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Abstract , \

This paper proposes a reversible data embedding algorithm in encrypted images of cloud storage where the
embedding was performed by detecting a predictor that provides a maximum embedding rate. Initially, the
scheme generates trail data which are embedded using the prediction error expansion in the encrypted training
images to obtain the embedding rate of a predictor. The process is repeated for different predictors from which
the predictor that offers the maximum embedding rate is estimated. Using the estimated predictor as the label
the Convolutional neural network (CNN) model is trained with the encrypted images. The trained CNN model
is used to estimate the best predictor that provides the maximum embedding rate. The estimation of the best
predictor from the test image does not use the trail data embedding process. The evaluation of proposed reversible
data hiding uses the datasets namely BossBase and BOWS-2 with the metrics such as embedding rate, SSIM,
and PSNR. The proposed predictor classification was evaluated with the metrics such as classification accuracy,
recall, and precision. The predictor classification provides an accuracy, recall, and precision of 92.63%, 91.73%,
and 90.13% respectively. The reversible data hiding using the proposed predictor selection approach provides an
embedding rate of 1.955 bpp with a PSNR and SSIM of 55.58dB and 0.9913 respectively.
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1. INTRODUCTION

Due to the increased capacity in storage, cloud computing [28] has attracted several users and researchers. However,
there exist several challenges in cloud storage that include authentication, confidentiality, and integrity. In order to
handle these challenges data encryption [13], and data hiding [22] are used. Data encryption is used to preserve the
plain image content of the image by modifying the plain image content to the cipher image. The data embedding
modifies the pixel content for holding the secret content. The commonly used reversible data hiding approach is derived
from the schemes such as integer transform [25], histogram shifting [21], difference expansion [7], and prediction error
expansion [8]. In the non-reversible approach [31], the original image cannot be reconstructed after the extraction of
the hidden data, but in the reversible data hiding approach [27] both the hidden data and the carrier image can be
reconstructed without any loss. For preserving, the privacy content of the image the user will typically encrypt the
image before uploading it to the cloud. Partial or full encryption can be used to prevent the unauthorized person
from accessing the actual image content. Block-based MSB plain rearrangement approach [4] estimates the highly
compressible bit streams from the MSB planes of the image. Parametric binary tree labeling [29] was proposed by the
author Yi et al. where the data is embedded in small blocks that are encrypted. Two data embedding schemes were
proposed by Zhang et al. [30], where the images are encrypted based on the homomorphic and probabilistic properties
using a public cryptosystem. The first approach is reversible, whereas the second approach is non-reversible. In
the reversible approach, the histogram is initially shrunk and the homomorphic cryptosystem is used to encrypt the
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resultant image. In the non-reversible approach, the image is directly encrypted and the embedding is performed using
multilayer wet paper coding.

A sufficient amount of carrier for embedding the data was provided by the patch-level representation [3], where the
original image is converted to sparse coefficients based on a dictionary. However, this approach requires an additional
reversible data-hiding mechanism for embedding the residual errors. The process of preserving the privacy content of
the image can be classified into two broad categories namely Vacating a room after encryption (VRAE) and reserving
a room before encryption (RRBE). In the RRBE approach [9, 14], the owner of the image needs to preprocess the
image such that encryption needs to be done after leaving some space for data embedding. But in the VRAE approach
[12, 17, 18] the owner can encrypt the image without any other pre-processing and can upload it to the cloud. The
cloud can modify the encrypted image to hide the data. A higher payload can be achieved in the RRBE approach than
in the VRAE approach, but it requires an additional preprocessing step that creates a burden for the image owner.

The RRBE scheme was first introduced by Ma et al. [9]. This approach was derived from the histogram shifting-
based reversible data hiding, where some vacant is created for embedding a few pixel LSBs. The vacant space is kept as
it is while the remaining regions are encrypted and uploaded to the cloud. The vacant region is used to hide the secret
data and this approach provides an embedding rate of 0.5 bpp. The predictor used in [14] is modified by Puyang et al.
[17] where the authors used a second MSB plane along with the first MSB plane for data embedding. This approach
provides an average payload of 1.35 bpp. The bit planes are used iteratively from MSB to LSB by Puteaux et al.
[16] which provides an average embedding rate of 1.84 bpp. A median edge detector-based predictor was introduced
by Hu et al. [5] which is derived from the context adaptive predictor. The performance of the reversible data hiding
based on predictor error expansion proposed by Thodi et al. [24] provides a better performance when compared
to a different expansion scheme introduced by Tian et al. [6]. The prediction error obtained from the histogram
is shifted right and left resulting in several zero and peak points. Thus the combination of histogram shifting and
prediction error expansion [26] provides a better capacity. Li et al. [8] grouped the image pixel into two areas namely
flat area and rough area, where the flat area offers an embedding capacity of 2 bits per pixel and the rough area
offers an embedding rate of 1 bit per pixel. The average of four adjacent pixels is used to estimate the prediction
value [20] which improves the quality of the marked image. One-dimensional (1D) prediction error histogram and
two-dimensional (2D) prediction error histogram (PEH) were introduced by Ou et al. [11], where the 2D approach
provides a better correlation between the prediction errors. The author Zhang et al. [10] combined 1D-PEH and
2D-PEH to obtain an efficient map for data embedding.

The contribution of the paper is as follows. (i). This paper proposes a CNN model-based best predictor detection
algorithm that provides a maximum embedding rate (ii). The algorithm uses a trail data generation approach to
estimate the predictor that provides a maximum embedding rate (iii). The trained model was deployed in a cloud so
that it detects the best predictor for embedding the data without the need for trial data embedding. (iv). Finally, the
evaluation of the predictor classification was evaluated using the metrics namely classification accuracy, recall, and
precision. The evaluation of the data embedding algorithm was also done using the metrics such as embedding rate,
PSNR, and SSIM with the datasets namely BossBase and BOWS-2.

The remaining sections of the paper are constructed as below. Section 2 depicts the proposed reversible data
embedding algorithm, section 3 discusses the experimental results and analysis of the work. Finally, section 4 concludes
the work.

2. PROPOSED METHODS

The proposed reversible data embedding in a cloud network includes three major processes such as (2.1) three-level
encryption and decryption (2.2) CNN training for predictor class estimation (2.3) Reversible data embedding using
classified predictor.

2.1. Three-level encryption and decryption. The image that is to be uploaded to the cloud is encrypted by the
user using the three-level encryption algorithm that uses the key ‘K’. Let u x v be the size of the image I;. Initially,
the image is subdivided into 7 x 7 blocks. Therefore the number of non-overlapping blocks is expressed as

U

Ny = —.
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(2.1)
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(a) (b)

FIGURE 1. Representation of four layers in a 7 x 7 sub-block (a) Layers in Single sub-block (b) Layers
in multiple sub-blocks.

The sub-block contains four layers namely layer 1, layer 2, layer 3, and layer 4 as illustrated in Figure 1(a). Layer 1
and Layer 4 of the complete image are encrypted by a global encryption algorithm. In a 7 x 7 sub-image, the number
of pixels constitutes layer 1 and layer 4 is 25 which is subjected to global encryption. The key K is grouped into three
keys namely as K = {K7, Ko, K3}. The number of pixels that constitute layer 2 and layer 3 is 24. Therefore the total
number of pixels in the image [; that constitute layer 1 and layer 4 is

25uv
N1y = 25N, = ——. 2.2
14 = 20Ny 19 (2.2)
Figure 1(b) illustrates the different layers that are estimated throughout the image. The position of layer 2 and Layer
3 between the blocks are scrambled using the key K5. The total number of pixels in the image I; that constitute layer

2 and layer 3 is

24uv
Nog = 24N, = . 2.3
2 = 24N, = 20 (2.3
Thus the total number of pixels in the image and the number of pixels in layers are related by
N1 = N1y + Nas. (2.4)

Using the key K7, N14 number of random integer sequences are generated. Based on the generated random sequence
the pixels in layer 1 and layer 4 are scrambled to obtain the global encrypted layers for layers 1 and 4. Similarly using
the key K3, N23 number of random sequences is generated which is used to scramble the position of layers 2 and 3 in
the blocks with other blocks. The key K3 is used to generate Nog number of random sequences such that the random
sequence is between 1 to 8. The random sequence that is generated using the key K3 is used to rotate the layers as
depicted in Figure 2. For example, if R3 = 1, the pixels in layers 2 and 3 are retained with the same position shown
in Figure 2(a). If R3 = 4, the pixels in layers 2 and 3 are changed (rotated) as illustrated in Figure 2(d). Since layer
2 and layer 3 undergo only the rotational change, these two layers are used to embed the data.

2.2. CNN training for predictor class estimation. Figure 3 depicts the block diagram for the estimation of the
predictor class for training the Convolutional neural network. Let I, Is,....In, represents No number of training
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FIGURE 2. Rotation of layers 2 and 3 for different values of Rs (a) R3 =1 (b) Rs = 2, (¢) R3 = 3
(d)R3:4(6)R3:5(f)R3:6(g)R3:7(h>R3=8
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FicURrE 3. Estimation of predictor class for training the Convolutional neural network.

images generally represented as

L =[I,1Iz...1n,] 1i=1,2,...N;. (2.5)
The images I; is encrypted to obtain the encrypted image F;. Let Py, P,....Py represents N different predictor
generally represented as

P =[P,,P,,...Py] j=1,2,...N. (2.6)
Let D represent the trail data used in the embedding process. The data D is embedded in the image F; using the
predictor P; to obtain the marked encrypted image. Let C; = {C1,C5...Cn} be the marked encrypted image. The
an
BE
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FIGURE 4. Architecture of Convolutional neural network in training the best predictor class.
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F1GURE 5. Block diagram representation of data embedding and extraction process in the cloud.

embedding rate e; is then evaluated on the image E; that corresponds to the predictor P;. The predictor f that offers
the maximum embedding is estimated using the relation

f=arg max (e5) - (2.7)

Using the predictor class f as the label and the image F; as the training image, the CNN is trained. The architecture
of the CNN is depicted in Figure 4. The CNN architecture [19, 23] here uses two sections of convolutional layer and
max pooling layer. The size of convolutional layer 1 and max-pooling layer 1 are 128 x 128 x 8 and 64 x 64 x 8
respectively. The size of the convolutional layer 2 and max-pooling layer 2 has the size of 64 x 64 x 16 and 32 x 32 x 16
respectively. The two sections of the convolutional layer and max-pooling layers are followed by a flattening layer and
a fully convolutional layer. The fully convolutional layer has 16384 input neurons followed by three hidden layers each
having 16386 neurons followed by the output layer with IV classes.

2.3. Reversible data embedding using classified predictor. Figure 5 depicts the representation of data embed-

ding and extraction process in the cloud network. Initially, the test image I (the image that is being uploaded to the

cloud by the user) is first encrypted using the three-level encryption process using the key K. The encrypted image F
an
BE
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FIGURE 6. Representation of four different types of predictor (a) Predictor 1 (Py), (b) Predictor 2
(P2), (c) Predictor 3 (Ps), (c) Predictor 4 (Py) (The predictor represented as Z; in green color can
be estimated as represented by Z; in red color).

is then uploaded to the cloud by the owner. The trained CNN model that was deployed in the cloud will estimate the
best predictor that provides a maximum embedding rate. Let P be the best predictor classified by the CNN classifier.
The data D is then embedded on the encrypted image E using the predictor 15, to obtain the marked encrypted image
H which is then stored in the cloud. In the extraction phase, the data D is extracted from the marked encrypted
image H and also the encrypted image F is reconstructed. Let the reconstructed image be represented as H. Using
the same encryption key K, the three-level decryption process is applied to the reconstructed encrypted image H to
reconstruct the actual image I.

The predictor P can be estimated from the neighborhood of the encrypted image F using any one of the following
predictors Py, P>, P; and P, as P = Py, Py, P3, Py.

(i). Predictor 1

min (Gg, GQ) G1 Z max (G3, Gg) 5
P1 = max (G3, Gg) Gl S min (G3, GQ) 5 (28)
G3 + Go — G otherwise .

(ii). Predictor 2

. min (041,052) a1 Z a9,
P = { max (a1, @) otherwise . (2.9)

Where oy = (G1+0372+G3)F and ay = wr.
(iii). Predictor 3

min (g, ag) ag > max (Gr, as),
Py = ¢ max(a,a2)a; <min(Gr,as), (2.10)
G7 + a1 — ag otherwise .

(iv). Predictor 4

G1+ Go+ G3 + Gy)
4

The neighborhood of Z; is used to estimate the predictor P = Py, pP= P, P = Py and P = Py is illustrated in
Figures 6(a), 6(b), 6(c), and 6(d) respectively. The embedding and extraction are done as traditional prediction error

(=)=
E)NE

&=( r. (2.11)
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expansion [8] embed and extracts the data. The prediction error between the original pixel Z; and P can be estimated
as

r=2z — P. (2.12)
The prediction error r is expanded to obtain the
2r — Aif r € (—oo, —A),
2r+ Aif r € (A + 00), (2.13)
2r+ D ifr e (A, A).

>
Il

Where D is the data that is to be embedded and the parameter A decides the embedding capacity. The marked
encrypted pixel can be estimated from the predicted value and the expanded error using the relation,

H=P+7 (2.14)

The next section discusses the experimental results of the work.

3. EXPERIMENTAL RESULTS

The proposed approach uses two datasets namely Bossbase [1] and Bows-2 [2] dataset each having 10000 8-bit
grayscale images where each image has a size of 512 x 512. A few of the sample images from BOWS-2 and Bossbase
dataset is provided in Figure 7. Out of 10000 images, two class of data is constructed, such that in Class 1, 60% of
images (6000 images) are used in training and 40% of images (4000 images) are used in testing. In Class 2, 70% of
images (7000 images) are used in training and 30% of images (3000 images) are used for testing. The algorithm was
implemented using MATLAB 2018a. The performance of CNN in predictor classification can be evaluated using the
metrics such as accuracy, recall, and precision which can be evaluated as follows.

ty +tn

Accuracy = , 3.1
ty +tn + fp+ fn (3.1)
t
Recall = —2—, (3.2)
tp+ fn
t
Precision = —2—. (3.3)
tp + o

The performance of the reversible data embedding algorithm can be evaluated with the metrics such as peak signal-
to-noise ratio (PSNR), embedding rate (FR), and structural similarity index measurement (SSIM) as follows,

2 2
PSNR = 10logy, 535 , (3.4)

where s is the mean square error estimated by

s= 3" S (B y) — Ay, (35
rz=1y=1

where E(x,y) is the encrypted image and H(z,7) is the marked encrypted image. The embedding rate (ER) can be
estimated using the relation
L
uxX v’
where u X v represents the size of the image and L represents embedding capacity. SSIM can be estimated using the
relation,

ER =

(3.6)

(20Eﬁ + a1> (2;LE;LI-AI + 052)

(02E +02H + al) (MQE + u2H + a2>

SSI(E, H) = , (3.7)

(&)
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FIGURE 7. Sample images from BOWS-2 dataset and Bossbase dataset.

TABLE 1. Performance evaluation of Predictor classification for the two datasets.

BossBase dataset | BOWS-2 dataset
Class 1 | Class 2 | Class 1 | Class 2
Accuracy (%) | 88.36 | 92.63 87.42 | 91.24
Recall (%) 87.12 91.73 88.19 90.63
Precision (%) | 89.74 90.13 88.18 89.17

Metrics

wE represent the mean of the encrypted image FE, uH represents the mean of the marked encrypted image H o2
represents the variance of F, o?H represents the variance of H cEH represents the covariance of F and H ay and
g are constants.

Figure 8 depicts the experimental results from the BossBase dataset, where the level 1 encrypted image is depicted
in Figure 8(b). It shows the encryption of layer 4 and layer 1. The level 2 encrypted image also scrambles layers
2 and 3 of one neighborhood with other neighbourhood as illustrated in Figure 8(c). The level 3 encrypted image
also rotates the layers 2 and 3 along with level 1 and 2 encryption as illustrated in Figure 8(d). Figure 8(e) shows
the marked encrypted image where the predictor used in embedding the data is decided by the classification result
provided by the CNN classifier. Figure 9 depicts the experimental results from the BOWS-2 dataset.

Table 1 shows the performance of the proposed predictor classification process. As the number of training images is
increased the performance increases in both the BossBase and BOWS-2 dataset. With 60% of training images (Class
1), the proposed predictor classification process provides an accuracy of 88.36% and 87.42% respectively. With 70%
of training images (Class 2), the accuracy increases by 4.27% and 3.82% respectively. The comparison of accuracy,
recall, and precision for the two datasets with two classes is depicted in Figure 10. The maximum performance is
obtained for the BossBase dataset with Class 2 testing. The accuracy, recall, and precision were estimated as 92.63%,
91.73%, and 90.13% respectively.

Figure 11 depicts the ROC curve obtained while training the CNN for predictor classification on the datasets
BOWS-2 and BossBase. The maximum area under the ROC (AUC) is obtained while training the CNN using the
BossBase dataset when 70% of the image is used in training. In the class 1 category, the AUC for Bows-2 and
BossBase datasets is estimated as 0.8192 and 0.8654 respectively. However, increasing the training images to 70%
increases the AUC for BOWS-2 and BossBase datasets as 0.9179 and 0.9476 respectively. Figures 12(a) and 12(b)
show the confusion matrix obtained during the testing phase of CNN for BossBase and Bows-2 dataset each with

(=)=
E)NE
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FIGURE 8. Experimental results from BossBase dataset: (a) Original image, (b) Level-1 encrypted
image, (c) Level-2 encrypted image, (d) Level-3 encrypted image, (e) Marked encrypted image.

(a) (b) © d ©

FIGURE 9. Experimental results from BOWS-2 dataset: (a) Original image, (b) Level-1 encrypted
image, (c¢) Level-2 encrypted image, (d) Level-3 encrypted image, (e) Marked encrypted image.
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FicUure 10. Graphical comparison of accuracy, recall, and precision.
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FIGURE 11. ROC curve for the datasets BOWS-2 and BossBase.

3000 test images. Figures 12(c) and 12(d) show the confusion matrix obtained during the testing phase of CNN for
BossBase and Bows-2 dataset each with 4000 test images.

Table 2 shows the comparison of evaluation metrics PSNR, SSIM, and ER for the proposed method with traditional
approaches. The proposed approach provides a higher embedding rate when compared to traditional schemes. On
average, the proposed scheme provides an embedding rate of 1.955bpp with a PSNR and SSIM of 55.58dB and 0.9913
which is higher than the schemes proposed by Chen et al. [4] and Pauline et al. [15]. Figure 13 shows the comparison
of PSNR and SSIM for different embedding rate

Figuresl4(a) and 14(b) shows the comparison of PSNR between the encrypted image and the marked encrypted
image for different embedding rate for the image Figures 7(e) and 7(j) respectively. As the embedding rate is increased
the PSNR gradually reduces. The proposed approach provides a high PSNR for different embedding rates between
0.2 bpp and 2bpp when compared to other traditional schemes.
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FIGURE 12. Confusion matrix obtained during the testing phase of CNN: (a) BossBase dataset (Class
1), (b) Bows-2 (Class 1), (c) BossBase dataset (Class 2), (d) Bows-2 dataset (Class 2).

TABLE 2. Comparison of PSNR, SSIM, and ER for the proposed method with traditional schemes.

PSNR
Scheme SSIM | ER (bpp)
(dB)
Puyang et al.[14] 60.84 | 0.9988 | 1.42
Puteaux et al.[16] 55.63 | 0.9909 | 1.81
Yi et al.[29 51.36 | 0.9871 | 1.92
Chen et al.[4] 53.47 10.9892 | 1.93
Pauline et al.[15] 57.81 |0.9921 | 1.70
Proposed (BossBase-Class 1) | 55.97 | 0.9916 | 1.95
Proposed (Bows-2 Class 1) 55.36 | 0.9912 | 1.96
Proposed (BossBase-Class 2) | 55.17 | 0.9911 | 1.96
Proposed (Bows-2 Class 2) 55.82 | 0.9915 | 1.95

595
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F1Gure 13. Comparison of PSNR, SSIM, and ER for the proposed method with traditional ap-
proaches: (a) Variation of PSNR with ER, (b) Variation of SSIM with ER.
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FIGURE 14. Comparison of PSNR for different embedding for the sample images from BossBase and
Bows-2 dataset (a).
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4. CONCLUSION

This paper proposed a CNN-based high-capacity predictor estimation for reversible data embedding in the cloud
network. Initially, this approach estimates the best predictor using the CNN where the labels for the CNN training
are created by the trial embedding approach. The predictor that offers the maximum embedding rate is considered as
the class of the corresponding encrypted image. The images that are being uploaded to the cloud are encrypted by the
user using a three-level encryption process. In the testing phase, the encrypted images that are uploaded to the cloud
by the user are provided as the test image to the trained CNN model for estimating the predictor class that provides
a maximum embedding capacity. The data is then embedded using the classified predictor. The performance of the
classification algorithm was evaluated using the metrics such as accuracy, sensitivity, and specificity. The use of CNN
in predictor classification provides an accuracy, recall, and precision of 92.63%, 91.73%, and 90.13% respectively for
the BossBase dataset. Further, the PSNR, SSIM and embedding capacity of the reversible data embedding algorithm
were evaluated using the datasets namely BossBase and BOWS-2. The proposed approach provides an average PSNR
and SSIM of 55.58dB and 0.9913 respectively with an embedding rate of 1.955bpp
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