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Abstract -

This paper delves into the identification of upper and lower solutions for a high-order fractional integro-differential
equation featuring non-linear boundary conditions. By introducing an order relation, we define these upper and
lower solutions. Through a rigorous approach, we demonstrate the existence of these solutions as the limits of
sequences derived from carefully selected problems, supported by the application of Arzela-Ascoli’s theorem. To
illustrate the significance of our findings, we provide an illustrative example. This research contributes to a deeper
understanding of solutions in the context of complex fractional integro-differential equations.
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1. INTRODUCTION

Recently, the theory of fractional calculus has been developed by several researchers in this field [4, 7, 10, 23].
It appears in several real-life problems such as: viscoelasticity, fluid mechanics, biology, population models, signals
processing, and it can be used to describe each real-life problem with memory effect [16, 17, 19, 24].

Fractional differential equations appear as a fundamental tool for modeling certain real-world phenomena with
memory effect (see [18, 19, 25]).

In [20], Elyas Shivanian et al. investigated the existence and uniqueness of solutions to the following class of
nonlinear high-order fractional integral-differential equations:

oD u + f(f K(t,8)f (s,u(s),u/(s),u"(s))ds = —g (t,u(t), v (t),u'(t)), te€(0,1), 3<a<d4,
u(0) = u/(0) = v’(0) = 0,
u(l) = )\fol u(s)ds.

where (Dj* represents the left Rieman-Liouville fractional derivative.

In [11], the authors studied with more details the existence of extremal solutions for coupled systems of nonlinear
fractional differential equations of the following class:

{ DEYu(t) = wi (t,ult),v(t)), ula) = uq,

DEY(t) = walt,u(t),v(t)), v(a) = va, t€J:=ab]

with “D%" is the 9-Caputo fractional derivative of order a € (0, 1].
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In light of the findings mentioned earlier, this endeavor is driven by the desire to expand upon the aforementioned
challenges. Specifically, we aim to address a more generalized form of the fractional integro-differential equation,
represented as follows:

CDngw(t) = (t,w(t),cpgiw(t), .. .,CDng(t)) + Y 9t w(t), tel=(0,1), n, meN,
v>0,0<0;, <m,t=1,...,n,

b0 <w(0), foa w(r)dr, fﬂl w(7’)d7) =0, 0<a<pB<l,

#; (w9 (0),0) (1)) =0, j=1,...,m—1.

(1.1)

where cDggw(.) designates the Caputo fractional derivative of order m —1 < p < m, Z}, represents the Riemann-
Liouville operator of fractional order v > 0, ¢ : R — R, 4, ¢; : R — R, j=1,...,m—1,and ¢ : IxR""! — R
are given functions.

Our primary objective is to explore the existence of upper and lower solutions for this problem. Furthermore, we
introduce an order relation to precisely define these solutions. Our results are predicated on the existence of upper
and lower solutions as the limits of solution sequences derived from carefully selected problems, with Arzela-Ascoli’s
theorem providing the necessary theoretical framework. To corroborate our findings, we present an illustrative example
at the end of our study.

The references [1-3, 5-9, 12-15, 21, 22] provide a strong foundation and support for the research conducted in
this paper. They collectively contribute to the understanding of fractional caleculus, boundary value problems, and
the development of methodologies for addressing the challenges posed by fractional integro-differential equations with
nonlinear boundary conditions.

2. PRELIMINARIES

We begin by recalling some definitions and fundamental notions on fractional calculus used to construct our results.

Definition 2.1 ([16]). For h € L[0,1], we define the left fractional integral of order v > 0 of Riemann-Liouville as

follows: .
orh(t) = ﬁ/ﬂ (t — 1) h(r)dr.

Let m € Nand m — 1 < u < m. we recall the following definition:

Definition 2.2 ([16]). The left Caputo fractional derivative for a function h € AC™ '[0,1] of order  is defined as
follows

1 t
CDYeh(t)= [ =t ey

T(m —u)

where, I' represents the Gamma function of Euler.
Lemma 2.3 ([26]). We have

IV [ODL ()] = h(t) + a0 + art + ast® + -+ a1 t™ L,

forar € Rand k=0,1,2,...,m—1.

As a consequence, we have the following result.
Corollary 2.4. If h € AC[0, 1], the following problem

{CDg+w(t) =h(t), tel, pe(m—1m),
w9 (0) = 5, j=0,...,m—1.

has a unique solution w € AC™ 1[0,1] given as follows
m—1

w(t) = T h(t) + 3 By,
3=0

(=)=
E)NE
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3. MAIN REsuULTS
Firstly, we present some useful results.

Lemma 3.1. If h € AC[0,1], the following problem

D wit) = h(t), tel pem—1m],
w(O):/ w(r)dr + 70, a € (0,1),

0
w9 (0) = ;, j=1....,m—1

has a unique solution w € AC™ *[0,1] given as follows

m—1 m—
AR RS SETPE AT
Jj=1 J=1

1
11—«

w(t) = T h(e) +

Proof. By applying Z}y, on both sides of first equation of (3.1), we have
w(t) = T4, h(t) + Zaj . a;€R for j=0,1,...,m~1.

By applying first derivative on both sides of above equation, we get

m—2

w'(t) =T h(t) +ar+ Y (j+1Dajtd.
j=1

Then, we obtain a; = w'(0) = ;.
Now, we apply first derivative on both sides of (3.3), we obtain

2a9 = w(2)(0) = 9.

By induction, we have
jla; = wP(0) = v, for j=1,2,...,m—1.

Then, equation (3.2) becomes

w(t) = T h(t) + ao + Z %tj
j=1 !

let us integrate both sides of equation (3.4) on [0, @], we have

/ w(t)dt = I h(a)
0

Now, form (3.1) and (3.5, we obtain

m—1

j=1

]+1

a m—1

w(O):(Io:/ ()d7’+70—16f_1h +aa0+z
0

Jj=1

Which implies that

1 , :
ag = m Igjlh(a) + - BE ot + Y

t).

(3.1)

(3.3)

(3.4)
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By substitution into the equation (3.4), we get

1 m—1 m—
o= (7t + 5 e ) - 5 B
Jj=1 Jj=1
From above equation, we can easily fall back on problem (3.1). ]

Applying the same approach, we have the following lemma

Lemma 3.2. If h € AC[0,1], the following problem

CDE, wit) = h(t), el pe (m—1,ml,
1
wm=/wmm+%,ﬂaam
B
w9 (0) = ;, ji=1,....,m—1.

has a unique solution w € AC™ 1[0,1] given as follows

m—1
w(t) = 5 |25 h) - 257 0(s) +

(1-p7+Y) + Z tJ + T, h(t).

j=1

Let us introduce the following relation:
For z, y € AC'™|0,1]

xty@(:v(j)Zy(j) on [0,1], ijO,...,m).

It easy to verify that = define an order relation on AC"™ [0, 1].
Note that

(CDg+x > CD0+y on [0,1], Vuel0,m])= (x(j) >49 on [0,1], Vj= 0,...,m> .
Inversely, suppose that
2@ >¢@ on [0,1], Vj=0,...,m.
For p € [0,m]. Let k € (0,m) be such that p € (k, k + 1], we have
DY a(t) = T D () > CIptH Ty () = ODl y(t), Ve I
Therefore,
Ty s (x(j) >49 on [0,1], Vj= 07...,m) (CD6‘+$ > CDO+y on [0,1], Vue0,m]).

Lemma 3.3. Let w € AC™ '[0,1] such that

C’D()-%—w()zov ) tEI,,uG(mfl,m],
w(0) — / w(T)dT — / w(r)dr >0, 0<a<p<l, (3.6)
0 B
w9 (0) >0, j=1,...,m—1.
Then w > 0.

(=)=
E)NE
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Proof. From (3.6), we have

CDE w(t) = CDL " wm(t) >0, Vel
w™=1(0) > 0.

Using Corollary 2.4 and applying CI(‘)‘J: ™+1 6n both sides of first inequality of above problem, we have

w™ V() —w™Y(0) >0, Vtel

Not that 4 —m+1 € (0,1).
Then, we get

w™=D(t) > w™=1(0) >0, Vtel,
w™=2)(0) > 0.

Likewise, by applying CI(%+ on both sides of first inequality of above problem, we get

Similarly, we get by induction

w(j)(t) >0, vVtel, forj=1,...,m—1.

And we have
w'(t) >0, tel,

a 1
w(0) _/0 w(T)dT—/B w(r)dr > 0. (8.7)

By applying “Z}, on both sides of first inequality of (3.7), then integrating the obtained inequality on (0,] and on
[8,1], we get

w(t) —w(0) >0, tel,

s w(r)dr — aw(0) > 0,

w(r)dr — (1 = B)w(0) = 0,

h
/

w(0) — /004 w(T)dT — //31 w(T)dr > 0.
Hence,

w(t) > w(0), tel,
(8 — a)w(0) > 0.

which means that w(t) > 0 on I.
Consequently, w = 0 on I.

Definition 3.4. Let u € AC™V(0,1], p € (m —1,m).
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(1) w is said to be an upper-solution of (1.1) if it satisfies
D w(t) > ¢ (t,wt), “DIiw(t), ..., DIrw(t)) + T4t w(t), teT,

a 1
oo (w(O),fO w(r)dr, fB w(T)dT) >0, (3.8)
b; (w(j)(O),w(j)(l)) >0, ij=1,...,m—1
(2) w is called an lower-solution of (1.1) if it satisfies the following problem
“Dh.w(t) < ¢ (t,w(t), DJiw(t),. .., Dizw(t)) + Iy vt w(t), tel,
do (w(0), [ w(r)dr, f; w(r)dr) <0, (3.9)
b5 () (0), w9 (1)) <0,

j=1...,m—1

In the rest of this paper, we assume that w, is an upper-solution and w; is a lower-solution of (1.1), and that
We, >~ WY

Now, we cite assumptions used to present our result:

(A1) For w e AC™7Y(0,1), ¢ (., w, DIt w, ..., “DIrw) € AC[0,1], and for z, y € AC™ V[0, 1]
=y = o (t,e(t), DY alt),.... D)) > o (t,y(t), D y(t), . L., “Dgry(®) , Ve € 1.

(Az) v be a continuous functions such that, for z, y € AC™~ V[0, 1]

vy =9 (tzt) =9 Ey), Vel

(A3) ¢5,7=1,2,...,m—1 are continuous functions, and there exists n; <0, §; <0, j =1,2,...,m — 1 such that,
for z, & € wl(j)(O),ng)(O)}7 Y,y € [wl(j)(l),ng)(l)}

(:L’Sirandysﬂ):>¢j(x,y)*¢j(f,ﬂ)2%(xff)+§j(y*17)7
J

for all j € {1,2,...,m — 1}.
(A4) ¢ is a continuous function, and there exists ny < 0, &, po < 0, such that 79y, nopo > 1, and for z, & €

[wi(0), wu(0)], y, § € [/Oa wy(7)dr, /Oa wu(T)dT] and z, 7 € [/ﬁl wy(7)dr, /ﬂl wu(T)dr] .

(:USfcandyggandzgé)ﬁqﬁo(%y,z)—qﬁo(&gj,é)>_—1(x—a~c)+§0(y—g])+p0(2—2)

7o
Now, we are in a position to present the following result.

Theorem 3.5. Suppose that assumptions (A1) — (As) are satisfied. Then there exist s, 4s € [wi, wy] lower and
upper-solutions of (1.1) respectively. In addition, there exist two sequences (jWk)g>g, (uWWk)p>o © (Wi, wy], one is
decreasing and the other is non-decreasing such that: B B

VYue [0,m—1], “Diwy — “Dys and Dy, ywi — Dy ys as k — oo,
uniformly on I.

Proof. Let jwg = w; and 4wy = wy,.
For k > 1, we construct (jwg),~, and (ywg),~, as unique solutions of

Dl w1 (1) = ¢ (£ 0w (), “DIL1wg(0), ., “DGL 1wk (8)) + T ot rwg (1), tel k>0,
@ @ @ 1

1wr41(0) */ 1w 1(T)dT = Jwi(0) */ 1w (T)dT + nogo (lwk(o)v/ zwk(T)d‘n/ﬂ
0 0 0

zw;?ll(o) = zw;(cj)(o) +njd; (zw;iﬂ(o):zw;(cj)(l)) ;

l’wk(T)dT> 5 (310)

el
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and
cDg+uwk+1(t)1: o (1 wwn (@), Cng_uwk(t),l. DI wwn(t)) + Tt i (1)), 1 tel k>0,
wWk+1(0) _/ﬁ wWh41(T)dT = wi(0) —/5 wWi (T)dT 4+ nodo (uwk(()),/o uwk(T)dT,/ﬂ u’wk(T)dT) , (3.11)
w4 (0) = 0) + ;65 (w0, wwf (1)), j=1ym =1

respectively.
Note that, the existence and uniqueness of these two sequences are ensured by Lemmas 3.1 and 3.2.
Now, let us prove that

Wy = WO Z W1 7= " 7 Wk & qWh1 2 000 2 (Whi1 Z (WE 2 -0 2 (W1 2= (Wo = W (3.12)

From (3.11), we have

D Lwi(t) = ¢ (t, wwo (1), “DY L wwo(t), . .- CDgﬁuwo(t)) + Iy (¢, wwo(t)), tel, k>0,
1 1 e 1
wn® = [ (w)dr = wwo(®) ~ [ wwn(r)dr +moo (uwo(O), [ wwomar, | uwo(ﬂdr) , (3.13)
s s 0 s
w0 (0) = ww (©0) + ;85 (o (0), v (1), j=1.,m—1

Note that ,wo = w,, is an upper-solution of (1.1), then it satisfies
°D¥_Lwo(t) > @ (t, wwo (1), “DYL wwo(?), ..., CDgguwo(t)) + T Pt wwo() = DA, wuwn (), teT,
%o (uw()( ) / " swo(ryar, [ wo(riar) >0, (3.14)
95 (wf”(0), uul (1) =
(

Let x, = ywo — yw1. From

“om\

3.13) and (3.14), we get

CDg+Iu(t) 2 07 te Iv
1 [eY 1

xu(o) - / :L’u(T)dT = 7770¢0 (u’U)O(O),/ qu(T)dT7/ uWO(T)dT) > 07 (315)
B 0 B

27 (0) = =065 (ww(0), vl (1)) = 0. j=Lm—1,

Note that “Df, x,(t) = CDg‘I(m_l)xﬁm_l)(t) and u — (m —1) € (0,1).

D on both sides of first inequality of (3.15), we get

20 (t) > 0,
z0"2(0) > 0,

Then, by applying I(‘)ﬁr_ (m—

and by applying Ié+, we obtain
("2 () = 2" (0) 2 0,

which means that x&m_z) >0on l.
Repeating the same procedure, we obtain by induction

xgj)Z()onI, forj=1,2,...,m—1.

And we have
! (3.16)

(&)
ENE
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We apply Ié+ then we integrate on [8, 1] both sides of first inequality of (3.16), we get
Xy () — 24,(0) > 0,
1
[ wutryir = (= Ba) 20,
B

24,(0) — /ﬁ Xy (T)dT > 0.

Therefore,
scgj) >0onl, forj=0,1,....m—1<x,>=0o0nl.

So, wwo = 4wy on 1.
From (3.13) and according assumptions (A;) and (As), we obtain

CDg+ uwW1 (t) =@ (ta wWo (t)a CDg}rqu(t% RN cpgiuwo (t)) + Ig+,l/}(ta qu(t))
> ¢ (t,uwi (1), “Dgtqwi(t), ..., “Dyrywi(t)) + iy h(t, ywi (t)).

And using assumption (Ay4), we get

bo (uwl(o),/oa ww1(7)dr, /; uwl(T)dT>

> o <uwo<o>, / " o (r)dr, /ﬁ 1 uw()(r)dT) = L (w1 (0) — wwo(0))

Mo

+ &o (/Oa wwi(T)dT — /Oa uwo(T)dT) + po (/ﬁl ww1 (T)dT — /ﬁl uwo(T)dT)

= & /Oa (wwo(T) — wwi (7)) d7 + (7710 - po) /ﬁl (wwo(T) — wwi(7)) dr
> 0.

Using (3.13) and assumption (A3), we obtain

85 ()0 (1) 2 65 (uo 0) sl (1)) — - (L0l (0) — ) 0))

j
& (vl (1) -l (1))
==& (w1 = (1))
> 0,

forall j € {1,2,...,m —1}.
Form (3.17)-(3.19), we deduce that ,w; is an upper-solution of (1.1).

We repeat the same procedure for ,w; — ,wsz, we prove that ,w; > ,we and ,ws is an upper-solution of (1.1).

Similarly, we get by induction
Wy = 4 Wo t wW1 t w W2 i t w Wk i wWk+1-

In a similar way for the sequence ;wg. From (3.10), we have

eDEjwi (t) = w( 1wo(t), “DIL wo (b), ..., “D2 ywo (t )) + T, p(t, wo (D)), tel,
@ o «@ 1
jwi (0 qwi (7)dT = jwo(0) — / 1wo (T)dT + nodo (zwo(o)ﬁ/ zwo(T)dTv/ ZWO(T)dT) )
0 0 0 B8
<”< 0) = 1w (0) +my 5 (1w (0), 10§ (1) J=1m— L

(=)=
E)NE

(3.17)

(3.18)

(3.19)

(3.20)
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Note that jwo = w; is a lower-solution of (1.1), then it satisfies
“Diiwo(t) < ¢ (t,IWO(t),CDgizwo(tL »“Dyiwo(t )) + Iy p(t wo(t)) = “Diwi(t), te,

%Qm@ﬁﬂmmmAmeﬂga

¢ (lwéj)(o)v lwéj)(1)> < 07 j=1...

Let x; = jwp — jw;. From (3.20) and (3.21), we get
D 2(t) < 0, 1
21(0) f/ 21 (F)dr = —no0do (le(O),/ lwo(T)dT,/B lwo(T)dT) <o,
0 0

2(0) = =ny6; (10§ (@), 10§ (1)) <o, i=l..,m-1

(m=1 41 both sides of first inequality of (3.22), we get

2" V() <0,
2" (0) < 0.

We apply Igf

and by applying Ié+, we obtain
acl(m_Q) <Oonl.
Similarly, we obtain by induction
xl(j) <0onl, forj=1,2,...,m—1.
And we have

i <0,
x1(0) — / x)(T)dT < 0.
0
We apply Ié+ then we integrate on [0, ] both sides of first inequality of (3.23), we get
zi(t) — 71(0) <0,
| autrdr — o) <o
0 (0%
xl(O) —/ ZL’l(’T)dT S 0.
0
Therefore,
2P <oonl, forj=01,...,m—1

So, jwy = jwg on 1.
From (3.20) and according to assumptions (A;) and (Az), we obtain

“Df i (t) < @ (t, w1 (), “Dgriwi (t), .. ., “Diiiwn () + Lgs o (t, iwn (1))

And using assumption (Ay), we get

o (lwl( ), /Oalwl(T)d7'7 /Blzun(f)dT) < <7710 —60) /Oa (1wo(T) — w1 (1)) dr

—po /ﬁl (1wo(T) — 1w1(7)) dr

<0.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Using (3.20) and assumption (A3), we obtain
65 (1080, 10 (1)) <~ (1§ (1) = 1wl (1)
<0, (3.26)

forall j € {1,2,...,m —1}.
Form (3.24)-(3.26), we deduce that ;w; is an lower-solution of (1.1).
By induction, we obtain

IWh1 2 (W 77 -+ 22 W1 27 Wy = W
Now, let us prove that
uwWEk b |WE, for k > 1. (327)

Denote by z = ,w; — jw;.
From assumptions (A;) and (As), we get

Dy, a(t) = ¢ (t,wwo(t), “Dgtuwo(t), .., “Doiuwo(t)) — @ (£ 1wo(t), “Dgtiwo(t), .. , Doy iwo(t))

+ Iy (t, wwo(t)) — +¢( 1wo(t))
> 0.

From (3.13),(3.20) and using assumption (A4), we have

0~ [ (7 + [ o = ) = ) - " wile)dr + [ oty

) {d)o <lw0(0)v/0alwo(7')d7', /ﬁllwo(T)dT>

6o (w®), | oy, | i )]
> —//; qu(T)dT—f—/Oalwo(T)dT

11060 ( /0 " wo(r)dr — /O " le(T)dT)

T 70po ( /B Cwo(r)dr /ﬂ 1 lwo(T)dT> .

Since ,wg = jwe and n9&p, nopo = 1, then we get

[ «@ 1 1
z(0) > / wWo(T)dT —/ ywi (7)dr —|—/ ww1(T)dT —/ jwo(7)dr.
0 0 8 B
Then, we obtain
@ 1
z(0) — / z(T)dr — / x(r)dr > 0,
0 B

because ,wqg > ,w1 and jwg < jwi.
From (3. 13) (3.20) and using assumption (Asz), we have
)

D(0) = (sl (©) = 1w ©) =n; [6; (10§ 0,1 (V) = 65 (ww”(0), w0 (1))]

> 0y (w (1) = 1wl (1)
>0, j=1...,m—1
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We therefore have the following system:

Dy, x(t) >0, tel,
« 1

z(0) — / x(7T)dr — / x(r)dr >0, (3.28)
0 B

w(j)(O)ZO, j=12...,m—1.

Then, according to lemma 3.3, x = 0. Which means that ,w; > jw;.
By induction, we get

wWE = Wk, YV E>0.

Thus, the property (3.12) is proved.
Which entails that sequences (,wk);~q and (jwy),~, are uniformly bounded and uniformly equicontinuous.
According to the Arzela-Ascoli’s theorem, there exist two functions ;s, s € [jwo, ,wp] such that

kli)rfoo °Dljwy = Djy,ys  and kEr—iI-loo D, wwi, = DY ys, Ve [0,m— 1],

uniformly on I. Moreover, ;s and , s satisfy problem (1.1).

We only have to show that ,s and ;s are upper and lower-solutions of (1.1), respectively.
Let w € [;wo, wWwo] be a solution of (1.1).
we have ,wp = w > jwp. And by applying (A1) — (As), we get

cDg+uw1 > C’Dg+w > CDgle. (3.29)

Using (A4), we have

wwf(0) = ) (0) +my6; (wf(©),uwf” (1))

> w@(0), (3.30)

forj=1,...,m—1.
Similarly, we have
o (0) = 1w (©) + s (65 (106 (0). 10" (1)) = 65 () (0). 0P (V)]
< w(0) = ni&; [w (1) — g’ (1)]

< w9(0), (3.31)

forj=1,...,m—1.
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Using assumption (A3), we get

L (0) — /5 " ws(7)dr = o 0) — /B (P — [¢ (w<o>, | wtnn /B 1 w(T)dT)
—¢o (u’wo( )s /00‘ wwo(T)dT, /61 uwo(T)dT)]
> w(0) — /ﬁl wwo(T)dT + 0o </00‘ wwo(T)dT — /0CY w(T)dT)

+ 10p0 </ﬁl wWo(T)dT — /Bl w(T)dT)

1
> w(0) /ﬁ w(T)dT.

And from inequality (3.29), we can obtain
1

/ v (D)dr — (1 — B)uwn (0) > / w(r)dr — (1 B)w(0).
B

B
Then, from above given expressions, we get

ww1(0) > w(0). (3.32)
similarly, we have

1w (0) < w(0). (3.33)
So, form (3.30)-(3.33), we get

wW1 Z W Wy
By induction we prove that

WW Z W 2w, Yk > 2.

Therefore,

usS = lim w Wk =w = lim W = S.
k—+4o00 k—4o00

Which completes the proof. O

Example 3.6. Consider the following problem:

5 24 2 32 5 175\/> 2 1
D2 (t) =14 = 5 2243 _ w(t Zepd qy(t),
o w(t) +ﬁ\[ 3\/»2 \/» 3 t5 ()w()+7 o w(t)
1

1 75 =
+I2 (w( )— 12+ 5t+30t2 — 20t3 +?t7), tel,

1

w?(0) = 3/04 w(r)dr +3/: w(r)dr

2

(3.34)

w’(0) = %w’(l) + i,

(w")? (0) = w" (1) — 2w (0) + 2.

The problem (3.34) can be abstracted into the problem (1.1), where
24 2 4 32 5 1T5m, L2

— V- —=t2 — —t t —w(t D
\/E‘[ Vi vr 32 +6()w()+7 o),

1 75 -
Wltr) = —12+ St + 306 - 2013 + Eﬁl +z,

f(t w, w’ °D0+w) =1+
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and
2 1 1 2
¢0(5177yvz):17 73y7327 ¢1(I7y):x7§y717 ¢2(I7y):‘r +2I7y72
Note that assumptions (A1) — (A4) are satisfied with
__1. - 1 __1. & = —3; 5__1. & =-1 d - _3
770_27 m = ) n2_41 0 — ’ 1_8, 2 = an Po = .

We used Maple to determine a lower and upper-solutions in order to construct sequences (ywg) ;> and (W)~ We
got

1
rwo(t) =0 and o (t) =12 — 5t —306° + 2013 .
as lower and upper-solutions, respectively.

Let us construct sequences (uwk)kzo and (lwk)kZO'
Form (3.10) and (3.11), we have to solve:

5 24 2 3 32 5 175 2. 1
Dypuwrt1(t) =1+ ﬁ\/i — ﬁtz — ﬁtz 3{ Gka(t) wwi (t) + ?CD(;‘Jruwk(t)
1 1 _
+I2, (uwk(t) —124 §t+ 3062 — 20¢3 + EtTl) ,k>0,tel,
1 1 3 [i 5 (1

s (0) 7/1 w1 (D)7 = 2w (0) + wwk(0) - 5/ g (r)dr — 5/1 v (F)dr, (3.35)

2 0 2

1 1
w1 (0) = guwi(l) = 7

21 5 1 1 1
uw§6’+1(0) = T(uwg) (0) + Euwg(ﬂ) + Zuw%(l) + 5

and
24 2 3 32 5 175 1 2

CD2 w1 (t) = 14+ —=Vit— —=t2 — —12 — 1TVT s —jwg (1) wy, (t) + 7CD4 Jw (t)

NG ENZ N 2 7%
1 1 75
+I2, (lwk(t)—12+5t+30t2—20t2 + 2t ) k>0,tel,

3 1
" g (r)dr — 5/1 1w (7)dr, (3.36)
2

NG

1 5
w0 = [ (ndr = S0 + w0 - 5 [
0 2 2 Jo
1

1
1w 11(0) = Zywp (1) — -,
8 4 1

() 2Ok S 0) + Frwf (1) + 5

zng (0) =
By applying I o on both sides of first equation of (3.35), we get

1 ¢ 3 24 2 3 32 5 1757 5 1
wwry1(t) = T%)/o (t—r1)2 (1 + ﬁﬁ_ ﬁ7—2 - ﬁTz — 3727’ + guwk(T)uw;c(T) + 7CD61+uIUk(T)) dr

1t 1 75
+3 / (t —7)2 (uwk(r) — 124 5743077 - 2073 + ETTI> d7 + bo + byt + bat?. (3.37)
0

By applying the second derivative on both sides of (3.37) and using (3.35), we get

2 1 1 1

By applying the first derivative on both sides of (3.37) and using (3.35), we get

L. (3.39)

8
(&)
ENE

by = Uw;c+l(0) =
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1
We integrate both sides of equation (3.37) on [27 1} , we have

uwwi41(0) = bo,

1
/; wWit1(T)dT

2
1 1 5 24 2 32 5 175 2
— / (1—7)2 (1 + =T - —T% - 72 — VT P uwk(T)uwk(T) + C'Do‘ﬂruwk(T)) dr
0

r(3) N NV 32 6 7
1 5
1 2 (1 2 24 2;32;175f3 )
o 9 1 = -5 =72 2 u u D u d
v (5-7) (1 v gmrt = et = T Qa0 + 2D (o)) e
1 1
+6/(1_T) (uwk( )— 124 =74 307 —2072+f72)df
0

7
—b =b —bo.
+20+8 1+242

1
‘pi d
I NG NG 32 6 7 ot w’“(T)) 4

1 5

2 2 /1 2 24 2 3 32 § 175\/> . / :

2 1+ = BN LN u + =

%)/ ( T) ( \/E\E 3s/r . oA 32 + Gu’UJk( Thuwi(r) + 2
1

T
1 3 75
+ 3 1-=7)°wwr(r) —12+ 77’-‘1—307' — 2073 +—T = ) dr
0
1
3

3 /1 3 1 75 =
— /2 (f —7') (uwk(T)—12+*T+3OT2—207'g +—7'71)d7'
o \2 2 2

2 1 5 24 2 3 32 5 175 2
bo=7)/ (1-7)3 (”fﬁf—ﬂf—rf VT8 4 L ()l ()
0

1
cD(;*Jr uwk(T)) dr

1 1
- 3/0 wwi(T)dT — 5/é wwi(T)dT + yw? (0) + 24wy (0) + %uw;@(l)
7 7
— 5 (w0 wy!) (0 R uwk(0)+ gguwk (D) + o

(3.40)

Therefore, the sequence (uwk) k>0 is defined by the recurrence relation (3.37), where bo, b1 and by are given by (3.40),

(3.39) and (3.38), respectively.
Similarly, we get

s 82 5 175V 4
lwk+1 é /(t T) (1—}-7\/’7’ v f T2 o +8lwk(7—)lwk( )+ 7 ’D0+lwk( )) dr
5 75 =
+ 7/ (t—7)2 (lwk(’r) — 12+ §T+30T2 —2072 + ?TTI) dr 4 co + 1t + cat?,
0
where,
1 5
2 2 (1 2 24 2 3 32 5 1757 -3
— Z 14+ == — 72 - =32 = ‘D d
o r(%)/o (2 T) ( FEY AT TR T m +6””’“(T)””k( )+ it )) !
1 3
1 1 1 5 75
+§ 02 (5—7) (lwk(r)—12+ §T+3072—20’r§ +?T E )dT
i 1 1
=5 [Frwn(mar -3 [, lwk<r>df+lwi<o>+2lwk<o>+ﬁlwku)
0 2
i(lw/’)2(0)+ Ll (0)+— wy! (1)+
96k 48"k !
1 /
== 1),
C1 817%()
- 2 1 1 1
co = ?(l g) (O) + leg(()) + glwg(l) —+ Z
B8O
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Thus, the two sequences of upper and lower-solutions are given respectively as follows:

1 ¢ 3 4 2 3 32 5 1757 4
wWi1(8) = T%)/O (t—71)2 (1—}-%%—%7-2 _ﬁ72 - T +6uwk(7')uwk(7')+ z ‘D +uwk( )) dr
1 [t 1 -
+5/ (t—7)?2 (uwk(T) —12+ 57’4’307’27207% +§771> dr
0
2 1 5 24 2;32;175f3 2,1
1—-7)2 (1+ —=V/T——=72 — —72 w JD“U d
+F(%)/0( T) ( +\/7?ﬁ 3ﬁT ﬁT 2 +6 wi (T)uwwy (7) + o wk(T)) T
1 5
2 31 5 24 2 3 32 5 1757 4 ,
— - — 14+ —V7T——=72 — —72 CD4 d
r(%)/o (2 T) (+ﬁ‘ﬁ N A A +6“w’“()w’v(7)+7 oruwk(7) ) d
e 3 1 5 5 75 -1
+§ 1-7) uwk(‘r)712+57+307 — 2072 +?T 2 )dr
0
1 3
1 1 1 5 7% =
—7/2 (7 —7') (uwk(’r)—12+77'+307'2—207'5 +—7'71)d7'
8Jo, \2 2 2
1 ! 3 .1
,3/4 uwk(q—)dﬂ'*5/1 wwi (T)dT + ww} (0) 4 24wy, (0) + (3—2+§t) wwh (1)
0 3
7 1 2 7 1 7 1 7 1
_ [ 7t2 w 1" 0 _ 7t2 w //0 _ 7t2 w //1 _ 7t27 k>0,
(96+8)(wk)()+<48+4)wk()+<96+8 )wk()+48+ >
1 9 5
wwo(t) =12 — St — 3062 4+ 2043,
and
1 3 24 2 3 32 5 1T57 4 ) 2,1
jwp41(t) = F(%)/ (t—7)2 (1+ﬁ\/;_ ﬁTz - ﬁTZ 3 +glwk( )lwk(T)J"? ID(;LJrlwk(T) dr
1t 1 5 75 =
+§/ (t—1)? (lwk(T)—12+*T+3OT2—207'§-‘r?TTl)d’T
0
1
2 2 4 2 3 32 s 175y/m -3
r(3) / ("T) (1 v aot - et - B it + 2D et ) ar
1 3
1
+§ : (5—7) (lwk(T)—12+ ~r 43072 — 2072 +—T E )dT
4 ! 2 L1 /
-5 lwk(T)dT— ﬁ lwk(T)dT-‘rl'Ll)k(O)-i-Qlwk(O) + (ﬁ + gt) lwk(l)
2
1 1 2 1 1 1 1 1
— =+ =2 Y2(0 — 4+ 2 (0 (— 42) )+ — 42 k>0,
(96+8 )(lwk)()+(48+4 )’wk(H o6 "5t )W+ gty =
wo(t) =0

4. CONCLUSION

In conclusion, this paper has successfully tackled the intricate problem of identifying upper and lower solutions
for high-order fractional integro-differential equations with non-linear boundary conditions. By introducing an order
relation and employing a rigorous methodology, we have established the existence of these solutions as limits of
sequences originating from strategically chosen problems, underpinned by the application of Arzela-Ascoli’s theorem.
This research has unveiled essential insights into the realm of solutions within the domain of complex fractional
integro-differential equations.

In terms of future perspectives, this study opens the door to further explorations in this field. Researchers may
delve into extending these methods to more intricate equations or examining the applicability of these findings in
real-world problems, particularly in physics, engineering, and other scientific domains. Additionally, the established
techniques could be adapted for numerical approximation and computational solutions, providing practical tools for
solving high-order fractional integro-differential equations in various applications. This paper lays a strong foundation
for ongoing research and the development of more sophisticated mathematical tools in the pursuit of deeper insights
into these complex equations.
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