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Abstract
In this paper, the Sinc-collocation method is applied to solve a system of coupled nonlinear differential equations

that report the chemical reaction of carbon dioxide CO2 and phenyl glycidyl ether in solution. The model has
Dirichlet and Neumann boundary conditions. The given scheme has transformed this problem into some algebraic

equations. The approach is quite simple to handle and the new numerical solutions are compared with some known

solutions, which shows that the new technique is accurate and efficient.
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1. Introduction

Various important physical, chemical, mechanical, and biological phenomena in nature are described mathematically
using linear or non-linear differential equations. For example, in chemistry, we have used a system of nonlinear ordinary
differential equations to describe the reaction between carbon dioxide and phenyl glycerol ether. A dual model of
nonlinear differential equations for the solution of CO2 and PGE concentration in steady-state is given in [12] as

d2u

dξ2
=

α1u(ξ)v(ξ)

1 + β1u(ξ) + β2v(ξ)
, (1.1)

d2v

dξ2
=

α2u(ξ)v(ξ)

1 + β1u(ξ) + β2v(ξ)
, (1.2)

with boundary conditions of Dirichlet and Neumann types:

u(0) = 1, u(1) = κ, v′(0) = 0, v(1) = 1, (1.3)

where u(ξ) and v(ξ) represent the dimensionless concentrations of CO2 and PGE, respectively. Also αi, βi : i = 1, 2
are numerical constants, ξ represents the dimensionless distance measured from the center and κ represents the
dimensionless concentration of CO2 on the surface of the catalyst.
Carbon dioxide is obtained from the chemical combination of two oxygen atoms and one carbon atom. Carbon dioxide
is present in the Earth’s atmosphere, but it has a low concentration and is considered a greenhouse gas. Today, we see
the optimal use of carbon dioxide gas in oil recycling, welding, fire re-extinguishers, air guns, and coffee decaffeination.
Recently, due to the dangers of greenhouse gases in the earth’s atmosphere, some authors have investigated methods
of chemical stabilization of carbon dioxide. The reaction between CO2 and phenyl glycidyl ether (PGE) in solution
is one of these chemical stabilizations. The chemical reaction between carbon dioxide solutions and PGE using The
TEACPMS41 catalyst has been reviewed by Park et al in [3, 4].
A solution to this problem is found in very few numerical analysis articles. Authors in [5, 7] have used the Adomin
decomposition method to solve this problem. In [14], the residual method is applied to solve this problem. The
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variational iteration method was used by Al-Jawari and Radhi in [2] to solve the problem (1.1-1.3). In addition, these
authors and Raham presented another iterative method in [1]. Singha and Wazwaz obtained approximate numerical
solutions via the optimal homotopy analysis method [12]. Recently, Zabihi in [23] solved these coupled equations by
the Chebyshev finite difference method.
This problem belongs to the category of second-order differential equations that can be solved by different numerical
methods [15–22]. A new method has been used in this article, which is completely different from the method used by
the author for this problem in [23]. The combination of the collocation method and the Sinc method is our plan to
obtain the numerical solution to this problem. Concepts and general definitions of Sinc function approximation can be
found in [6, 13]. We have seen the use of the Sinc method in the last few decades to solve various problems, including
Troesch’s problem [8], Blasius equation [9], nonlinear two-point boundary value problems arising in chemical reactor
theory [10] and the coupled model of concentrations of oxygen and carbon substrate within a microbial floc particle
[11].
The rest of this paper is organized as follows: In the next section, the Sinc function method and its features are
reviewed. We apply the Sinc-collocation method to solve the studied system in section 3. In section 4, the numerical
solutions for the problem (1.1)-(1.3) with the proposed scheme are presented. Also, by comparing the new results
with the results in the literature, we show the correctness of our results. Finally, in section 5, we finish the study with
conclusions.

2. Sinc function approximation

In this section, some of the basic definitions of Sinc functions that are necessary for our further development are
provided. A Sinc function for ξ ∈ R is a function of form the books [6, 13]:

Sinc(ξ) =

{
sin(πξ)
πξ , ξ 6= 0,

1, ξ = 0.

The translated Sinc functions for h > 0, and k ∈ Z with evenly spaced points are defined by

S(k, h)(ξ) ≡ Sinc(ξ − kh
h

) =

{
sin[πh (ξ−kh)]
π
h (ξ−kh)

, ξ 6= kh,

1, ξ = kh.
(2.1)

For a function of f(ξ) in the set of real numbers and for h > 0, the following estimate is called Cardinal Whitaker
expansion of f whenever this series converges:

C(f, h)(ξ) =

∞∑
k=−∞

f(kh)Sinc(
ξ − kh
h

).

In [6], many features of the Whittaker cardinal expansion have been published. Stenger states in [13] that the function
f defined in the above relation is an analytic function on DE which is defined as follows. If C is the set of complex
numbers, for a certain d > 0, we define

DE = {z ∈ C : |arg(
z

1− z
)| < d ≤ π

2
},

and let φ(z) = ln( z
1−z ) be the conformal map of a simply connected region DE onto the infinite strip

DS = {z ∈ C : |Im(z)| < d ≤ 2}.

Let us introduce the temporary symbol S(k, h)(φ(ξ)) for S(k, h)oφ(ξ) because the problem (1.1)-(1.3) in the interval
[0, 1] is defined, so we use the Sinc function transferred to this interval and let

Sk(ξ) ≡ S(k, h)oφ(ξ) = Sinc(
φ(ξ)− kh

h
), (2.2)
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and the rang of ψ = φ−1 on R is (0, 1). The Sinc points grid corresponding to uniform nodes {kh}∞k=−∞ in the set of
real numbers R is defined as follows

ξk = ψ(kh) =
ekh

1 + ekh
, k ∈ Z. (2.3)

Now, we recall the following definition and theorem for our purpose.

Definition 2.1. Suppose that the set M(DE) contains all the analytic functions f in DE that apply in the following
conditions:

lim
τ→±∞

∫
ψ(τ+L)

|f(z)dz| → 0,

N(F ) =

∫
∂DE

|f(z)dz| < 0,

where L = {iy : |y| < d ≤ π
2 } and ∂DE is the boundary of DE .

The following result was proved in [13].

Theorem 2.2. Assume that φ′f ∈M(DE) then for all ξ ∈ Γ, we have

|f(ξ)−
∞∑

j=−∞
f(ξj)Sj(ξ)| ≤

N(fφ′)

2πd sinh(πdh )
≤ 2N(fφ′)

πd
e
−πd
h .

Furthermore, if there exist positive constants C and α such that |f(ξ)| ≤ Ce−α|φ(ξ)|, ξ ∈ Γ, and if the selection

h =
√

πd
αN ≤

2πd
ln 2 is made, then

|f(ξ)−
N∑

j=−N
f(ξj)Sj(ξ)| ≤ C2

√
Ne−

√
πdαN , ξ ∈ Γ,

so that C2 depends only on α, d and f .

The above theorem shows the convergence rate of exponential order for the Sinc numerical method [6, 13]. Fur-
thermore, the derivatives of Sinc basis functions can be approximated at the nodes as [6, 13]:

δ
(0)
k,j = [S(k, h)oφ(ξ)]|ξ=ξj =

{
1, k = j,
0, k 6= j,

(2.4)

δ
(1)
k,j =

d

dφ
[S(k, h)oφ(ξ)]|ξ=ξj =

1

h

{
0, k = j,
(−1)j−k
j−k , k 6= j,

(2.5)

δ
(2)
k,j =

d2

dφ2
[S(k, h)oφ(ξ)]|ξ=ξj =

1

h2

{
−π2

3 , k = j,
−2(−1)j−k

(j−k)2 , k 6= j.
(2.6)

3. Solving Equations (1.1)-(1.3) by Sinc method

For the boundary conditions in (1.3), it can be seen that the Sinc basis functions Sk(ξ) do not have a derivative

when ξ tends to 0, therefore, we change the Sinc basis functions as Sk(ξ)
φ′(ξ) . Here, we have that the first-order derivative

of these modified Sinc basis functions is equal to zero when ξ approaches zero. Also, for the approximate solutions
based on the Sinc basic functions to apply to other boundary conditions in (1.3), we define the following boundary
basis functions, which are cubic polynomials. These polynomials are obtained by Hermite interpolation [10] at points
0 and 1, which are defined by

µ0(ξ) = ξ(1− ξ)2, µ1(ξ) = (2ξ + 1)(1− ξ)2, (3.1)
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µ2(ξ) = (3− 2ξ)ξ2, µ3(ξ) = ξ2(1− ξ), (3.2)

By applying the Sinc-collocation method, we approximate u(ξ) and v(ξ) as

uN (ξ) = UN (ξ) + p(ξ), vN (ξ) = VN (ξ) + q(ξ), (3.3)

where

UN (ξ) =

N∑
k=−N

ak
Sk(ξ)

φ′(ξ)
= ξ(1− ξ)

N∑
k=−N

akSk(ξ), (3.4)

and

VN (ξ) =

N∑
k=−N

bk
Sk(ξ)

φ′(ξ)
= ξ(1− ξ)

N∑
k=−N

bkSk(ξ). (3.5)

In addition, p(ξ) and q(ξ) are chosen as linear combinations of µj(ξ) : j = 0, 1, 2, 3 in (3.1)-(3.2). In order for uN (ξ)
and vN (ξ) to apply in boundary condition (1.3), the boundary parts of p(ξ) and q(ξ) are written in the following
forms:

p(ξ) = aN−1µ0(ξ) + µ1(ξ) + κµ2(ξ) + aN+1µ3(ξ), (3.6)

q(ξ) = bN−1µ1(ξ) + µ2(ξ) + bN+1µ3(ξ). (3.7)

In Eqs. (3.6) and (3.7), aN−1, aN+1, bN−1, bN+1 are coefficients to be determined. By collocating Eqs. (1.1) and (1.2)
at the sinc points

ξj =
ejh

1 + ejh
, j = −N − 1, ..., N + 1, (3.8)

we get the 4N + 6 coefficients {ak}Nk=−N and {bk}Nk=−N . By placing points ξj , j = −N − 1, ..., N + 1 in Eqs. (3.4) and
(3.5) and using Eq. (2.4), we have{

UN (ξj) =
aj

φ′(ξj)
, VN (ξj) =

bj
φ′(ξj)

, j = −N, ..., N,
UN (ξj) = VN (ξj) = 0, j = −N − 1, N + 1.

In addition, using Eqs. (2.4)- (2.6) and (3.4), we get

UN (ξj) =

N∑
k=−N

ak[
Sk(ξ)

φ′(ξ)
]ξ=ξj =

N∑
k=−N

ak[(
−φ′′(ξ)
φ′(ξ)2

)Sk(ξ) +
d

dφ
Sk(ξ)]ξ=ξj

=

N∑
k=−N

ak[(
−φ′′(ξj)
φ′(ξj)2

)δ
(0)
kj + δ

(1)
kj ].

In a similar way, we get

VN (ξj) =

N∑
k=−N

bk[(
−φ′′(ξj)
φ′(ξj)2

)δ
(0)
kj + δ

(1)
kj ].

By using Eqs. (2.4)- (2.6), (3.4) and (3.5) , the formulas for the second derivative of Sk(ξ)
φ′(ξ) are

U ′′N (ξj) =

N∑
k=−N

ak{(
2φ′′(ξj)

2 − φ′′′(ξj)φ′(ξj)
φ′(ξj)3

)δ
(0)
kj − (

φ′′(ξj)

φ′(ξj)
)δ

(1)
kj + φ′(ξj)δ

(2)
kj },
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Table 1. Results for u(ξ) and v(ξ).

ξ uOHAM uSinc(N=8) vOHAM vSinc(N=8)

0.1 0.9428972 0.9429145 0.8415794 0.8419224
0.2 0.8875699 0.8875998 0.8469568 0.8472826
0.3 0.8339414 0.8339840 0.8557293 0.8560406
0.4 0.7819371 0.7819910 0.8677478 0.86804435
0.5 0.7314845 0.7315460 0.8828670 0.88314391
0.6 0.6825121 0.6825758 0.9009442 0.9011930
0.7 0.6349490 0.6350083 0.9218381 0.92204782
0.8 0.5887240 0.5887719 0.9454074 0.9455646
0.9 0.5437652 0.5437939 0.9715097 0.9715983

V ′′N (ξj) =

N∑
k=−N

bk{(
2φ′′(ξj)

2 − φ′′′(ξj)φ′(ξj)
φ′(ξj)3

)δ
(0)
kj − (

φ′′(ξj)

φ′(ξj)
)δ

(1)
kj + φ′(ξj)δ

(2)
kj }.

Now, in order to solve problem (1.1)-(1.3), we insert the equations obtained above and the equations in (3.3) into
Eqs. (1.1)-(1.2) and obtain

U ′′N (ξj) + p′′(ξj) = α1F (UN (ξj) + p(ξj), VN (ξj) + q(ξj)), (3.9)

V ′′N (ξj) + q′′(ξj) = α2F (UN (ξj) + p(ξj), VN (ξj) + q(ξj)). (3.10)

where

F (x, y) =
xy

1 + β1x+ β2y
.

Eqs. (3.9) and (3.10) produce 4N+6 nonlinear algebraic equations that can be used to obtain the unknown coefficients
ak and bk, (k = −N − 1, ..., N + 1) with Newton’s method. Subsequently uN (ξ) and vN (ξ) can be calculated via Eq.
(3.3) by the maple’s fsolve command.

4. Numerical simulations

In this section, we put fixed values instead of parameters α1, α2, β1, β2 and κ of Eqs. (1.1)-(1.3) and report the
approximate solutions obtained from the Sinc-collocation method. Also, we presented all the results using α = 1 and
d = π

2 which yield h = π√
2N

according to Theorem 1. We approximate u(ξ) ' uN (ξ), v(ξ) ' vN (ξ) as defined in

Eq. (3.3) with substituing (3.4), (3.5), (3.6) and (3.7). Then by placing uN (ξ) and vN (ξ) in Eqs. (1.1) and (1.2),
equations (3.9) and (3.10) are obtained. Now, by placing the points introduced in relation (3.8) in these equations,
we get a system of algebraic equations.
We define the following residual error functions to evaluate the accuracy of approximate solutions

Res1,N (ξ) =
d2uN
dξ2

− α1uN (ξ)vN (ξ)

1 + β1uN (ξ) + β2vN (ξ)
, (4.1)

Res2,N (ξ) =
d2vN
dξ2

− α2uN (ξ)vN (ξ)

1 + β1uN (ξ) + β2vN (ξ)
. (4.2)

We assign α1 = 1, α2 = 2, β1 = 1, β2 = 3, κ = 1
2 and then compare the approximate solutions of the Sinc-collocation

method for N equal to 8 with the optimal homotopy analysis method [12] in Table 1 and Figure 1. In addition, graphs
of residual error functions for N = 8 and other similar parameters are drawn in Figure 2.

Now, for N = 8, the effect of the parameters α1, α2, β1, β2 and κ on the approximate solutions is investigated. In
Figure 3, we present the effect of κ on uN (ξ) when α1 = 1, α2 = 1, β1 = 1, β2 = 3. We have also presented the behavior
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Figure 1. Plotting the approximate solutions u8(ξ) on the left side and v8(ξ) on the right side with
α1 = 1, α2 = 2, β1 = 1, β2 = 3, κ = 1

2 .

Figure 2. Plotting the approximate residual error functions |Res1,8(ξ)| on the left and |Res2,8(ξ)|
on the right in α1 = 1, α2 = 2, β1 = 1, β2 = 3, κ = 1

2 .

of β1 in uN (ξ) for α1 = 1, α2 = 1, β2 = 0.001 and κ = 0.1 in Figure 4 .
The effect of β2 on uN (ξ) when α1 = 3, α2 = 1, β1 = 1, κ = 0.1 is shown in Figure 5. Also, Figure 6 shows the effect
of α2 on vN (ξ) when α1 = 1, β1 = 100, β2 = 10 and κ = 0.1. From Figure 7, we can see that the accuracy of the
approximate solution vN (ξ) decreases with the increase of α1. It is worth noting here that the images in Figures 3-6
are almost identical to the Figures obtained in [7, 14].

5. Conclusion

In this article, the Sinc-collocation scheme is used to solve the equations related to the solutions of stable con-
centrations of carbon dioxide absorbed in phenyl calicidyl ether. With the help of the properties of this method, we
reduce the governing equations of this reaction to algebraic equations. In addition, the effects of different values of
parameters α1, α2, β1, β2 and κ on the problem are also investigated. It can be seen that the approximate solutions
obtained from the sinc-collocation method have a very good agreement with the approximate solutions obtained from
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Figure 3. Graph for u(ξ) of pre-
sented scheme with α1 = 1, α2 =
1, β1 = 1, β2 = 3 and different val-
ues of κ.

Figure 4. Graph for u(ξ) of pre-
sented scheme with α1 = 1, α2 =
1, β2 = 0.001, κ = 0.1 and different
values of β1.

Figure 5. Graph for u(ξ) of pre-
sented scheme with α1 = 3, α2 =
1, β1 = 1, κ = 0.1 and different val-
ues of β2.

Figure 6. Graph for v(ξ) of pre-
sented scheme with α2 = 1, β1 =
10, β2 = 10, κ = 0.1 and different
values of α1.

Figure 7. Graph for v(ξ) of pre-
sented scheme with α1 = 1, β1 =
100, β2 = 10, κ = 0.1 and different
values of α2.
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other numerical methods such as Adomian decomposition method [7], optimal homotopy analysis method [12] and
residual method [14].
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