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Abstract

In this paper, we transform the given nonlocal boundary condition problem into a manageable local equation. By

introducing an additional transformation of the variables, we can simplify this equation into conformable Burgers’
equation. Thus, the Keller Box method is used as a numerical scheme to solve the equation. A comparison is

made between numerical results and the analytic solution to validate the results of our proposed method.
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1. Introduction

When solving partial differential equations (PDEs), a non-local boundary condition is a special type of boundary
condition that relies on solution values at points beyond the boundary. Unlike local boundary conditions, which only
consider solution values at the boundary, non-local boundary conditions require data from a wider region of the domain
to determine the behavior of the solution at the boundary [22, 34, 37]. This can be particularly useful when modelling
physical phenomena with long-range interactions or memory effects, such as heat transfer in materials, chemical diffu-
sion, thermoelasticity, inverse problems, and biological processes [10, 24]. In physics, for example, non-local boundary
conditions can be used to model phenomena such as heat conduction in materials with memory, where the current
temperature at a point depends not only on the temperatures of neighboring points, but also on the temperatures
at that point at previous times. J. Cannon [9] pioneered the consideration of integral boundary conditions as an
alternative to the classical Dirichlet or Neumann boundary conditions for one-dimensional parabolic equations. In
addition, further research into non-classical problems with integral boundary conditions in the context of various evo-
lution equations has been explored in [4, 7, 8, 11, 23, 25, 30–32]. Siddique [33] aims to improve the efficiency of the
Crank-Nicolson numerical scheme when solving two-dimensional parabolic partial differential equations with nonlocal
boundary conditions. A numerical method based on Padé approximations of the matrix exponential is utilised. The
numeric results clearly demonstrate the enhancement attained by employing the improved Crank-Nicolson numerical
technique with nonlocal boundary conditions. Berikelashvili and Khomeiri [4] examine a nonlocal boundary-value
problem for the Poisson equation in a rectangular domain. One pair of adjacent sides of the rectangle have Dirichlet
and Neumann conditions imposed, while integral constraints replace traditional boundary conditions on the remaining
pairs of sides. Predictions of the solution can be made using the energy inequality method. Furthermore, a computa-
tion of the discretization error estimate is conducted that corresponds with the expected smoothness characteristics of
the solution. Islam et al. [17] investigated two numerical techniques for solving the two-dimensional Poisson equation
under different nonlocal boundary conditions. Initially, they employed Haar wavelets and a collocation method, which
included a novel approach to approximating mixed derivatives. The second technique utilizes a meshless method-based
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on different types of radial basis functions (RBFs). Furthermore, they present two different splitting schemes employed
to solve numerical problems. These schemes entail diverse approaches to manage the shape parameter and evaluate
their influence on the model’s effectiveness. In recent years, significant attempts have been made to develop reliable
computational techniques to solve non-linear partial differential equations (PDEs) [19], which are prevalent in fluid me-
chanics and heat transfer. A renowned example of such equations is the Burgers’ equation, famed for its combination
of non-linear convection and diffusive impacts. As a non-linear PDE, it presents several intricate engineering hurdles.

The presence of both non-linear convective terms u(∂u∂x ) and diffusive terms ν ∂
2u
∂x2 in Burgers’ equation amplifies its

complexity. This formula has practical use in several fields, such as fluid mechanics, compressible flows, shockwave
theory, nonlinear acoustics, traffic flow, and turbulence phenomena. It has an influence on magneto-hydrodynamics,
especially in systems like MHD steam plants and power generators that include conductive liquids within magnetic
fluids [3]. Bonkile et al. [6] provide a detailed literature review of the Burgers’ equation, discussing its physical
and mathematical significance. They highlight persistent numerical challenges in achieving accuracy, stability, and
convergence in various computational methods. Various methods have been proposed in the literature for solving the
nonlinear Burgers’ equation, each with its own advantages and disadvantages. Among the most recent and promising
methods, we can refer to a non-exhaustive list, including the finite difference method [5, 15], finite volume method
[14], finite element method [20, 26, 36], Implicit Exponential Finite-Difference Method [15], Method of lines [5, 18],
Meshless method, Cubic Hermite Collocation Method [12], wavelet method [13], and Haar Wavelets and Finite Dif-
ference method [21, 27]. These methods tackle challenges regarding precision, reliability, and convergence. They have
been implemented in various forms of the Burgers’ equation, resulting in enhanced computational effectiveness and
accuracy when solving this intricate Partial Differential Equation. Ashpazzadeh et al. [2] introduced a novel method
for constructing wavelet bases on the interval [0, 1] derived from symmetric biorthogonal multiwavelets on the real line.
The study utilises Hermite cubic spline multiwavelets on [0, 1] to solve the one-dimensional Burgers’ equation through
the application of the Mixed Finite Difference and Collocation Method (MFDCM). The suggested approach displays
effectiveness and precision via numerical simulations, where the authors highlight its computational advantages, sim-
plicity and sparsity. Nemati Saray et al. [28] introduce a Galerkin method using multiwavelets to efficiently solve
the two-dimensional Burgers’ equation. By utilizing the Crank-Nicolson scheme for time discretization, the resulting
partial differential equations are converted into sparse systems of algebraic equations. The method’s computational
cost is dependent on the number of nonzero coefficients, and the findings suggest that error control can be achieved
by adjusting the threshold accordingly. The Keller-Box scheme is a useful tool for addressing complex nonlinearities
in various fields. It is particularly advantageous for solving parabolic partial differential equations numerically as it
can handle robust nonlinearities that may prove challenging for traditional analytical approximations. As an implicit
numerical approach, the method provides reliable and precise results while guaranteeing second-order accuracy in
both spatial and temporal dimensions. Consequently, it is a powerful tool for handling complex nonlinear challenges
across a range of domains. Prakash et al. [29] used a modified Keller-Box Scheme and Hopf-Cole transformation to
present a numerical solution for the unsteady viscous Burgers’ equation. Iqbal et al. [16] studied stagnation point
flow over an electromagnetic surface using the Keller-Box Scheme. Vynnycky and Mitchell [35] use the Keller-Box
finite-difference method to investigate the consequences of discontinuity in the boundary conditions when solving the
linear one-dimensional transient heat equation. Their results show that despite its formal second order accuracy, this
scheme can suffer from loss of accuracy. However, they show that a comprehensive understanding of the behaviour
of the solution allows the development of a formulation that restores accuracy. In addition, they present benchmark
calculations that provide valuable insights into the numerical solution of nonlinear parabolic PDEs that lack closed-
form analytical solutions. The objective of this paper is to create a precise and reliable numerical resolution for the
one-dimensional Burgers’ equation, considering non-local boundary conditions. This will be achieved by utilising the
finite difference technique, integrating the Keller-Box approach. To the best of our knowledge, this is the first time in
the literature that the solution of the nonlinear Bergur’s equation with nolocal boundary condition is addressed using
the Keller-Box scheme to improve the accuracy and efficiency of the numerical results. The manuscript is organised
as follows: in the next section, we present the governing equations. Then we present our numerical results. This is
followed by a discussion in context. Finally, we conclude with a summary of the main results.
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2. Governing Equation

The one-dimensional Burgers’ equation for unsteady and viscous flow can be expressed as:

ut − νuxx = −uux, for 0 ≤ x ≤ 1, 0 ≤ t, (2.1)

where u, x, v, and t represent the velocity, spatial coordinate, kinematic viscosity, and time respectively. Subject the
Burgers’ equation to the following initial condition:

u(x, 0) = x. (2.2)

with Dirichlet and nonlocal boundary conditions:

u(0, t) = 0, (2.3)

∫ 1

0

u(x, t)dx =
1

2(1 + t)
. (2.4)

To solve the Burgers’ equation, we first convert the above nonlocal boundary equation above into a manageable local
equation. This transformation is achieved by introducing the following equation:

u(x, t) = vx(x, t). (2.5)

Burgers’ equation (Eq. (2.1)), the initial condition (Eq. (2.2)), and the boundary conditions (Eq. (2.3) and Eq. (2.4))
thus becoming a modified system of equations:

vtx − νvxxx = −vxvxx, for 0 ≤ x ≤ 1, t ≥ 0, (2.6)

u(x, 0) = x, (2.7)

u(0, t) = 0, (2.8)

v(0, t) = 0, (2.9)

v(1, t) =
1

2(1 + t)
. (2.10)

3. Finite Difference Scheme

To discretize the above modified equations (Eqs. (2.5)-(2.6)), we divide the solution domain into a uniform grid
described by the set of nodes (xj , tn)defined below:

tn = n∆t, n = 0, 1, . . . ,Nmax, (3.1)

xj = j∆x, j = 0, 1, . . . , Jmax. (3.2)
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4. Keller-Box Method

By additional variable transformation, we simplify the partial differential equation (Eq. (2.6)) into first derivatives
to implement the Keller-Box Method.

w(x, t) = ux(x, t). (4.1)

Substituting Eq. (2.5) and Eq. (4.1) in Eq. (2.6):

ut − νwx = −uw, for 0 ≤ x ≤ 1, t ≥ 0. (4.2)

We consider four points around the node (n+ 1
2 , j −

1
2 ) as shown in (Figure 1) to develop the central discretization in

space and time.

Figure 1. Schematic representation of domain for Keller-Box method.

Subsequently, the finite difference representation of the governing system of Equations (2.5), (4.1), and (4.2) is as
follows:

un+1
j− 1

2

=
vn+1

j − vn+1
j−1

∆x
, (4.3)

wn+1
j− 1

2

=
un+1

j − un+1
j−1

∆x
, (4.4)

un+1
j− 1

2

− un
j− 1

2

∆t
+ (uw)

n+ 1
2

j− 1
2

= v
w
n+ 1

2
j − wn+ 1

2
j−1

∆x
. (4.5)

In the above equations, the discretized terms containing the subscript n+ 1
2 or superscript j− 1

2 index are approximated
by the average values of the adjacent nodes:

un+1
j− 1

2

=
un+1
j + un+1

j−1

2
, (4.6)

w
n+ 1

2
j−1 =

wn+1
j−1 + wnj−1

2
, (4.7)
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(uw)
n+ 1

2

j− 1
2

=
(uw)n+1

j + (uw)n+1
j−1 + (uw)nj + (uw)nj−1

4
. (4.8)

Where (uw) )nj is equal unjw
n
j . Similar to Eqs. (4.6), (4.7), and (4.8), further terms

(
wn+1
j− 1

2

, un
j− 1

2

and w
n+ 1

2
j

)
would

be derived.

5. Linearization of the System of Equations

To enable the implementation of the Keller-Box method, we should first linearize the system of discretized equations
(Eq. (4.5)) by imposing the following representations:

(
wn+1
j

)k+1
=
(
wn+1
j

)k
+
(
δwn+1

j

)k
, (5.1)

(
un+1
j−1

)k+1
=
(
un+1
j−1

)k
+
(
δun+1
j−1

)k
, (5.2)

(
vn+1
j

)k+1
=
(
vn+1
j

)k
+
(
δvn+1
j

)k
, (5.3)

(
(uw)n+1

j

)k+1
=
(
un+1
j

)k+1 (
wn+1
j

)k+1
=
((
un+1
j

)k
+
(
δun+1
j

)k)((
wn+1
j

)k
+
(
δwn+1

j

)k)
. (5.4)

Where k represents the number of iterations in each time step. Note that in each iteration
(

wn+1
j

)k

,
(
un+1
j−1

)k
,(

vn+1
j

)k
,
(
un+1
j

)k
,
(
wn+1
j

)k
are known variables, while

(
δwn+1

j

)k
,
(
δun+1
j−1

)k
,
(
δvn+1
j

)k
,
(
δun+1

j

)k

,
(
δwn+1

j

)k

are as-

sumed to be unknown variables.

6. Modified System of Equations

Applying the approximation and linearization mentioned in the previous sections, a modified system of equations
is obtained:(

un+1
j

)k
+
(
δun+1
j

)k
+
(
un+1
j−1

)k
+
(
δun+1
j−1

)k
2

=

(
vn+1
j

)k
+
(
δvn+1
j

)k − (vn+1
j−1

)k − (δvn+1
j−1

)k
∆x

, (6.1)

(
wn+1
j

)k
+
(
δwn+1

j

)k
+
(
wn+1
j−1

)k
+
(
δwn+1

j−1

)k
2

=

(
un+1
j

)k
+
(
δun+1
j

)k − (un+1
j−1

)k − (δun+1
j−1

)k
∆x

, (6.2)

(
un+1
j

)k
+
(
δun+1
j

)k
+
(
un+1
j−1

)k
+
(
δun+1
j−1

)k
2∆t

−
(
unj
)k

+
(
unj−1

)k
2∆t

+

+

(
unj
)k (

wnj
)k

+
(
unj−1

)k (
wnj−1

)k
+
(
un+1
j

)k (
wn+1
j

)k
+
(
un+1
j

)k (
δwn+1

j

)k
4

+

+

(
wn+1
j

)k (
δun+1
j

)k
+
(
un+1
j−1

)k (
wn+1
j−1

)k
+
(
un+1
j−1

)k (
δwn+1

j−1

)k
+
(
wn+1
j−1

)k (
δun+1
j−1

)k
4

= v

(
wnj
)k

+
(
wn+1
j

)k
+
(
δwn+1

j

)k − (wnj−1

)k − (wn+1
j−1

)k − (δwn+1
j−1

)k
2∆x

.

(6.3)
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The unknown variables δu, δv, δw approach zero at convergence. Therefore, it is acceptable to ignore the quadratic
and higher-order terms of δu, δv, δw in Eq. (5.4). The boundary condition for this modified system of equations is:

δu1 = 0, (6.4)

δv1 = 0, (6.5)

δvJmax = 0. (6.6)

7. Keller-Box Matrix

Consequently, the modified system of equations results in a tridiagonal block system of the following format:

Cjδj−1 +Ajδj +Bjδj+1 = Rj (7.1)

This format of the system of equations forms the following Keller-Box Matrix:

A1 B1 0 0 · · · 0 0
C2 A2 B2 0 · · · 0 0
0 0
...

. . .
. . .

. . .
...

0 0
0 0 · · · 0 CJ max−1 AJ max−1 BJ max−1

0 0 · · · 0 0 CJ max AJ max





δ1
δ2
...

δJ max−1

δJ max


=



R1

R2

...

RJ max−1

RJ max


, (7.2)

Where A,B,C, δ and R are as follows:

A1 =

 1 0 0
0 1 0
0 1

∆x2

1
2

 , (7.3)

Aj =


− 1

∆xj

1
2 0

0 1
2∆tn

+
(wn+1

j )
k

4 − ν
2∆xj

+
(un+1

j )
k

4

0 1
∆xj+1

1
2

 , for j = 2, 3, . . . , J max−1, (7.4)

AJ max =

 −
1

∆xJmax

1
2 0

0 1
2∆tn

+
(wn+1

Jmax)
k

4 − ν
2∆xJmax

+
(un+1

Jmax)
k

4

1 0 0

 , (7.5)

Bj =

 0 0 0
0 0 0
0 − 1

∆xj+1

1
2

 , for j = 1, 2, . . . , J max−1, (7.6)

Cj =


1

∆xj

1
2 0

0 1
2∆tn

+
(wn+1

j−1 )
k

4 − ν
2∆xj

+
(un+1

j−1 )
k

4

0 0 0

 , for j = 2, 3, . . . , J max, (7.7)

δj =


(
δvn+1
j

)k(
δun+1
j

)k(
δwn+1

j

)k
 , for j = 1, 2, . . . , J max, (7.8)
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Rj =

 RHS1(j)
RHS3(j)

RHS2(j + 1)

 , for j = 2, 3, . . . , J max−1, (7.9)

R1 =

 0
0

RHS2(j = 2)

 , (7.10)

RJmax
=

 RHS1( J max)
RHS3( J max)

0

 . (7.11)

The terms RHS1,RHS2 and RHS3 for the jth node are equivalent to:

RHS1(j) =

(
vn+1
j

)k − (vn+1
j−1

)k
∆x

−
(
un+1
j

)k
+
(
un+1
j−1

)k
2

, (7.12)

RHS2(j) =

(
un+1
j

)k − (un+1
j−1

)k
∆x

−
(
wn+1
j

)k
+
(
wn+1
j−1

)k
2

, (7.13)

RHS3(j) =

(
unj
)k

+
(
unj−1

)k − (un+1
j

)k − (un+1
j−1

)k
2∆t

−

−
(
unj
)k (

wnj
)k

+
(
unj−1

)k (
wnj−1

)k
+
(
un+1
j

)k (
wn+1
j

)k
+
(
un+1
j−1

)k (
wn+1
j−1

)k
4

+

+ ν

(
wnj
)k

+
(
wn+1
j

)k − (wnj−1

)k − (wn+1
j−1

)k
2∆x

.

(7.14)

8. Thomas Algorithm

To solve the tridiagonal block system of equations in the Keller-Box matrix (Eq. (7.2)), we utilized the Thomas
algorithm. This algorithm is a kind of Gaussian elimination method where fewer operations are required to reach the
solution. In this algorithm, the first step is to eliminate the blocks under the main block diagonal.

C∗
j = 0, j = 2, 3, . . . , Jmax, (8.1)

A∗
j = Aj −

Cj∣∣A∗
j−1

∣∣Bj−1, j = 2, 3, . . . , Jmax, (8.2)

B∗
j = Bj , j = 1, 3, . . . , Jmax − 1, (8.3)

A∗
1 = A1, (8.4)

R∗
j = Rj −

Cj∣∣A∗
j−1

∣∣R∗
j−1, j = 3, 4, . . . , Jmax, (8.5)

R∗
2 = R2 −

C2

|A∗
1|
R∗

1. (8.6)
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A backward substitution would then immediately lead to the unknown blocks.

D∗
J max = inv

(
A∗
Jmax

)
R∗
J max , (8.7)

Dj = inv
(
A∗
j

) [
R∗
j −BjD∗

j+1

]
, j = Jmax − 1, . . . , 1. (8.8)

9. Results and discussion

In this section, the grid independency, validation and numerical results for Bergers’ equation with Keller-Boxmethod
are discussed.

10. Grid Independency Study

(a)

(b)

Figure 2. Plot of (a) u(x, t) and (b) v(x, t) versus time at x = 0.5 for different grid sizes (Very Fine:
1000 nodes, Fine: 100 nodes, Medium: 10 nodes, Course: 4 nodes).

Figure 2 (a) and (b) shows the resulting values for the unknown variables (u) and (v) as a function of the size of the
grid structure. This figure shows that the resulting values for the unknown variables remain dependent on the size of
the ”Course” or ”Medium” grid. However, the ”Fine” grid approximately satisfies the independence of the grid from
the above solution variables.
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11. Validation

Numerical Results of this study are validated with the analytical solution of the Burgers’ equation presented in
[1]. Figure 3 sketches the numerical and analytical solution for the velocity in a fixed time (a) and in a fixed space
(b). This figure indicates close agreement between the analytical solution and the numerical solution presented in this
work.

(a)

(b)

Figure 3. Plot of u(x, t) (a) at t = 5 during the space and (b) versus time at x = 0.5.

3.3 Numerical results. The numerical results were obtained after the development of a computer program to solve
the Keller-Box matrix. The results indicate a numerical solution for Burgers’ equation. As shown in Figure. 4, the
velocity is linear in every time cross-section. On the other hand, if we consider a particular spatial coordinate, it is
noticeable that the value of the velocity gradually and continuously decreases toward zero with time. In other words,
the dependence on the boundary condition for the last node dissipates with time, while the first node is fixed to a single
value due to the Dirichlet boundary condition. Consequently, the term (ut) vanishes over infinite time. Consequently,
the type of the partial differential equation (Eq. (4.2)) changes from parabolic to elliptic as time progresses to infinity.
Figure 5 shows the behavior of the integral of velocity (v) in time and space. Similar to Figure 2.4, v(x, t) in this
figure mimics the time evolution of velocity and transitions to a stationary value infinite time. Additionally, the time
changes of the value of the last node are significantly higher than those of other positions in the spatial coordinate.
However, in contrast to Figure 4, the integral of the velocity in space is parabolic at each time step (see Figure. 2.5).
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Figure 4. Surface representation of the velocity as a function of time and spatial coordinate.

Figure 5. Surface representation of the integral of velocity as a function of time and spatial coordi-
nate.

The derivative of velocity w(x, t ) is sketched in time and space (see Figure 6). At each time step, the value of
w(x, t) is constant over the entire range of space. Similar to the sketches for u(x, t) and v(x, t) in Figures 4 and 5,
w(x,t) also reaches a plateau over time. The analytical solution of the Burgers’ equation for the velocity is [1]:

u(x, t) =
x

1 + t
. (11.1)

Figure 7 displays the velocity error distribution over the entire range of the solution, with the convergence limit for
the residuals sets to 1e − 10. The maximum difference between the analytical and the numerical solutions is about
4e − 6 and occurs at the last nodes of the first time steps. These points are very unstable in the first time steps, as
can be seen in Figure 7. However, as time progresses, the errors radically disappear. A plausible explanation for this
is that the values at these points undergo major transitions to reach the equilibrium state. Therefore, it takes time
for the errors to disappear.

4 Conclusion

In this paper, the Burgers’ Equation is considered as a typical nonlinear partial differential equation (PDE) for
which a non-local boundary condition holds. By converting the non-local boundary condition into a local Boundary
condition, we present a numerical solution using the Keller-Box Method and Thomas Algorithm to solve the non-
linear PDE. The present numerical study has confirmed that the Keller-Box method is second-order spatially and



REFERENCES 435

Figure 6. Surface representation of the derivative of the velocity as a function of time and spatial
coordinate.

Figure 7. Surface representation of the velocity errors as the difference between the analytical and
the numerical solutions as a function of time and spatial coordinates.

temporally. The analytical result of Burgers’ equation is one of the rare non-linear equation solution obtained and
developed in various science orientation problems, so it is important to find out the influences of various initials and
boundary conditions on the behavior of Burgers’ equation solutions. The results are quite convincing and are very
close to the analytical solution. Future research could explore the application of our method to problems with shocks
or discontinuities.
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