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Abstract

This study aims to investigate a stochastic Volterra integral equation driven by fractional Brownian motion with

Hurst parameter H ∈ ( 1
2
, 1). We employ the Wong-Zakai approximation to simplify this intricate problem,

transforming the stochastic integral equation into an ordinary integral equation. Moreover, we consider the

convergence and the rate of convergence of the Wong-Zakai approximation for this kind of equation.
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1. Introduction

Stochastic Volterra equations stand at the intersection of complex systems modeling and stochastic calculus, pro-
viding a robust framework for understanding real-world phenomena influenced by random processes. These equations,
incorporating both Volterra integral terms and stochastic elements, find applications in diverse fields such as finance,
biology, physics, and engineering.

In stochastic Volterra equations, fractional Brownian motion introduces a layer of intricacy. Fractional Brownian
motion, characterized by its self-similar properties and long-range dependence, poses significant challenges regarding
analytical solutions. Consequently, the numerical approximation of solutions emerges as a pivotal avenue for researchers
and practitioners seeking to unravel the behavior of these equations.

In the realm of infinite-dimensional spaces, the exploration of stochastic Volterra equations driven by Brownian
motion was studied in [1]. Subsequently, the study extended to stochastic Volterra equations driven by general
semimartingales, as discussed in [12]. However, despite the progress made in recent years, the numerical solution of
these equations remains a vibrant and evolving research area.

In [7], the authors applied the stochastic θ-method to address these equations, demonstrating its mean-square
convergence of order 1

2 . Additionally, investigations into stochastic equations featuring weakly singular kernels were
conducted in [11].

Exploring alternative approaches, [18] proposed a numerical scheme for nonlinear stochastic Itô Volterra integral
equations, leveraging Haar wavelets. Simultaneously, [13] delved into the shifted Jacobi operational matrix method as
an innovative avenue of research in this domain.

In this study, our focus centers on investigating the numerical solution for a specific stochastic integral equation
driven by fractional Brownian motion, represented as:

Xt = X0 +

∫ t

0

KH(t, s)b(Xs)ds+

∫ t

0

KH(t, s)σ(Xs)dWs, t ∈ [0, 1], (1.1)
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where Wt denotes Brownian motion and KH(t, s) is a deterministic kernel. Notably, the process

BH(t) =

∫ t

0

KH(t, s)dWs,

is a fractional Brownian motion (fBm) characterized by its Hurst parameter H ∈ ( 1
2 , 1). For this fBm E(BH(t)) = 0,

and its covariance function is given by

E(BH(t)BH(s)) =
1

2

(
t2H + s2H − |t− s|2H

)
.

It’s worth mentioning that when H = 1
2 , BH(t) reduces to the standard Brownian motion. This process finds practical

applications in diverse fields such as finance, and economics [10].
In previous studies, notable progress has been made in understanding stochastic Volterra integral equations driven by
fBm. In [2], researchers established the existence and uniqueness of solutions for these equations when driven by fBms
with a Hurst parameter H > 1

2 . Additionally, in Hilbert space, researchers in [6] proved the existence and uniqueness
of mild solutions for similar equations.

The Wong-Zakai (WZ) approximation is a crucial technique for solving stochastic differential equations (SDEs).
This method offers a promising way to simplify the complexity inherent in stochastic equations by transforming
stochastic integrals into ordinary ones. Researchers have demonstrated that by replacing the Brownian motion in
an SDE with a suitably chosen absolutely continuous process (referred to as the WZ process), the solution of the
approximating equation converges almost surely to the Stratonovich form of the original equation [15, 17]. In the
WZ approximation, the Brownian motion is first approximated with an absolutely continuous process before applying
proper time-discretisation schemes. This process serves as an intermediate step in the approximation. The key
advantage of employing the WZ approximation lies in transforming the SDE into an ordinary differential equation
(ODE). In simpler terms, instead of dealing with the complexities of an SDE, researchers can focus on solving a more
straightforward ODE, making the approach notably simpler and more manageable.

In prior research, the WZ approximation has been investigated in various numerical schemes for solving stochastic
delay differential equations, as demonstrated in [3]. Additionally, [8] explored an implicit Milstein method for SDEs
employing the WZ approximation. To approximate Brownian motion within the WZ method, Fourier approximation
techniques were utilized in studies such as [15, 16] and also in [3]. In a different domain, [14] applied the classical
piecewise linear interpolation in combination with WZ approximation to solve stochastic Volterra equations driven by
fBm. However, the rate of convergence was not determined in their study.

In this paper, we employ the Wong-Zakai approximation to simplify Equation (1.1), transforming the stochas-
tic integral equation into an ordinary integral equation. Furthermore, we investigate the convergence and rate of
convergence of the Wong-Zakai approximation for this specific type of equation.

Moving forward, the structure of the paper unfolds as follows: the subsequent section provides necessary preliminary
information. Section 3 offers a concise overview of the WZ approximation technique and outlines the method’s specifics.
Finally, in section 4, we delve into establishing the rate of convergence for the WZ approximation method applied to
stochastic Volterra equations.

2. Setting of the problem

Let (Ω,F , P ) be a probability space and {Wt : 0 ≤ t ≤ 1} be a Brownian motion defined on this space. Consider
the following stochastic Volterra integral which is the Stratonovich form of Equation (1.1):

Xt = X0 +

∫ t

0

KH(t, s)
[
b(Xs) + aHs

H− 1
2σσ′(Xs)

]
ds+

∫ t

0

KH(t, s)σ(Xs)dWs, t ∈ [0, 1], (2.1)

where X0 ∈ R

aH =
2H − 1

2H + 1

(
2HΓ( 3

2 −H)

Γ(H + 1
2 )Γ(2− 2H)

) 1
2

Γ(
3

2
−H)Γ(H − 1

2
), (2.2)
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and b and σ satisfy in the following assumption:
A. Let b ∈ C1

b (R), σ ∈ C2
b (R) be functions such that for all X1, X2 ∈ R we have

|σσ′(X1)− σσ′(X2)|2 + |σ(X1)− σ(X2)|2 + |b(X1)− b(X2)|2 ≤ L|X1 −X2|2, (2.3)

where L is a positive constant.
From now on, fix H ∈ ( 1

2 , 1) and consider the deterministic kernel KH : [0, 1]× [0, 1] −→ R by

KH(t, s) =

{
CHs

1
2−H

∫ t
s
(u− s)H− 3

2uH−
1
2 du, 0 < s ≤ t ≤ 1,

0, otherwise
(2.4)

where

CH = (H − 1

2
)

√
2HΓ( 3

2 −H)

Γ(H + 1
2 )Γ(2− 2H)

.

In the next proposition, some elementary properties of KH are introduced [4, 5] .

Proposition 2.1. The mapping s −→ KH(t, s) is continuous on the {0 < s ≤ t} and

• There is a positive constant θH which satisfies this condition

KH(t, s) ≤ θHs
1
2−H , 0 < s ≤ t ≤ 1. (2.5)

• For every 0 < s ≤ t∫ t

0

|KH(t, r)−KH(s, r)|2dr = (t− s)2H . (2.6)

• The mapping t −→ KH(t, s) is differentiable and

∂

∂t
KH(t, s) = CH(

s

t
)

1
2−H(t− s)H− 3

2 . (2.7)

• ∫ t

0

∂KH(t, s)

∂t
ds =

2aH
2H + 1

tH−
1
2 . (2.8)

• Let 1 ≤ p < 2
2H−1 , then

sup
0≤t≤1

‖KH(t, .)‖Lp([0,1]) <∞. (2.9)

• ∫ s

0

KH(s, r)dr = aHs
H+ 1

2 , (2.10)

where aH is defined in Equation (2.2).

The following proposition shows the existence of the solution of the Equation (2.1).

Proposition 2.2. [4] Let assumption A holds, then Equation (2.1) has a pathwise unique continuous solution Xt,
which satisfies the following condition

sup
0≤t≤1

E
(
|Xt|2

)
<∞. (2.11)
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3. Wong-Zakai approximation

Kloeden and Platen [9] introduced the Karhuen-Loève expansion of Brownian motion as follows:

W (t) =

∞∑
j=0

∫ t

0

mj(s)dsξj 0 ≤ t ≤ T = 1, (3.1)

where mj(t), j = 1, 2, 3, ..., are a set of complete orthonormal bases in the Hilbert space L2[0, 1] and ξj , j = 1, 2, ... are
defined by

ξj =

∫ 1

0

mj(s)dW (s). (3.2)

Clearly, ξj , j = 1, 2, ... are Gaussian random variables such that E(ξi) = 0. The isometry property of the Itô integrals
ensures that

E[ξiξj ] =

∫ 1

0

mi(s)mj(s)ds = δi,j , (3.3)

where δi,j represents the Kronecker delta function. Consequently, ξi, i = 1, 2, ... are independent standard Gaussian
random variables.
The WZ approximation stands as a semi-discretization technique, involving the truncation of the spectral expansion of
Brownian motion as depicted in Equation (3.1) prior to any discretization in time. It’s important to note that various
forms of the WZ approximation exist, and in this study, we employ a specific orthogonal expansion of Brownian
motion, as described below:

WN (t) =

N−1∑
j=0

∫ t

0

mj(s)dsξj t ∈ [0, 1]. (3.4)

Now by taking a partition 0 = t0 < t1 < ... < tN−1 < tN = T = 1 and choosing a truncated complete orthonormal

bases mj
i (t), i = 1, 2, 3, ..., Nh in L2[tj , tj+1] for j = 0, 1, 2, ..., N we derive the following piecewise spectral expansion

from Equation (3.4):

WN (t) =

N−1∑
j=0

Nh∑
k=1

∫ t

tj

mj
k(s)dsξjk, (3.5)

where ξjk =
∫ tj+1

tj
mj
k(s)dWs. Let the orthonormal bases mj

k(t) in L2[tj , tj+1] be selected as trigonometric functions

defined as follows:

mj
1(t) =

1
√
tj+1 − tj

, mj
k(t) =

√
2

tj+1 − tj
cos
( (k − 1)π(t− tj)

tj+1 − tj

)
, k = 2, 3, ..., t ∈ [tj , tj+1]. (3.6)

Wuan in [19] showed that by choosing mj(t) as trigonometric functions the expansion (3.4) converges in a mean
square sense to (3.1). Consider a WZ approximation of X(t) in (2.1) as follows

XN
t = XN

0 +

∫ t

0

KH(t, s)b(XN
s )ds+

∫ t

0

KH(t, s)σ(XN
s )dWN

s , t ∈ [0, 1], (3.7)

where XN
0 = X0. The given equation is, in fact, an ordinary integral equation, offering a considerably simpler solving

process compared to Equation (2.1). In the subsequent section, we establish the mean square convergence of XN
t to

Xt and ascertain its convergence rate.
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4. Main results

Let N ∈ N and tj+1 − tj = h, j = 1, 2, ..., N − 1, with h = 1
N . Define Nh = dh−xe, where x ∈ R+ satisfies the

following inequalities,

x < min
{
H − 1

2
,

3

2
− 2H

}
for

1

2
< H <

3

4
,

x < min
{
H − 1

2
, 2− 2H

}
for

3

4
< H < 1.

(4.1)

For ease of presentation, it is important to note that throughout the remainder of this paper, the symbol C represents
a random constant. Importantly, this constant remains independent of h and may vary from line to line, simplifying
our notation. The subsequent theorem serves to demonstrate the regularity of both the solution (2.1) and the WZ
approximation (3.7).

Lemma 4.1. Let Xt and XN
t , t ∈ [0, 1] be the solution of (2.1) and (3.7) respectively. For s ∈ (tj , tj+1), j = 0, 1, ..., N ,

we have the following inequalities

E[|XN
s −XN

tj |
2] ≤ C1h

1
2−x,

E[|Xs −Xtj |2] ≤ C2h
2−2H ,

(4.2)

where C1 and C2 are some positive constants.

Proof. By Equation (3.7) we can write

XN
s −XN

tj =

∫ tj

0

[
KH(s, r)−KH(tj , r)

]
b(XN

r )dr +

∫ tj

0

[
KH(s, r)−KH(tj , r)

]
σ(XN

r )dWn
r

+

∫ s

tj

KH(s, r)b(XN
r )dr +

∫ s

tj

KH(s, r)σ(XN
r )dWN

r ,

therefore, by substituting the WZ approximation (3.5) we get

E
(
|XN

s −XN
tj |

2
)
≤ C

(
E
∣∣∣∣∫ tj

0

[KH(s, r)−KH(tj , r)] b(X
N
r )dr

∣∣∣∣2

+ E

∣∣∣∣∣
j−1∑
n=0

Nh∑
k=1

∫ tn+1

tn

[KH(s, r)−KH(tj , r)]m
n
k (r)σ(XN

r )drξjk

∣∣∣∣∣
2

+ E

∣∣∣∣∣
∫ s

tj

KH(s, r)b(XN
r )dr

∣∣∣∣∣
2

+ E

∣∣∣∣∣
Nh∑
k=1

∫ s

tj

KH(s, r)mj
k(r)σ(XN

r )drξjk

∣∣∣∣∣
2)

.

By applying Cauchy Schwarz’s inequality, Itô’s isometry, and relying on assumption A, we derive

E
(
|XN

s −XN
tj |

2
)
≤ C

(∫ s

0

[
KH(s, r)−KH(tj , r)

]2
dr

+

j−1∑
n=0

Nh∑
k=1

(∫ tn+1

tn

[
KH(s, r)−KH(tj , r)

]2
dr
)(∫ tn+1

tn

(mn
k (r))2dr

)
+ h

∫ s

tj

K2
H(s, r)dr + h

Nh∑
k=1

(∫ s

tj

K4
H(s, r)dr

) 1
2
(∫ tj+1

tj

(mj
k(r))4dr

) 1
2

)
.
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Based on Equations (2.6), we deduce

E
(
|XN

s −XN
tj |

2
)
≤ Ch2H + CNh

∫ s

0

[
KH(s, r)−KH(tj , r)

]2
dr + Ch

∫ s

tj

K2
H(s, r)dr

+ Ch
1
2Nh

(∫ s

tj

K4
H(s, r)dr

) 1
2

≤ C(1 +Nh)h2H + Ch sup
0≤s≤1

∫ 1

0

K2
H(s, r)dr + Ch

1
2Nh

(
sup

0≤s≤1

∫ 1

0

K4
H(s, r)dr

) 1
2

≤ C1h
1
2Nh ≤ C1h

1
2−x.

(4.3)

Now, let’s proceed to estimate E(|Xs −Xtj |2). Let b1(Xr) = b(Xr) + aHs
H− 1

2σσ′(Xr), so we can express

Xs −Xtj =

∫ tj

0

[KH(s, r)−KH(tj , r)] b1(Xr)dr +

∫ tj

0

[KH(s, r)−KH(tj , r)]σ(Xr)dWr

+

∫ s

tj

KH(s, r)b1(Xr)dr +

∫ s

tj

KH(s, r)σ(Xr)dWr.

Utilizing Cauchy-Schwarz’s inequality, Itô’s isometry, and assumption A, we conclude

E
(
|Xs −Xtj |2

)
≤ C

(
tj

∫ tj

0

|KH(s, r)−KH(tj , r)|2 dr + tj

∫ tj

0

|KH(s, r)−KH(tj , r)|2 dr

+ h

∫ s

tj

K2
H(s, r)dr +

∫ s

tj

K2
H(s, r)dr

)

≤ C

(∫ s

0

|KH(s, r)−KH(tj , r)|2 dr +

∫ s

0

[KH(s, r)−KH(tj , r)]
2

dr +

∫ s

tj

K2
H(s, r)dr

)
.

By using (2.5), (2.6) and the mean value theorem we get

E
(
|Xs −Xtj |2

)
≤ Ch2H + C(h+ 1)

∫ s

tj

r1−2Hdr ≤ C2h
2−2H .

Thus (4.2) is satisfied. �

In the following theorem, we show that the WZ approximation (3.7) is convergent to the solution of the stochastic
Volterra equation (3.4), and we will obtain the rate of convergence.

Theorem 4.2. Let Xt represent the exact solution of the stochastic Volterra equation (2.1) and XN
t be its WZ

approximation as defined in (3.7). Assuming that assumption A is satisfied, we can establish that

E
(
|XN

t −Xt|2
)

= O(hγ), (4.4)

where

γ = min {(2H − 1− 2x) , (3− 4H − 2x)} , for
1

2
< H <

3

4
,

and

γ = min
{

(2− 2H − x) ,
(
2H − 1− 2x

)
,
}
, for

3

4
< H < 1.

Proof. By subtracting (3.7) from (2.1) we deduce

XN
t −Xt = αN + βN ,
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where

αN (t) =

∫ t

0

KH(t, s)
[
b(XN

s )− b(Xs)
]
ds,

βN (t) =

∫ t

0

KH(t, s)σ(XN
s )dWN

s −
∫ t

0

KH(t, s)σ(Xs)dWs − aH
∫ t

0

KH(t, s)sH−
1
2σσ′(Xs)ds.

Assumption A, CauchySchwarz’s inequality and (2.5) yield

E
[
|αN (t)|2

]
≤ C

∫ t

0

K2
H(t, s)E

(
|XN

s −Xs|2
)
ds ≤ C

∫ t

0

s1−2HE
(
|XN

s −Xs|2
)
ds.

For the second term, i.e, βN , we can write

βN (t) = βN,1(t) + βN,2(t) + βN,3(t),

where

βN,1(t) =

N−1∑
j=0

∫ tj+1

tj

KH(t, s)σ(XN
tj )dWN

s −
∫ t

0

KH(t, s)σ(Xs)dWs,

βN,2(t) =

N−1∑
j=0

Nh∑
k=1

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

σ′(XN
u )
(∫ u

0

∂KH(u, r)

∂u
σ(XN

r )dWN
r

)
dudsξjk

− aH
∫ t

0

KH(t, s)sH−
1
2σσ′(Xs)ds,

βN,3(t) =

N−1∑
j=0

Nh∑
k=1

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

σ′(XN
u )
(∫ u

0

∂KH(u, r)

∂u
b(XN

r )dr
)

dudsξjk.

To estimate βN,1(t), we break it down into two components

βN,1(t) =

N−1∑
j=0

∫ tj+1

tj

KH(t, s)σ(XN
tj )[dWN

s − dWs] +

N−1∑
j=0

∫ tj+1

tj

KH(t, s)[σ(XN
tj )− σ(Xs)]dWs

= bN,1(t) + bN,2(t).

Breaking down bN,1(t), we can express it as:

bN,1(t) =

∫ t1

0

KH(t, s)σ(XN
tj )[dWN

s − dWs] +

N−1∑
j=1

∫ tj+1

tj

[KH(t, s)−KH(t, tj)]σ(XN
tj )dWN

s

+

N−1∑
j=1

∫ tj+1

tj

KH(t, tj)σ(XN
tj )[dWN

s − dWs] +

N−1∑
j=1

∫ tj+1

tj

[KH(t, tj)−KH(t, s)]σ(XN
tj )dWs

:=

4∑
i=1

biN,1(t).
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Assumption A and Cauchy-Schwarz’s inequality yield

E[|b1N,1(t)|2] = E
[∣∣∣ ∫ t1

0

KH(t, s)σ(XN
tj )dWN

s −
∫ t1

0

KH(t, s)σ(XN
tj )dWs

∣∣∣2]
≤ 2CE

[∣∣∣ ∫ t1

0

KH(t, s)σ(XN
tj )dWN

s

∣∣∣2]+ 2CE
[∣∣∣ ∫ t1

0

KH(t, s)σ(XN
tj )dWs

∣∣∣2]
≤ 2C

Nh∑
k=1

∣∣∣ ∫ t1

0

KH(t, s)m0
k(s)ds

∣∣∣2 + 2C

∫ t1

0

K2
H(t, s)ds

≤ 2C

Nh∑
k=1

(∫ t1

0

K2
H(t, s)ds

)(∫ t1

0

(m0
k(s))2ds

)
+ 2C

∫ t1

0

s1−2Hds

≤ 2C(Nh + 1)

∫ t1

0

s1−2Hds = 2C(Nh + 1)h2−2H ,

therefore

E[|b1N,1(t)|2] ≤ CNhh2−2H .

To estimate E[|b2N,1(t)|2], by assumption A we have

E|b2N,1(t)|2 = E

∣∣∣∣∣∣
N−1∑
j=1

Nh∑
k=1

∫ tj+1

tj

[KH(t, s)−KH(t, tj)]σ(XN
tj )mj

k(s)dsξjk

∣∣∣∣∣∣
2

≤ C
N−1∑
j=1

Nh∑
k=1

E

∣∣∣∣∣
∫ tj+1

tj

[KH(t, s)−KH(t, tj)]σ(XN
tj )mj

k(s)ds

∣∣∣∣∣
2

≤ C
N−1∑
j=1

Nh∑
k=1

(∫ tj+1

tj

|KH(t, s)−KH(t, tj)|2ds

)(∫ tj+1

tj

(mj
k(s))2ds

)
.

Since s ≤ t ≤ 1 and |s− tj | ≤ h, by simple calculation we get

|KH(t, s)−KH(t, tj)| ≤ C|s
1
2−H − t

1
2−H
j |+ C(s− tj)H−

1
2 .

Hence, employing the mean value theorem, we can deduce:

E|b2N,1(t)|2 ≤ C

2

N−1∑
j=1

Nh∑
k=1

∫ tj+1

tj

(s
1
2−H − t

1
2−H
j )2ds+ 2

N−1∑
j=1

Nh∑
k=1

∫ tj+1

tj

(s− tj)2H−1ds


≤ C

(
2Nhh

2 + 2Nhh
2H−1) ≤ 2CNh

[
h2 + h2H−1

]
.

For the estimation of b3N,1(t), by assumption A and the fact that
∫ tj+1

tj
dWn

s = ∆Wj = W (tj+1)−W (tj), we have

E[|b3N,1(t)|2] ≤
N−1∑
j=1

|KH(t, tj)|2σ2(XN
tj )E

∣∣∣∣∣
∫ tj+1

tj

dWN
s −

∫ tj+1

tj

dWs

∣∣∣∣∣
2

= 0.
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Finally, for the estimation of b4N,1(t), we employ a similar calculation as for b2N,1(t), and find

E|b4N,1(t)|2 ≤ C
N−1∑
j=1

∫ tj+1

tj

[KH(t, tj)−KH(t, s)]2ds

≤ 2C

N−1∑
j=1

∫ tj+1

tj

(s
1
2−H − t

1
2−H
j )2ds+ 2C

N−1∑
j=1

∫ tj+1

tj

(s− tj)2H−1ds

≤ 2C[h2 + h2H−1].

Therefore, we conclude

E[|bN,1(t)|2] ≤ CNh[h2H−1 + h2−2H ]. (4.5)

Now, to estimate bN,2(t), we can express it as follows:

bN,2(t) =

N−1∑
j=0

∫ tj+1

tj

KH(t, s)
[
σ(XN

tj )− σ(Xs)
]

dWs

=

N−1∑
j=0

∫ tj+1

tj

KH(t, s)
[
σ(XN

tj )− σ(XN
s )
]

dWs +

N−1∑
j=0

∫ tj+1

tj

KH(t, s)
[
σ(XN

s )− σ(Xs)
]

dWs

:= b1N,2(t) + b2N,2(t).

For b1N,2(t), we can use Lemma 4.1 and Equation (2.5) to obtain the following estimate:

E|b1N,2(t)|2 =

N−1∑
j=0

∫ tj+1

tj

K2
H(t, s)E

(
|XN

tj −X
N
s |2
)
ds ≤ Ch 1

2Nh

N−1∑
j=0

∫ tj+1

tj

K2
H(t, s)ds

≤ Ch 1
2Nh sup

0≤s≤1

∫ 1

0

K2
H(t, s)ds ≤ Ch 1

2Nh,

(4.6)

and

E|b2N,2(t)|2 ≤ C
N−1∑
j=0

∫ tj+1

tj

K2
H(t, s)E

(
|XN

s −Xs|2
)
ds

≤ C
∫ t

0

s1−2HE
(
|XN

s −Xs|2
)
ds.

(4.7)

From (4.5)-(4.7) we conclude

E
[
|βN,1(t)|2

]
≤ Chy−x + C

∫ t

0

s1−2HE
(
|XN

s −Xs|2
)
ds, (4.8)

where y = min
{

2H − 1, 2− 2H, 12
}

.

Now, we will estimate E[|βN,2(t)|2], for this aim we can decompose βN,2(t) into different terms as follows:

βN,2(t) =

7∑
i=1

βiN,2(t),
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where

β1
N,2(t) =

N−1∑
j=0

σ′(XN
tj )

Nh∑
k=1

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

(∫ tj

0

∂KH(u, r)

∂u
σ(XN

r )dWN
r

)
dudsξjk,

β2
N,2(t) =

N−1∑
j=0

Nh∑
k=1

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

[
σ′(XN

u )− σ′(XN
tj )
]( ∫ tj

0

∂KH(u, r)

∂u
σ(XN

r )dWN
r

)
dudsξjk,

β3
N,2(t) =

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

σ′(XN
u )
(∫ u

tj

∂KH(u, r)

∂u
mj
l (r)

[
σ(XN

r )− σ(Xr)
]
dr
)

dudsξjkξ
j
l ,

β4
N,2(t) =

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

[
σ′(XN

u )− σ′(XN
tj )
]

( ∫ u

tj

∂KH(u, r)

∂u
σ(Xr)m

j
l (r)dr

)
dudsξjkξ

j
l ,

β5
N,2(t) =

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

σσ′(Xtj )

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

∫ u

tj

∂KH(u, r)

∂u
mj
l (r)drdudsξjkξ

j
l

− aH
∫ t

0

KH(t, s)sH−
1
2σσ′(Xs)ds,

β6
N,2(t) =

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

σ′(XN
tj )

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

∫ u

tj

∂KH(u, r)

∂u
mj
l (r)

[
σ(XN

r )− σ(Xr)
]
drdudsξjkξ

j
l ,

β7
N,2(t) =

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

[
σ′(XN

u )− σ′(Xtj )
] ∫ u

tj

∂KH(u, r)

∂u
mj
l (r)σ(Xr)drdudsξjkξ

j
l .

For estimating β1
N,2(t), we can proceed as follows:

β1
N,2(t) =

Nh∑
k=1

Nh∑
l=1

σ′(XN
t1 )

∫ t2

t1

KH(t, s)m1
k(s)

∫ s

t1

(∫ t1

0

∂KH(u, r)

∂u
σ(XN

r )m0
l (r)dr

)
dudsξ1kξ

0
l

+

N−1∑
j=2

Nh∑
k=1

Nh∑
l=1

σ′(XN
tj )

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

(∫ t1

0

∂KH(u, r)

∂u
σ(XN

r )m0
l (r)dr

)
dudsξjkξ

0
l

+

N−1∑
j=1

Nh∑
k=1

j−1∑
n=1

Nh∑
l=1

σ′(XN
tj )

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

(∫ tn+1

tn

∂KH(u, r)

∂u
σ(XN

r )mn
l (r)dr

)
dudsξjkξ

n
l

= β1,1
N,2(t) + β1,2

N,2(t) + β1,3
N,2(t).

For estimating E
∣∣∣β1,1
N,2(t)

∣∣∣2 by assumption A, we obtain

E|β1,1
N,2(t)|2 ≤ C

Nh∑
k=1

Nh∑
l=1

[∫ t2

t1

|KH(t, s)||m1
k(s)|

∫ s

t1

(∫ t1

0

∂KH(u, r)

∂u
|m0

l (r)|dr
)

duds

]2
E[(ξ1kξ

0
l )2].
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By using Cauchy Schwarz’s inequality, mean value theorem and (2.8) we conclude

E
[
|β1,1
N,2(t)|2

]
≤ C

h2
N2
h

(∫ t2

t1

K2
H(t, s)ds

)(∫ t2

t1

(s− t1)

∫ s

t1

(∫ u

0

∂KH(u, r)

∂u
dr
)2

duds
)

≤ Ca2H
N2
h

h2

(∫ t2

t1

s1−2Hds
)(∫ t2

t1

(s− t1)

∫ s

t1

u2H−1duds
)

≤ CN2
hh

2.

Again by Cauchy Schwarz’s inequality and assumption A we get

E
[
|β1,2
N,2(t)|2

]
≤
N−1∑
j=2

Nh∑
k=1

Nh∑
l=1

[ ∫ tj+1

tj

|KH(t, s)||mj
k(s)|

∫ s

tj

(∫ t1

0

∂KH(u, r)

∂u
|m0

l (r)|dr
)

duds
]2

≤ C

h2
N2
h

N−1∑
j=2

(∫ tj+1

tj

K2
H(t, s)ds

)(∫ tj+1

tj

(s− tj)
∫ s

tj

h

∫ t1

0

(
∂KH(u, r)

∂u
)2drduds

)

≤ C

h
N2
h

N−1∑
j=2

(∫ tj+1

tj

s1−2Hds
)(∫ tj+1

tj

(s− tj)
∫ s

tj

∫ t1

0

(
r

u
)1−2H(u− r)2H−3drduds

)
,

mean value theorem implies that

E
[
|β1,2
N,2(t)|2

]
≤ CN2

h

N−1∑
j=2

1

j
h2 ≤ CN2

hh.

By applying similar arguments to E
[
|β1,3
N,2(t)|2], we have

E
[
|β1,3
N,2(t)|2] ≤ CN2

hh
2
N−1∑
j=1

j2−2H ≤ CN2
hh

2h2H−3 = CN2
hh

2H−1.

Consequently, we can deduce that

E
[
|β1
N,2(t)|2

]
≤ CN2

hh
2H−1 ≤ Ch2H−1−2x. (4.9)

In the same manner we can conclude

E
[
|β2
N,2(t)|2

]
≤ Ch2H−1−2x. (4.10)

Our next goal is to estimate E
[
|β3
N,2(t)|2

]
, where

β3
N,2(t) =

Nh∑
k=1

Nh∑
l=1

∫ t1

0

KH(t, s)m0
k(s)

∫ s

0

σ′(XN
u )
(∫ u

0

∂KH(u, r)

∂u
m0
l (r)

[
σ(XN

r )− σ(Xr)
]
dr
)

dudsξ0kξ
0
l

+

N−1∑
j=1

Nh∑
k=1

Nh∑
l=1

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

σ′(XN
u )
(∫ u

tj

∂KH(u, r)

∂u
mj
l (r)

[
σ(XN

r )− σ(Xr)
]
dr
)

dudsξjkξ
j
l

:= β3,1
N,2(t) + β3,2

N,2(t),
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by the mutual independence of all Gaussian random variables ξjk, k = 1, 2, ..., Nh, j = 0, 1, ..., N and by assumption A
we get

E
[
|β3,1
N,2(t)|2

]
≤ 2E

[∣∣∣ Nh∑
k=1

∫ t1

0

KH(t, s)m0
k(s)

∫ s

0

σ′(XN
u )
(∫ u

0

∂KH(u, r)

∂u
m0
k(r)

[
σ(XN

r )− σ(Xr)
]
dr
)

duds(ξ0k)2
∣∣∣2]

+ 2E
[∣∣∣ Nh∑
k 6=l=1

∫ t1

0

KH(t, s)m0
k(s)

∫ s

0

σ′(XN
u )
(∫ u

0

∂KH(u, r)

∂u
m0
l (r)

[
σ(XN

r )− σ(Xr)
]
dr
)

dudsξ0kξ
0
l

∣∣∣2]

≤ 2C

Nh∑
k=1

[∫ t1

0

|KH(t, s)||m0
k(s)|

∫ s

0

∫ u

0

∂KH(u, r)

∂u
|m0

k(r)|drduds

]2
E[(ξ0k)4]

+ 2C

Nh∑
k,l=1,k 6=l

[∫ t1

0

|KH(t, s)||m0
k(s)|

∫ s

0

∫ u

0

∂KH(u, r)

∂u
|m0

l (r)|drduds

]2
E[(ξ0k)2(ξ0l )2].

Applying Cauchy-Schwartz’s inequality, (2.10) and Fubini’s theorem we conclude that

E
[
|β3,1
N,2(t)|2

]
≤ C

h2
(N2

h +Nh)
(∫ t1

0

KH(t, s)

∫ s

0

KH(s, r)drds
)2

≤ C

h2
(N2

h +Nh)
(∫ t1

0

K2
H(t, s)ds

)(∫ t1

0

(∫ s

0

KH(s, r)dr
)2

ds
)

≤ C

h2
(N2

h +Nh)
(∫ t1

0

s1−2Hds
)∫ t1

0

(∫ s

0

KH(s, r)dr
)2

ds

≤ aH
C

h2
(N2

h +Nh)
(∫ t1

0

s1−2Hds
)(∫ t1

0

s1+2Hds
)

≤ C(N2
h +Nh)h2 = Ch2−2x.

For estimating E[|β3,2
N,2(t)|2], by (2.5), Cauchy Schwartz’s inequality, Fubini’s theorem, mean value theorem and by the

same arguments as E[|β3,1
N,2(t)|2], we get

E
[
|β3,2
N,2(t)|2

]
≤ CN

2
h

h2

N−1∑
j=1

(∫ tj+1

tj

s1−2Hds
)(∫ tj+1

tj

(s− tj)
∫ s

tj

r1−2Hdrds
)
.

Consequently,

E
[
|β3,2
N,2(t)|2

]
≤ CN2

hh
4−4H

N−1∑
j=1

1

j4H−2
.

As a result of these calculations, we deduce

E
[
|β3
N,2(t)|2

]
≤ Ch3−4H−2x for

1

2
< H <

3

4
,

E
[
|β3
N,2(t)|2

]
≤ Ch4−4H−2x for

3

4
< H < 1.

(4.11)

By the same calculations for E
[
|βiN,2(t)|2

]
i = 4, 6, 7 we get

E
[
|βiN,2(t)|2

]
≤ Ch3−4H−2x for

1

2
< H <

3

4
,

E
[
|βiN,2(t)|2

]
≤ Ch4−4H−2x for

3

4
< H < 1.

(4.12)
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We express the term β5
N,2(t) in the following manner

β5
N,2(t) =

4∑
j=1

ajN (t),

where

a1N (t) = aH

N−1∑
j=0

∫ tj+1

tj

KH(t, s)sH−
1
2

[
σσ′(Xtj )− σσ′(Xs)

]
ds,

a2N (t) =

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

σσ′(Xtj )
[ ∫ tj+1

tj

KH(t, s)mj
k(s)

(∫ s

0

KH(s, r)mj
l (r)dr −

∫ tj

0

KH(tj , r)m
j
l (r)dr

)
ds

− aH
∫ tj+1

tj

KH(t, s)sH−
1
2 ds
]
ξjkξ

j
l ,

a3N (t) = aH

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

σσ′(Xtj )
(
ξjkξ

j
l − 1

)∫ tj+1

tj

KH(t, s)sH−
1
2 ds,

a4N (t) =

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

σσ′(Xtj )
[ ∫ tj+1

tj

KH(t, s)mj
k(s)

∫ tj

0

mj
l (r)

(
KH(tj , r)−KH(s, r)

)
drds

]
ξjkξ

j
l .

From (2.5) and assumption A we conclude that

E
[
|a1N (t)|2

]
≤ C

N−1∑
j=0

∫ tj+1

tj

E(|Xs −Xtj |2)ds,

so, from Lemma 4.1, it follows that

E
[
|a1N (t)|2

]
≤ Ch2−2H . (4.13)

For the next term, the same reasoning as in E[|β3,1
N,2(t)|2] yields

E
[
|a2N (t)|2

]
≤ C

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

∣∣∣ ∫ tj+1

tj

KH(t, s)mj
k(s)

(∫ s

0

KH(s, r)mj
l (r)dr −

∫ tj

0

KH(tj , r)m
j
l (r)dr

)
ds

− aH
∫ tj+1

tj

KH(t, s)sH−
1
2 ds
∣∣∣2

≤ C
N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

∣∣∣ ∫ tj+1

tj

KH(t, s)
[ 1

h

(∫ s

0

KH(s, r)dr −
∫ tj

0

KH(tj , r)dr
)

ds− aHsH−
1
2

]
ds
∣∣∣2.

Cauchy Schwarz’s inequality, together with Equation (2.10) implies

E
[
|a2N (t)|2

]
≤ Ca2H

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

∣∣∣ ∫ tj+1

tj

KH(t, s)
[ 1

h

(
sH+ 1

2 − tH+ 1
2

j

)
− sH− 1

2

]
ds
∣∣∣2

≤ C

h2

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

∣∣∣ ∫ tj+1

tj

KH(t, s)
(
sH−

1
2 (s− tj+1)

)
ds
∣∣∣2

≤ C

h2

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

(∫ tj+1

tj

(s− tj+1)2ds
)(∫ tj+1

tj

K2
H(t, s)s2H−1ds

)
≤ CN2

hNh
2 ≤ Ch1−2x.

(4.14)
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Similarly, the independence of ξjk and ξjl , (2.5) and Cauchy Schwarz’s inequality assert that

E
[
|a3N (t)|2

]
≤ C

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

E(ξjkξ
j
l − 1)2

∣∣∣ ∫ tj+1

tj

KH(t, s)sH−
1
2 ds
∣∣∣2

≤ Ch
N−1∑
j=0

Nh∑
k,l=1,k 6=l

(∫ tj+1

tj

K2
H(t, s)s2H−1ds

)
≤ CN2

hNh
2 ≤ Ch1−2x.

(4.15)

Furthermore,

E
[
|a4N (t)|2

]
≤ C

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

∣∣∣ ∫ tj+1

tj

KH(t, s)mj
k(s)

∫ tj

0

mj
l (r)

[
KH(tj , r)−KH(s, r)

]
drds

∣∣∣2
≤ C

h2

N−1∑
j=0

Nh∑
k=1

Nh∑
l=1

(∫ tj+1

tj

K2
H(t, s)ds

)(∫ tj+1

tj

s
( ∫ s

0

[
KH(tj , r)−KH(s, r)

]
dr
)2

ds

≤ C

h2
N2
h

N−1∑
j=0

(∫ tj+1

tj

K2
H(t, s)ds

)(∫ tj+1

tj

s(s− tj)2Hds
)

≤ CN2
hh

2
N−1∑
j=0

j2−2H ≤ CN2
hN

3−2Hh2 ≤ Ch2H−1−2x.

(4.16)

From (4.13)-(4.16) we conclude that

E
[
|β5
N,2(t)|2

]
≤ CN2

hh
2H−1 ≤ C

(
h2H−1−2x + h2−2H

)
. (4.17)

Consequently, according to (4.9)− (4.12), and (4.17) we get

E
[
|βN,2(t)|2

]
≤ Chα, (4.18)

where

α = min
{

(2− 2H) ,
(
2H − 1− 2x

)
,
(
3− 4H − 2x

)}
for

1

2
< H <

3

4
,

and

α = min
{

(2− 2H) ,
(
2H − 1− 2x

)
,
(
4− 4H − 2x

)}
for

3

4
< H < 1.

Finally, the term E
[
|βN,3(t)|2

]
can be handled in the same way as follows

βN,3(t) =

Nh∑
k=1

∫ t1

0

KH(t, s)m0
k(s)

∫ s

0

σ′(XN
u )
(∫ u

0

∂KH(u, r)

∂u
b(XN

r )dr
)

dudsξjk

+

N−1∑
j=1

Nh∑
k=1

∫ tj+1

tj

KH(t, s)mj
k(s)

∫ s

tj

σ′(XN
u )
(∫ u

0

∂KH(u, r)

∂u
b(XN

r )dr
)

dudsξjk

= β1
N,3(t) + β2

N,3(t).
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So we have

E
[
|β1
N,3(t)|2

]
≤ C

Nh∑
k=1

[ ∫ t1

0

|KH(t, s)||m0
k(s)|

∫ s

0

(∫ u

0

∂KH(u, r)

∂u
dr
)

duds
]2

≤ CNh
h

[ ∫ t1

0

|KH(t, s)|
∫ s

0

∫ u

0

∂KH(u, r)

∂u
drduds

]2
≤ Ca2H

Nh
h

(∫ t1

0

K2
H(t, s)ds

)(∫ t1

0

(

∫ s

0

uH−
1
2 du)2ds

)
≤ CNh

h
h2−2H

(∫ t1

0

s2H+1ds
)

= CNhh
3,

and

E|
[
β2
N,3(t)|2

]
≤
N−1∑
j=1

Nh∑
k=1

[ ∫ tj+1

tj

|KH(t, s)||mj
k(s)|

∫ s

tj

(∫ u

0

∂KH(u, r)

∂u
dr
)

duds
]2

≤ CNh
h

N−1∑
j=1

[ ∫ tj+1

tj

|KH(t, s)|
∫ s

tj

∫ u

0

∂KH(u, r)

∂u
drduds

]2
≤ Ca2H

Nh
h

N−1∑
j=1

(∫ tj+1

tj

K2
H(t, s)ds

)(∫ tj+1

tj

(

∫ s

tj

uH−
1
2 du)2ds

)

≤ CNh
h

N−1∑
j=1

(∫ tj+1

tj

K2
H(t, s)ds

)(∫ tj+1

tj

(sH+ 1
2 − tH+ 1

2
j )2ds

)
.

By the mean value theorem we deduce

E
[
|β2
N,3(t)|2

]
≤ CNhh3

N−1∑
j=1

j1−2H(j + 1)2H−1 ≤ CNhh3N3−2H ≤ CNhh2H = Ch2H−x,

consequently, we obtain

E
[
|βN,3(t)|2

]
≤ CNhh2H = Ch2H−x. (4.19)

Finally, by applying Equations (4.8), (4.18), and (4.19) we conclude

E
(
|XN

t −Xt|2
)
≤ Chγ + C

∫ t

0

s1−2HE|XN
s −Xs|2ds,

where

γ = min
{

(2− 2H − x) ,
(1

2
− x
)
,
(
2H − 1− 2x

)
,
(
3− 4H − 2x

)}
, for

1

2
< H <

3

4
,

and

γ = min
{

(2− 2H − x) ,
(1

2
− x
)
,
(
2H − 1− 2x

)
,
(
4− 4H − 2x

)}
, for

3

4
< H < 1.

By using Gronwall’s lemma we get

E
(
|XN

t −Xt|2
)
≤ Chγ ,

where

γ = min {(2H − 1− 2x) , (3− 4H − 2x)} , for
1

2
< H <

3

4
,
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and

γ = min
{

(2− 2H − x) ,
(
2H − 1− 2x

)
,
}
, for

3

4
< H < 1,

which is the desired conclusion. �

5. Numerical experiments

In this section, we discuss the implementation of the numerical method (3.7) by providing an example, and we
present the theoretically obtained results in numerical form.

Example 5.1. Consider the following integral equation

Xt =

∫ t

0

KH(t, s) sin(Xs)ds+

∫ t

0

KH(t, s) cos(Xs)dWs, t ∈ [0, 1], (5.1)

where Wt denotes Brownian motion and KH(t, s) is a deterministic kernel given by (2.4).

In Figures 1 and 2, we have compared the results obtained from the numerical method with the theoretical results.
To achieve this, we obtained the mean square errors by averaging over 1000 independent Brownian paths over [0, 1]
and as a reference solution, we used numerical approximation with the step-size 2−13.

In 1 we obtained the results with H = 0.6, Nh = dh−xe with x = 0.05 and apply the numerical method (3.7) with
64, 128, 258, and 512 steps. From Theorem 4.2 we conclude

E
(
|XN

t −Xt|2
)

= O(h0.1). (5.2)

We have plotted the best linear approximation (least squares) of the mean square errors from the numerical data and
compared it with the line obtained from the theoretical outcome, whose slope is 0.1. Clearly, Figure 1 confirms that
the numerical results from the Wong-Zakai method closely match the theoretical results. Moreover, Figure 2 shows
the numerical results with the Hurst parameter H = 0.8 and x = 0.1. In this case, from Theorem 4.2 we conclude

E
(
|XN

t −Xt|2
)

= O(h0.3). (5.3)

In Figure 2, we have compared the best linear approximation (least squares) of the mean square error from the
numerical data with a linear line having a slope of 0.3. Clearly, this figure confirms the obtained theoretical results.
It should be mentioned that we have used the Trapezoidal rule for the numerical integration.
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Figure 1. Mean square(MS) errors of the Wong-Zakai approximation for Hurst parameter H = 0.6
for Example 5.1.
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Figure 2. Mean square(MS) errors of the Wong-Zakai approximation for Hurst parameter H = 0.8
for Example 5.1.
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[1] M. Berger and V. Mizel, Volterra equations with Itô integrals I, J. Integral Equ., 2(3) (1980), 187-245.
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