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Abstract

An optimal system of Lie infinitesimals has been used in an investigation to find a solution to the (2+1)-dimensional

Bogoyavlensky-Konopelchenko equation (BKE). This investigation was conducted to characterize certain fantastic
characteristics of plasma-particle dispersion. A careful investigation into the Lie space with an unlimited number

of dimensions was carried out to locate the relevant arbitrary functions. When developing accurate solutions for

the BKE, it was necessary to establish an optimum system that could be employed in single, double, and triple
combination forms. There were some fantastic wave solutions developed, and these were depicted visually. The

Optimal Lie system demonstrates that it can obtain many accurate solutions to evolution equations.
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1. Introduction

Investigating nonlinear physical processes plays a crucial role in understanding various scientific and technological
phenomena. A key aspect of this investigation is the analysis of precise traveling wave solutions to nonlinear partial
differential equations. These solutions provide valuable insights into the behavior of nonlinear waves and are essential
for advancing knowledge in many fields, particularly in industry. Nonlinear wave phenomena are prevalent across
diverse disciplines, spanning fluid mechanics, plasma physics, optical fibers, biology, solid-state physics, chemical
kinematics, chemical physics, and geochemistry, among others. By studying the intricate dynamics of nonlinear
waves in these areas, researchers can uncover fundamental principles and develop practical applications. One widely
recognized evolution equation used in various contexts is the Bogoyavlensky-Konopelchenko equation (BKE). This
equation’s versatility allows it to be applied in different settings, making it a valuable tool for investigating nonlinear
wave phenomena. For instance, the BKE can help explain the dispersion of particles in plasma, which occurs due to the
diffusion of plasma. By employing this theory, scientists can gain a better understanding of plasma dynamics and its
implications in fields such as fusion energy research and astrophysics. Numerous methods have been employed to attain
exact solutions of these equations, such as Backlund transform [1–4], auxiliary function method [5], extended tanh
method [6–9], Lie group method [10–15], Darboux transformation [16–19], the projective Riccati equations method
[20, 21], sine-cosine method [9, 22, 23] and the variation iteration method [24–26]. Moreover, sub-equation method
[27, 28], nonlocal conservation laws [29], and Painlevé analysis via WTC–Kruskal algorithm [30] are also some useful
methods. Similarity transformation methods, which can be used to construct either exact solutions or reduce the
partial differential equation (PDE) model into an ordinary differential equation (ODE) model, are one of the most
powerful techniques. These methods include Lie infinitesimals, group transformation methods, and hidden symmetries,
among others, and can be used to construct either exact solutions or reduce the PDE model into an ODE model [31–42].
The motivation of this manuscript is to discover new families of solutions compatible with describing the dispersion
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of plasma particles. The technique is to investigate and create an optimal system of Lie space instead of using the
typical Lie infinitesimals directly. Moreover, the hidden symmetry vectors are detected during the reduction process,
which will lead to totally new families of solutions. The paper is arranged as follows. In section 2, the mathematical
formulation of the problem is introduced with Lie infinitesimals vectors. Then, the commutator and adjoint tables are
constructed in section 3. The optimal system is discovered in section 4, and the results are illustrated in section 5.
Finally, the paper is terminated by conclusion remarks.

2. Mathematical formulation

BKE in (2+1) dimensions may describe the dispersion of plasma particles. One of its forms can be written as:

uxt + uxxxy + 4uxuxy + 2uxxuy = 0, (1)
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Where, Fi(t), i = 1..12 are arbitrary functions to be determined later.

3. Commutator and adjoint tables

To evaluate the appropriate functions, the commutator table of the vectors X1, X2, X3, X4, X5 and X6 is constructed
using the relation [Xi, Xj ] = Xi (Xj)−Xj (Xi). For example, the following commutators are computed.
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To get a solvable system, the following condition must be satisfied. [Xi, Xj ] = λXn where n = 1 . . . 6.
Setting [X1, X2] = 0 leads to:
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In the same way, the remaining commutators are simplified, and the resultant ordinary differential equations are solved
simultaneously to get:

F1 = 2, F2 = 2, F3 = 0, F4 = 1, F5 = 0, F6 =
t
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Thus, the space of Lie vectors will be:
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Finally, the commutator table is constructed hereafter:

Table 1. Commutator Table.

[Xi, Xj ] X1 X2 X3 X4 X5 X6

X1 0 0 X2 X1 0 X4 + 1
2X5

X2 0 0 0 0 X2
1
2X3

X3 −X2 0 0 −X3 X3 0
X4 −X1 0 X3 0 0 X6

X5 0 −X2 −X3 0 0 0
X6 −X4 − 1

2X5
−1
2 X3 0 −X6 0 0

The adjoint table is to be constructed using the relation:

Ad
(
eεV
)
W0 = W0 − ε [V,W0] +

ε2

2
[V, [V,W0]]− . . . (11)

Using this relation, the adjoint table is constructed in the form:

Table 2. Adjoint Table.

Ad X1 X2 X3 X4 X5 X6

X1 X1 X2 X3 − εX2 X4 − εX1 X5 X6 − ε
(
X4 + 1

2X5

)
+ ε2

2 X1

X2 X1 X2 X3 X4 X5 − εX2 X6 − ε
2X3

X3 X1 + εX2 X2 X3 X4 + εX3 X5 − εX3 X6

X4 e−εX1 X2 e−εX3 x4 X5 e−εX6

X5 X1 eεX2 eεX3 X4 X5 X6

X6 X1 + ε
(
X4 + 1

2X5

)
+ ε2

2 X6 X2 + εX3 X3 X4 + εX6 X5 X6

4. Optimal Lie system

The following adjoint matrices are constructed from Table 2.

Ad(eε1X1) =


1 0 0 −ε1 0 ε2

2
0 1 −ε1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 −ε1

0 0 0 0 1 −ε1
2

0 0 0 0 0 1

 ,

Ad(eε2X2) =


1 0 0 0 0 0
0 1 0 0 −− ε2 0
0 0 1 0 0 −−ε2

2
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,
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Ad(eε3X3) =


1 0 0 0 0 0
ε3 1 0 0 0 0
0 0 1 ε3 −ε3 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

Ad(eε4X4) =


e−ε4 0 0 0 0 0

0 1 0 0 0 0
0 0 e−ε4 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 e−ε4

 ,

Ad(eε5X5) =


1 0 0 0 0 0
0 e−ε5 0 0 0 0
0 0 e−ε5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

Ad(eε6X6) =


1 0 0 0 0 0
0 1 0 0 0 0
0 ε6 1 0 0 0
ε6 0 0 1 0 0
ε6
2 0 0 0 1 0
ε6
2 0 0 0 0 1

 . (12)

Now Adg = Ad
(
eε1X1

)
∗Ad

(
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)
∗ . . . ∗Ad(eε6X6).

Let:

1

a
Adg


α1

α2

α3

α4

α5

α6

 =


β1

β2

β3

β4
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 . (13)

To obtain the optimal system, the following cases are studied.
Case 1:
For α6 6= 0, there are two subcases:
If ε1 = 0, the vector X3 is an optimal vector,
If ε2 = 0, the vector X1 +X4 +X5 is an optimal vector.
Case 2:
For α5 6= 0, there are three subcases:
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If ε3 6= 0, the vector X2 +X3 +X5 is an optimal vector,
If ε3 = 0, the vector X2 +X5 is an optimal vector,
If ε2 = ε3 = 0, the vector X5 is an optimal vector.
Case 3:
For α4 6= 0, the vector X4 is an optimal vector.
Case 4:
For α3 6= 0, the vector X3 is an optimal vector.
Case 5:
For α2 6= 0, the vector X2 is an optimal vector.
Case 6:
For α1 6= 0, the vector X1 is an optimal vector.
Case 7:
For α4 6= 0, α5 6= 0,, the vector X1 +X4 is an optimal vector.
Following the same procedures, all cases were studied and the optimal system of Lie vectors are:
Single Vectors: X1, X2, X3, X4, X5.
Double linear combinations: X1 +X4, X2 +X4, X1 +X3, X4 +X5, X1 +X5.
Triple linear combinations: X1 +X4 +X5, X2 +X3 +X5.
These vectors are used to reduce the Bogoyavlensky-Konopelchenko equation to an invariant ordinary differential

equation to get the exact solutions.

5. Results and discussion

5.1. Using X1. The Equation (1) is reduced to:

wrrrs + (2ws − 2) + 4wrwrs = 0, (14)

where, r = −2t + x, s = y, w(r, s) = u(t, x, y) − 2t.
Equation (14) has the following exact solution:

w(r, s) = 2C2 tanh

(
C2 r +

s

2 C2
+ C1

)
+ C3. (15)

Then, by back substitution, the solution of Equation (1) is:

u(x, y, t) = 2t+ 2C2 tanh

(
C2(x− 2t) +

y

2C2
+ C1

)
+ C3. (16)

Moreover, when studying the symmetry vectors of (14), these vectors can be used to reduce the equation to an ODE.
Using the vector ∂

∂r + ∂
∂s + ∂

∂w , Equation (14) is reduced to:

d4V (α)

dα4
−
(

6
dV (α)

dα
− 6

)
d2V (α)

dα2
= 0, (17)

where, α = −r + s, V (α) = w(r, s)− r.
Now, one of the symmetry vectors of (17) is:
∂
∂V which reduces its order to:

ψ
′′′

= (6ψ − 6)ψ
′
, where, ε = α, ψ(α) =

dV (α)

dα
. (18)

Moreover, this Equation, (18), has one of its vectors as ∂
∂ε which reduces the order of (18) to:

TT
′′

= −T
′′2

+ 6δ − 6, (19)

where

δ = ψ(ε), T (δ) =
dψ(ε)

dε
,
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which has a solution in the form:

T (δ) = ±
√

2δ3 − 6δ2 − C1δ + C2. (20)

Then, by back substitution, the solution of Equation (1) is written as:

u(x, y, t) = x +
√

6 tan

(√
6

2
(y + 2t − x) + C

)
. (21)

5.2. Using X2. By the same procedures, X2 is used to get the following solution:

u(x, y, t) = y + F1(t) + F2(−2t + x), (22)

where, F1and F2 are arbitrary functions in their arguments.

5.3. Using X3. By the same procedures, X3 is used to attain the following solution:

u(x, y, t) =
(2t + x)y

4t
+ F2(t) +

(
1√
t

)
F1

(
x− 2t√

t

)
, (23)

where, F1and F2 are arbitrary functions in their arguments.
Using the other optimal vectors, one can get the following solutions:

u(x, y, t) = t
(

2 +
x

4

)
+ C2

(
− t

2

2
+ y

)
− (−2t + x)2

8 (2 C2 − 2)
+ C3(−2t + x) + C4, (24)

u(x, y, t) =
(2t + x+ 4)y

4t+ 4
+ F2(t) +

(
1√
t+ 1

)
F1

(
x− 2t√
t+ 1

)
, (25)

u(x, y, t) = 3t+ 2 C2 tanh

(
C2(y − 2t) + 2 C2

y − t
4 C2

2 − 1
+ C1

)
+ C3, (26)

Some of the previous results are depicted in Figures 1-4. These figures illustrate some interpretation of plasma par-
ticles dispersion in different cases of boundary conditions. These behaviors vary between kink solutions, trigonometric
and arbitrary functions.

Figure 1. Solution behavior of
Equation (16).

Figure 2. Solution behavior of
Equation (21).
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Figure 3. Solution behav-
ior of Equation (22) with
F1(t) = cos(t), F2(x − 2t) = (x −
2t)e−(x − 2t)2 .

Figure 4. Solution behavior of
Equation (23) with F2(t) =

e−t, F1

(
x−2t√

(t)

)
= 10∗cos

(
x− 2t√

(t)

)
.

The illustrations shown in Figures 1-4 show the behavior of plasma particles in different cases. For example, in
Figure 1, the graph shows the case of limited dispersion of the particles. In Figure 2, the periodic behavior of the
plasma particles is illustrated. Some chaotic arbitrary dispersion of the particles are shown in Figure 3 and 4 due to
the arbitrary functions in the solution.

6. Conclusion

The solution of the (2+1)-dimensional BKE has been investigated using an optimal system of Lie infinitesimals
to describe some fabulous behaviors of plasma-particle dispersion. The infinite-dimensional Lie space was precisely
analyzed to detect the appropriate arbitrary functions. An optimal system was obtained as single, double, and triple
combinations to be used in constructing exact solutions of the BKE. Some fabulous wave solutions were constructed
and illustrated graphically. The Optimal Lie system proves its ability to get numerous exact solutions to evolution
equations.
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