.9647 1.2482e− 02 1.9647
24 2.2194e− 03 1.9916 3.1387e− 03 1.9916
25 5.5562e− 04 1.9980 7.8576e− 04 1.9980
26 1.3892e− 04 1.9999 1.9646e− 04 1.9999

Now the problem (3.6)-(3.7) can be rewritten in the following form

Lyv
n = F , vn(L1) = αn1 , v

n(L2) = αn2 , (4.6)

where

F = −
n−1∑
k=0

Snk v
k +

(1− µ)

B(µ)
Fn. (4.7)

From Theorem 4.2.1 and [32, Theorem 1.6, p.35] it is clear that

|Ly(vn(ym)− Ṽ n(ym))| ≤ βh2
y, 0 ≤ n ≤ N, 0 ≤ m ≤M,

where β = k0Ch
2
y + p(1−µ)

B(µ) k2. Thus,

‖Ly(vn(ym)− Ṽ n(ym))‖∞ ≤ βh2
y, ∀ n. (4.8)

At nth-time level, we can write

LyṼ
n(ym) = Lyv

n(ym) + f̃n(ym), 0 ≤ m ≤M, (4.9)

Ṽ n(y0) = vn(y0) + α̃1
n
, (4.10)

Ṽ n(yM ) = vn(yM ) + α̃2
n
, (4.11)
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(a) µ = 0.2 (b) µ = 0.3

(c) µ = 0.4 (d) µ = 0.5

Figure 1. Numerical solution of Example 5.1 with M = N = 60 and ρ = 1.

where f̃n is an error function of order O(h2
y), and α̃1

n
, α̃2

n
are error functions with order O(h4

y). Since vn(ym) =
V n(ym), 0 ≤ m ≤M, therefore we can write the system (4.9)-(4.11) as

Aδn = AC n + Dn, (4.12)

where

Dn =
[
f̃n(y0), f̃n(y1), . . . , f̃n(yM )

]T
− [(Snn − d/q)α̃1

n
, 0, . . . , 0, (Snn − d/q)α̃2

n
]
T
.

Above equation yields

‖Dn‖∞ ≤ C1h
2
y + C2|(Snn − d/q)|h4

y ≤ λh2
y, (4.13)

here, C1, C2 and λ are positive constants. Now from equation (4.12) we have

A(δn − C n) = Dn. (4.14)

Thus,

‖(δn − C n)‖∞ ≤ ‖A−1‖∞‖Dn‖∞. (4.15)
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From Lemma 4.1, matrix A is strictly diagonally dominant, therefore it is invertible. Further
(
|Ai,i| −

∑
i6=j |Ai,j |

)
>

ν > 0, hence from [47]

‖A−1‖∞ ≤
1

ν
, (4.16)

Thus, using Equations (4.13) and (4.16) in Equation (4.15), we have

‖δn − C n‖∞ ≤
λ

ν
h2

y, 1 ≤ n ≤ N, (4.17)

where ‖δn − C n‖∞ = max
0≤m≤M

(|δnm − C n
m|).

Moreover Equations (4.10) and (4.11) give

|δn−1 − C n
−1| ≤ d̂h2

y and |δnM+1 − C n
M+1| ≤ d̂h2

y, (4.18)

where d̂ is a constant. Hence from Equations (4.17) and (4.18) we finally get

max
−1≤m≤M+1

(|δnm − C n
m|) ≤ d̃h2

y, n = 1, 2, . . . , N, (4.19)

where d̃ = max{λ/ν, d̂}. Next take

Ṽ n(y)− V n(y) =

M+1∑
m=−1

(δnm − C n
m)Bm(y).

|Ṽ n(yi)− V n(yi)| ≤ max
−1≤m≤M+1

(|δnm − C n
m|)

M+1∑
m=−1

|Bm(yi)|, 0 ≤ i ≤M.

Now above relation with Lemma 4.2 and inequality (4.19) provides

‖Ṽ n − V n‖∞ ≤
5

2
d̃h2

y. (4.20)

Using the triangle inequality we get

‖vn − V n‖∞ ≤ ‖vn − Ṽ n‖∞ + ‖Ṽ n − V n‖∞. (4.21)

Now Theorem 4.2.1 together with inequality (4.20) provide

‖vn − V n‖∞ ≤ lh2
y,

where l = k0h
2
y + 5

2 d̃. Now, the above inequality combined with the relation (3.3) prove the theorem. �

5. Numerical results

This section is devoted to show the numerical results for three test examples that are in full support of the theoretical.
If v(ym, tn) and V (ym, tn) are, respectively, the exact and the approximate solution of problem (1.1) at (ym, tn) then
the following norms will be used to measure the authenticity of the numerical method

L∞(M,N) = ‖v(ym, tn)− V (ym, tn)‖∞ = max
1≤n≤N

max
1≤m≤M−1

|v(ym, tn)− V (ym, tn)|, (5.1)

L2(M,N) = ‖v(ym, tn)− V (ym, tn)‖2 = max
1≤n≤N

√√√√hy

M−1∑
m=1

(v(ym, tn)− V (ym, tn))2. (5.2)

The convergence order (EOC) is evaluated by the following formulas

tEOC2 = log2

(
L2(M,N)

L2(M, 2N)

)
, tEOC∞ = log2

(
L∞(M,N)

L∞(M, 2N)

)
, (5.3)

yEOC2 = log2

(
L2(M,N)

L2(2M,N)

)
, yEOC∞ = log2

(
L∞(M,N)

L∞(2M,N)

)
. (5.4)
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Table 2. Comparison with method in [49] taking N = 500 for Example 5.1.

Present method Method in [49]

α M L∞- error xOL∞ L∞- error xOL∞

0.2 10 1.9059e-03 - 7.4567e-03 -
20 4.7686e-04 1.9988 1.8585e-03 2.0044
40 1.1923e-04 1.9998 4.6432e-04 2.0009
80 2.9799e-05 2.0004 1.1613e-04 1.9994

160 7.4398e-06 2.0019 2.9100e-05 1.9966

0.3 10 1.8981e-03 - 7.4049e-03 -
20 4.7488e-04 1.9989 1.8457e-03 2.0043
40 1.1873e-04 1.9999 4.6120e-04 2.0007
80 2.9663e-05 2.0009 1.1540e-04 1.9987

160 7.3960e-06 2.0038 2.8978e-05 1.9937

Table 3. Errors L2, L∞ and corresponding experimental order of convergences tEOC2, tEOC∞ with
M = 103, ρ = 1 for Example 5.1.

µ N L2− error tEOC2 L∞− error tEOC∞

0.2 2 3.3863e− 04 4.7890e− 04
22 9.5675e− 05 1.8235 1.3530e− 04 1.8235
23 2.6054e− 05 1.8766 3.6846e− 05 1.8766
24 6.6519e− 06 1.9697 9.4072e− 06 1.9697
25 1.4992e− 06 2.1496 2.1201e− 06 2.1496
26 3.3167e− 07 2.1763 4.6905e− 07 2.1763

0.3 2 7.4798e− 04 1.0578e− 03
22 2.0921e− 04 1.8380 2.9587e− 04 1.8380
23 5.6681e− 05 1.8840 8.0158e− 05 1.8840
24 1.4749e− 05 1.9423 2.0858e− 05 1.9423
25 3.4670e− 06 2.0888 4.9031e− 06 2.0888
26 7.3543e− 07 2.2370 1.0401e− 06 2.2370

0.5 2 2.2598e− 03 3.1958e− 03
22 6.2388e− 04 1.8568 8.8230e− 04 1.8568
23 1.6658e− 04 1.9050 2.3558e− 04 1.9050
24 4.3188e− 05 1.9475 6.1078e− 05 1.9475
25 1.0743e− 05 2.0073 1.5193e− 05 2.0073
26 2.3470e− 06 2.1945 3.3192e− 06 2.1945
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Table 4. Errors L2, L∞ and corresponding experimental order of convergences yEOC2, yEOCL∞ with
N = 500, ρ = 1.52 for Example 5.2.

µ M L2− error yEOC2 L∞− error yEOC∞

0.2 2 7.4268e− 03 1.0503e− 02
22 1.9676e− 03 1.9163 2.6920e− 03 1.9641
23 4.9603e− 04 1.9880 6.7724e− 04 1.9909
24 1.2422e− 04 1.9976 1.6957e− 04 1.9978
25 3.1065e− 05 1.9995 4.2408e− 05 1.9995
26 7.7652e− 06 2.0002 1.0600e− 05 2.0002

0.3 2 7.4021e− 03 1.0468e− 02
22 1.9600e− 03 1.9171 2.6812e− 03 1.9650
23 4.9402e− 04 1.9882 6.7441e− 04 1.9912
24 1.2371e− 04 1.9976 1.6886e− 04 1.9978
25 3.0935e− 05 1.9996 4.2225e− 05 1.9996
26 7.7309e− 06 2.0005 1.0552e− 05 2.0006

0.5 2 7.3191e− 03 1.0351e− 02
22 1.9343e− 03 1.9198 2.6450e− 03 1.9684
23 4.8727e− 04 1.9890 6.6490e− 04 1.9921
24 1.2199e− 04 1.9979 1.6644e− 04 1.9981
25 3.0500e− 05 1.9999 4.1611e− 05 2.0000
26 7.6161e− 06 2.0017 1.0390e− 05 2.0017
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Figure 2. Numerical solution (starred line) and exact solution (solid line) of Example 5.1 with
µ = 0.2, ρ = 0.1 and M = N = 60 for different t.

Example 5.1. Consider the following test problem
ABC
0 Dµ

t v(y, t) = vyy(y, t) + F (y, t), (y, t) ∈ Ω := [0, 1]× [0, 1],
v(y, 0) = 0, 0 ≤ y ≤ 1,
v(0, t) = 0, v(1, t) = 0, 0 ≤ t ≤ 1,
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Table 5. Errors L2, L∞ and corresponding experimental order of convergences tEOC2, tEOC∞ with
M = 500, ρ = 1 for Example 5.2.

µ N L2− error tEOC2 L∞− error tEOC∞

0.2 2 8.7467e− 05 1.2318e− 04
22 2.4780e− 05 1.8196 3.4900e− 05 1.8195
23 6.8168e− 06 1.8620 9.6023e− 06 1.8618
24 1.8108e− 06 1.9124 2.5525e− 06 1.9115
25 4.4429e− 07 2.0271 6.2801e− 07 2.0230
26 9.8670e− 08 2.1708 1.3953e− 07 2.1702

0.3 2 1.9308e− 04 2.7192e− 04
22 5.4074e− 05 1.8362 7.6153e− 05 1.8362
23 1.4719e− 05 1.8773 2.0730e− 05 1.8772
24 3.8995e− 06 1.9163 5.4939e− 06 1.9158
25 9.8825e− 07 1.9803 1.3941e− 06 1.9786
26 2.2187e− 07 2.1551 3.1389e− 07 2.1509

0.5 2 5.8315e− 04 8.2124e− 04
22 1.6106e− 04 1.8562 2.2682e− 04 1.8562
23 4.3073e− 05 1.9028 6.0662e− 05 1.9027
24 1.1236e− 05 1.9387 1.5826e− 05 1.9385
25 2.8646e− 06 1.9717 4.0366e− 06 1.9711
26 6.9088e− 07 2.0518 9.7529e− 07 2.0492

with the source term

F (y, t) =
2t2

(1− µ)
sin(πy)Eµ,3

[
−µ

1− µ
tµ
]

+ π2t2 sin(πy),

and B(µ) = 1. v(y, t) = t2 sin(πy) is the analytical solution of this test problem.

Example 5.2. Consider the following test problem
ABC
0 Dµ

t v(y, t) = vyy(y, t) + F (y, t), (y, t) ∈ Ω := [0, 1]× [0, 1],
v(y, 0) = 0, 0 ≤ y ≤ 1,
v(0, t) = 0, v(1, t) = 0, 0 ≤ t ≤ 1,

with the source term

F (y, t) =
2

(1− µ)
y(y − 1)t2Eµ,3

[
−µ

1− µ
tµ
]
− 2t2,

and B(µ) = 1. v(y, t) = y(y − 1)t2is the analytical solution of this test problem.

Example 5.3. Consider the following test problem
ABC
0 Dµ

t v(y, t) = vyy(y, t) + F (y, t), (y, t) ∈ Ω := [0, 1]× [0, 1],
v(y, 0) = 0, 0 ≤ y ≤ 1,
v(0, t) = t3, v(1, t) = et3, 0 ≤ t ≤ 1,

with the source term

F (y, t) =
6

(1− µ)
eyt3Eµ,4

[
−µ

1− µ
tµ
]
− t3ey,
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Table 6. Errors L2, L∞ and corresponding experimental order of convergences yEOC2, yEOC∞ with
N = 512, ρ = 1.52 for Example 5.3.

µ M L2− error yEOC2 L∞− error yEOC∞

0.2 2 3.5858e− 03 5.0710e− 03
22 9.4592e− 04 1.9225 1.2875e− 03 1.9776
23 2.3802e− 04 1.9906 3.2319e− 04 1.9942
24 5.9610e− 05 1.9975 8.1489e− 05 1.9877
25 1.4942e− 05 1.9961 2.0435e− 05 1.9956
26 3.7720e− 06 1.9860 5.1624e− 06 1.9849

0.3 2 3.5703e− 03 5.0491e− 03
22 9.4120e− 04 1.9235 1.2809e− 03 1.9789
23 2.3682e− 04 1.9907 3.2149e− 04 1.9943
24 5.9338e− 05 1.9968 8.1109e− 05 1.9868
25 1.4907e− 05 1.9929 2.0383e− 05 1.9925
26 3.7962e− 06 1.9734 5.1949e− 06 1.9722

0.5 2 3.5174e− 03 4.9743e− 03
22 9.2510e− 04 1.9268 1.2582e− 03 1.9832
23 2.3270e− 04 1.9911 3.1568e− 04 1.9948
24 5.8399e− 05 1.9945 7.9798e− 05 1.9840
25 1.4774e− 05 1.9829 2.0190e− 05 1.9827
26 3.8653e− 06 1.9344 5.2872e− 06 1.9331

Table 7. Comparison with method in [39] taking N = 500 for Example 5.3.

Present method Method in [39]

α M L∞- error xOL∞ L∞- error xOL∞

0.2 20 2.9807e-05 - 1.5816e-04 -
40 7.3984e-06 2.0104 3.9767e-05 1.9917
80 1.7977e-06 2.0410 9.8876e-06 2.0079

160 3.9766e-07 2.1766 2.4200e-06 2.0306
320 4.7599e-08 3.0625 5.5323e-07 2.1290

0.3 20 2.9581e-05 - 1.5723e-04 -
40 7.2945e-06 2.0198 3.9488e-05 1.9934
80 1.7243e-06 2.0808 9.7702e-06 2.0149

160 3.3190e-07 2.3775 2.3432e-06 2.0599
320 4.5079e-08 2.8802 4.8662e-07 2.2676



CMDE Vol. 12, No. 4, 2024, pp. 719-740 735

Table 8. Errors L2, L∞ and corresponding experimental order of convergences tEOC2, tEOC∞ with
M = 500, ρ = 1.52 for Example 5.3.

µ N L2− error tEOC2 L∞− error tEOC∞

0.2 2 1.4382e− 03 1.9684e− 03
22 4.4507e− 04 1.6921 6.0916e− 04 1.6921
23 1.2927e− 04 1.7837 1.7693e− 04 1.7837
24 3.6218e− 05 1.8356 4.9572e− 05 1.8355
25 9.9400e− 06 1.8654 1.3605e− 05 1.8654
26 2.7149e− 06 1.8724 3.7159e− 06 1.8724

0.3 2 3.1403e− 03 4.2979e− 03
22 9.5553e− 04 1.7165 1.3077e− 03 1.7165
23 2.7270e− 04 1.8090 3.7322e− 04 1.8090
24 7.5035e− 05 1.8617 1.0269e− 04 1.8617
25 2.0195e− 05 1.8936 2.7639e− 05 1.8936
26 5.3795e− 06 1.9084 7.3625e− 06 1.9084

0.5 2 9.4297e− 03 1.2902e− 02
22 2.8082e− 03 1.7476 3.8423e− 03 1.7476
23 7.7972e− 04 1.8486 1.0669e− 03 1.8486
24 2.0838e− 04 1.9038 2.8512e− 04 1.9037
25 5.4473e− 05 1.9356 7.4534e− 05 1.9356
26 1.4071e− 05 1.9528 1.9253e− 05 1.9528

and B(µ) = 1. v(y, t) = t3ey is the analytical solution of this test problem.

Tables 1, 4, and 6 display L2− error, L∞− error, and corresponding spatial orders of convergence yEOC2 and yEOC∞
for Examples 5.1, 5.2, and 5.3, respectively for different choices of the fractional order µ. From these tables, we see
that the errors are decreasing as the mesh size decreases, and that the estimated spatial order of convergence is two.
This is in agreement with the theoretical order of convergence obtained in Theorem 4.2.2. Similarly, the L2− error,
L∞− error, and corresponding orders of convergence tEOC2 and tEOC∞ in the temporal direction for Examples
5.1, 5.2, and 5.3 have been calculated using the formulae (5.2), (5.1), and (5.3) and are shown in Tables 3, 5, and
8, respectively for different choices of the fractional order µ. These tables show a second-order convergence in time,
which is in agreement with Theorem 4.2.2.

Moreover, Table 2 highlights the comparison between our proposed scheme and central difference scheme as outlined
in [49]. The results indicate that the spatial convergence order of the proposed scheme is 2, aligning with the findings
in [49]. Importantly, our work has elevated the accuracy order beyond that of the referenced scheme. In a similar
manner, Table 7 presents a comparison between our proposed scheme and the cubic B-spline collocation method
outlined in [39]. The results highlight a spatial convergence order of 2 for our scheme, consistent with the results
reported in [39]. Importantly, our work has surpassed the accuracy order achieved by the referenced method.
In Figures 1, 3 and 5, 3-d plots of the numerical solutions of Examples 5.1, 5.2, and 5.3 are shown, respectively with
M = N = 60 and for different fractional orders µ. Figure 2 compares the numerical solution and the exact solution
of Example 5.1, with µ = 0.2, ρ = 0.1 and M = N = 60 at different time levels. From this graph we can observe that
the numerical solution runs concurrently with the exact solution. In a similar manner Figures 4 and 6 compare the
numerical solution and the exact solution of Examples 5.2 and 5.3 respectively for a different choice of µ, ρ, M and
N . From these graphs it is evident that the numerical solutions match well with the exact solutions. In summary, the
numerical results presented in this section are in good agreement with our theoretical findings.
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(a) µ = 0.2 (b) µ = 0.3

(c) µ = 0.4 (d) µ = 0.5

Figure 3. Numerical solution of Example 5.2 with M = N = 60 and ρ = 1.52.
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Figure 4. Numerical solution (starred line) and exact solution (solid line) of Example 5.2 with
µ = 0.5, ρ = 1 and M = N = 60 for different t.
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(a) µ = 0.2 (b) µ = 0.3

(c) µ = 0.4 (d) µ = 0.5

Figure 5. Numerical solution of Example 5.3 with M = N = 60 and ρ = 1.
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Figure 6. Numerical solution (starred line) and exact solution (solid line) of Example 5.3 with
µ = 0.5, ρ = 1 and M = N = 50 for different t.
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6. Conclusion

For the time-fractional sub-diffusion equation with ABC time fractional operator of order 0 < µ ≤ 1
2 , an efficient and

convenient collocation method is introduced in the proposed work. A finite difference method is employed to discretize
the ABC fractional operator and exponential B-spline functions are used for spatial discretization. The unconditional
stability of the method has been proven through the von Neumann method. In addition, the proposed method has
been shown to provide a unique solution. The convergence analysis of the proposed method has been proved rigorously
and it is shown that the order of convergence is O(h2

t , h
2
y). Finally, the current scheme has been implemented on three

test problems, thus confirming the theoretical results and showing the viability of the proposed scheme. Our goal for
the future is to broaden the scope of our current approach, addressing not only linear fractional problems but also
solving non-linear fractional problems and time-fractional problems in higher dimensions.
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