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Abstract

This paper presents the development of a series of fractional multi-step linear finite difference methods (FLMMs)

designed to address fractional multi-delay pantograph differential equations of order 0 < α ≤ 1. These p-FLMMs

are constructed using fractional backward differentiation formulas of first and second orders, thereby facilitating
the numerical solution of fractional differential equations. Notably, we employ accurate approximations for the

delayed components of the equation, guaranteeing the retention of stability and convergence characteristics in the

proposed p-FLMMs. To substantiate our theoretical findings, we offer numerical examples that corroborate the
efficacy and reliability of our approach.
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1. Introduction

In recent years, there has been a great desire to model problems with fractional differential equations instead of
using classical integer order differential equations. Because some problems are explained more accurately by using
fractional derivatives. Fractional calculus plays a pivotal role in modeling complex phenomena using fractional-order
differential and integral equations [2, 16, 17]. Recent research has expanded its practical utility by addressing intricate
fractional systems, including those involving impulsive control, nonlinear dynamics, and proportional delay. For
example, Moniri et al. have devised an efficient solver for managing impulsive control in fractional chaotic systems
[16], while Moghaddam et al. present a method to handle fractional dynamical systems with impulsive effects [20].
Additionally, Mostaghim et al. have contributed a computational technique for simulating variable-order fractional
Heston models in the US stock market [17]. These studies also exemplify the diverse applications of fractional calculus
in various fields [13].

The pantograph delay differential equation (DDE) with proportional delays is a well-known problem that arises in
various models, including mechanics and electrodynamics. Its mathematical modeling dates back to 1971 [19], spark-
ing considerable research interest and leading to various numerical solution methods. Recent contributions include
Mokhtary et al.’s computational approach for non-linear weakly singular Volterra integral equations with proportional
delay [15]. Authors in [18] apply the collocation method, Shadia [22] utilizes the spline method for delay and neutral
differential equations, and Moghaddam et al. address nonlinear fractional stochastic differential equations with con-
stant time delay using an integro quadratic spline-based scheme [14]. The Runge-Kutta method is employed by authors
in [11] for multi-pantograph DDEs, while the homotopy perturbation method [25] and the Adomian decomposition
method [5] are applied for the generalized pantograph DDE and delay differential equations, respectively. Davarifar
et al. approximate the system of delay differential equations of pantograph type using the Boubaker polynomials
basis method in [3]. Isah applies the Collocation method based on the Genocchi operational matrix in [10], and more
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recently, the Natural transform method is employed by authors in [24] for fractional pantograph DDEs. Other works
deal with the use of Montez-Legendre polynomials and its applications to solve fractional pantograph equations [1, 23].

An efficient method for solving fractional differential equations is the fractional linear multi-step method (FLMM),
which is based on fractional backward difference formulas (FBDFs). The development and analysis of FLMMs, along
with their corresponding stability regions, are well-established for solving fractional differential equations. Lubich was
the first to introduce the FLMM for fractional orders in the interval (0, 1) [12]. Subsequently, Garrappa extended
FLMMs and introduced p-FLMMs for first and second orders [7, 8]. In a recent development, authors in [6] introduced
explicit first, second, third, and fourth-order p-FLMMs for fractional orders in the interval (0, 1). This methodology
was further extended to the fractional order interval (1, 2) by Irandoust et al. [9].

In this study, we introduce two FLMMs of order one and two for solving nonlinear fractional pantograph-type
multi-delay differential equations of the form:

CDα
0 y(t) =

m∑
i=1

Fi(y(pit)) + g(t), 0 < pi ≤ 1,

y′(0) = y0,

(1.1)

here, g(t) and Fi(y), (i = 1, 2, . . . ,m), are known analytic functions, and CDα
0 represents the Caputo fractional

differential operator of order 0 < α ≤ 1.
The remainder of this paper is organized as follows: In section 2, we provide a brief overview of fractional calculus

and FLMMs. In section 3, we introduce the new FLMMs for solving the problem (1.1). Some examples are illustrated
in section 4. Finally, the conclusion is stated in section 5.

2. Preliminaries

In this section, we introduce briefly some preliminary results on fractional calculus and fractional linear multi step
methods which will be used in the next sections.

2.1. Fractional Calculus. We start this part by recalling some definitions which are quoted from [21] as follows.

Definition 2.1. Consider the real number ν and the integer n. We define the space Cν as the space of all functions
f : R+ → R if there exists a real number p > ν and a function f1 ∈ C[0,∞) such that f(t) = tpf1(t), ∀tÂ ∈ R+.
Moreover, the space Cnν denotes the space of all functions f such that f (n) ∈ Cν .

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0 of a function f(t) ∈ Cν , ν ≥ −1
is defined as [21]

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ, α > 0, (2.1)

where Γ(z) =
∫∞
0
e−ttz−1dt , z ∈ C and a is called the index of integration. It is obvious that for α = 0 we have

I0af(t) = f(t).

The operator Iαa satisfies the following properties

• Iαa Iβa f(t) = Iβa I
α
a f(t) = Iα+βa f(t).

• Iαa (t− a)γ =
Γ(1 + γ)

Γ(1 + γ + α)
(t− a)α+γ .

where f ∈ Cν , ν ≥ −1, α, β ≥ 0 and γ ≥ −1.

Definition 2.3. The Caputo fractional differential operator CDα
a is defined as

CDα
a f(t) = In−αa

dn

dtn
f(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1f (n)(τ)dτ, n− 1 < α < n. (2.2)

For α = n the fractional differential operator CDα
a is equal to the ordinary differential operator Dn.
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The operator CDα
a satisfies the following properties

• CDα
a I

α
a f(t) = f(t).

• Iαa [CDα
a f(t)] = f(t)−

n−1∑
k=0

f (k)(a)
(t− a)k

k!
, t > a.

• CDα
a (t− a)γ =

Γ(1 + γ)

Γ(1 + γ − α)
(t− a)γ−α.

• CDα
a c = 0, c is a constant,

where n− 1 < α ≤ n, n ∈ N and f ∈ Cnν , ν ≥ −1, γ > α− 1.

2.2. Fractional Linear Multi-step Methods (FLMMs). To introduce FLMMs we consider the common test
problem

CDα
0 y(t) = f(t, y(t)), y(0) = y0. (2.3)

In this equation, f : [0, T ] × R → R is considered a smooth function and 0 < α < 1 is the fractional order. The
p-FLMMs are considered as

n−1∑
j=0

wjyn−j = bny0 + hα
p∑
j=0

γjf(tn−j , yn−j), (2.4)

where p is an integer number. The coefficients wj and γj , (j = 0, 1, ...) are chosen properly to fulfill some appropriate

consistency and convergency properties [7]. The first consistency property requires that bn =
∑n−1
j=0 wj . In the

following, we list some p-FLMMs.

• The fractional 1-FLMM Euler method of order one [21]

n−1∑
j=0

wjyn−j = bny0 + hαf(tn−1, yn−1), (2.5)

where
wj = (−1)j

(
α
j

)
=

Γ(j − α)

Γ(−α)Γ(j + 1)
, j = 0, 1, . . . , n− 1,

bn =

n−1∑
j=0

wj =
−αΓ(n− α)

Γ(2− α)Γ(n− 1)
.

(2.6)

• The fractional 2-FLMM method of order 2 [7]

n−1∑
j=0

wjyn−j = bny0 + hα
[
(2− α

2
)f(tn−1, yn−1) + (

α

2
− 1)f(tn−2, yn−2)

]
, (2.7)

where the coefficients are the same as (2.6).

• The fractional 1-FLMM Diethelm method of order 2− α [4]

n−1∑
j=0

wjyn−j = bny0 + hαf(tn−1, yn−1), (2.8)



514 M. VALIZADEH, Y. MAHMOUDI, AND F.D. SAEI

where
w0 = 1,
wj = (j + 1)1−α − 2j1−α + (j − 1)1−α, j = 1, 2, . . . , n− 1,

bn =

n−1∑
j=0

wj = n1−α − (n− 1)1−α.
(2.9)

Although there exist higher-order explicit and implicit FLMM methods, in this we apply the explicit lower-order
FLMM methods in the presence of the delayed factors of the fractional pantograph equation (1.1).

3. Implementation of the method

To apply FLMM to the fractional multi-delay pantograph equation (1.1), we first discretize the proposed domain
[0, T ] as follows

ti = ih, i = 0, 1, 2, . . . , N, (3.1)

where h is the uniform grid size (h = ti+1 − ti). To apply FLMMs (2.5), (2.7), and (2.8) we need to evaluate y(qti),
where 0 < q < 1 is the proportional delay factor. To maintain the order of accuracy of FLMMs, we must approx-
imate y(qti) with an accuracy equal to or higher than the accuracy of FLMMs. The point qti may not match the
mesh points, so we have to approximate y(qti) by using some adjacent nodes near qti. We have different choices for this.

• Two points Lagrange interpolation of degree one: Suppose that tk−1 < qti ≤ tk. Then we can
approximate y(qti) by linear two-point Lagrange interpolation at the nodes tk−1 and tk as follows

y(qti) ∼= ȳ(qti) = − 1

h
(qti − tk)yk−1 +

1

h
(qti − tk−1)yk. (3.2)

The error approximation of interpolation polynomial gives

|y(qti)− ȳ(qti)| = |(qti − tk−1)(qti − tk)| |y
′′(ξ)|
2!

= θ(1− θ)h2| |y
′′(ξ)|
2!

= O(h2), (3.3)

where qti − tk−1 = θh and tk−1, < ξ < tk.

• Three points Lagrange interpolation of degree two: Let tk−1 < qti ≤ tk, in this case we interpolate
y(t) at the points tk−2, tk−1 and tk by three-point Lagrange interpolation and then

y(qti) ∼= ȳ(qti) =
1

2h2
(qti − tk−1)(qti − tk)yk−2 −

1

h2
(qti − tk−2)(qti − tk)yk−1

+
1

2h2
(qti − tk−2)(qti − tk−1)yk. (3.4)

Again, the error term can be evaluated as follows

|y(qti)− ȳ(qti)| = |(qti − tk−2)(qti − tk−1)(qti − tk)| |y
′′′(ξ)|
3!

= θ(1− θ)(2− θ)h3| |y
′′′(ξ)|
3!

= O(h3), (3.5)

where we let qti − tk−1 = θh and tk−1, < ξ < tk.

Now we are ready to apply 1-FLMM (2.5) and (2.6) to the fractional multi-delay pantograph equation (1.1) respec-
tively as follows.

n−1∑
j=0

wjyn−j = bny0 + hα

(
m∑
i=1

Fi(y(pitn−1)) + gn−1

)
, n = 1, 2, . . . , N, (3.6)
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and
n−1∑
j=0

wjyn−j = bny0 + hα

[
(2− α

2
)

(
m∑
i=1

Fi(y(pitn−1)) + gn−1

)

+(
α

2
− 1)

(
m∑
i=1

Fi(y(pitn−2)) + gn−2

)]
, n = 2, 3, . . . , N, (3.7)

where gn−2 = g(tn−2) and gn−1 = g(tn−1). The delayed factors y(pitn−1) and y(pitn−2) are substituted by using (3.2)
or (3.4).

The stability and convergence of the FLMMs which were studied in the literature (see [6–9, 12]) is preserved for
solving delayed pantograph equations. In this work, we study the convergency of the proposed methods numerically.
Although the methods (3.6) and (3.7) are explicit by nature, but due to the delay factor, the first few iterations may
be calculated implicitly.

4. Illustrations

In this section, we illustrate some examples to present the accuracy and simplicity of the proposed FLMMs. We
illustrate both linear and nonlinear pantograph differential equations with multiple proportional delays. To show the
error and the numerical accuracy for the difference schemes (3.6) and (3.7), we denote

E2(h) =

√√√√h

N∑
i=0

(y(ti)− yi)2,

where yi is the approximate value for y(xi). Then, the computational convergence order can be calculated by

Order2 = log2

(
E2(h)

E2(h/2)

)
.

Finding the error and computational order is possible when the analytical solution of the equation is available. Oth-
erwise, other strategies should be used to calculate the computational convergence order. In the examples provided,
we have limited ourselves to drawing a graph to compare the numerical results when the analytical solution is not
available.

Example 4.1. We consider the initial value problem [24]

CDα
t y(t) = 1 + 2y

(
t

2

)
− y(t), y(0) = 0. (4.1)

The exact solution for α = 1 is y(t) = t. While for other values of α, the analytical solution is not known. This

equation contains one delay with p =
1

2
. Applying (2.5) and (3.6) in (4.1) we get

n−1∑
j=0

wjyn−j = bny0 + hα
(

1 + 2yn−1
2
− yn−1

)
, n = 1, 2, . . . , N, (4.2)

where y0 is given by the initial condition and yn−1
2

= y

(
tn−1

2

)
. Suppose that tk−1 ≤

tn−1
2

< tk then by (3.2) we

write

yn−1
2

= y

(
tn−1

2

)
' − 1

h

(
tn−1

2
− tk

)
yk−1 +

1

h

(
tn−1

2
− tk−1

)
yk =

1

2
(yk−1 + yk). (4.3)

By a similar substitution the two order 2-FLMM (2.7) can be written as follows

n−1∑
j=0

wjyn−j = bny0 + hα
[
(2− α

2
)
(

1 + 2yn−1
2
− yn−1

)
+(
α

2
− 1)

(
1 + 2yn−2

2
− yn−2

)]
, n = 2, 3, . . . , N, (4.4)
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Figure 1. The graph of numerical solutions for Example 4.1, 1-FLMM (left), 2-FLMM (right).

where yn−2
2

is considered similar to (4.3). It should be noted that step n = 1 should be calculated using the 1-FLMM

(4.2). The numerical results for this example are plotted in Figure 1 for different values of α.

Example 4.2. Suppose the following fractional multi-delay pantograph equation [24]

CDα
t y(t) = t2 − 1− 5

6
y(t) + 4y

(
t

2

)
+ 9y

(
t

3

)
, y(0) = 1, (4.5)

where the exact solution for α = 1 is y(t) = 1 + (67/7)t+ (1675/72)t2 + (12175/1296)t3. The solution is not available

for 0 < α < 1. This equation contains two delays p1 =
1

2
and p2 =

1

3
. Applying (2.5) and (3.6) in (4.5) we get the

1-FLMM and 2-FLMM as follows

n−1∑
j=0

wjyn−j = bny0 + hα
(
t2n−1 − 1− 5

6
yn−1 + 4yn−1

2
+ 9yn−1

3

)
, n = 1, 2, . . . , N, (4.6)

n−1∑
j=0

wjyn−j = bny0 + hα
[
(2− α

2
)

(
t2n−1 − 1− 5

6
yn−1 + 4yn−1

2
+ 9yn−1

3

)

+(
α

2
− 1)

(
t2n−2 − 1− 5

6
yn−2 + 4yn−2

2
+ 9yn−2

3

)]
, n = 2, 3, . . . , N. (4.7)

The numerical results for this example are plotted in Figure 2.

Example 4.3. In this example we solve the following fractional initial value problem of pantograph type [24]

CDα
t y(t) =

1

2
exp

(
t

2

)
y

(
t

2

)
+

1

2
y(t), y(0) = 1. (4.8)

The exact solution for α = 1 is y(t) = exp(t) and, the exact solution is not available for 0 < α < 1. This equation

contains one delay p =
1

2
. Applying (2.5) and (3.6) in (4.5) we get the 1-FLMM and 2-FLMM as follows

n−1∑
j=0

wjyn−j = bny0 + hα
(

1

2
exp

(
tn−1

2

)
yn−1

2
+

1

2
yn−1

)
, n = 1, 2, . . . , N. (4.9)



CMDE Vol. 12, No. 3, 2024, pp. 511-522 517

Figure 2. The graph of numerical solutions for Example 4.2, 1-FLMM (left), 2-FLMM (right).

Figure 3. The graph of numerical solutions for Example 4.3, 1-FLMM (left), 2-FLMM (right).

n−1∑
j=0

wjyn−j = bny0 + hα
[
(2− α

2
)

(
1

2
exp

(
tn−1

2

)
yn−1

2
+

1

2
yn−1

)

+(
α

2
− 1)

(
1

2
exp

(
tn−2

2

)
yn−2

2
+

1

2
yn−2

)]
, n = 2, 3, . . . , N. (4.10)

The numerical results for this example are plotted in Figure 3.

Example 4.4. Suppose the delayed initial value problem as

CDα
t y(t) =

Γ(2α+ 1)

Γ(α+ 1)
tα +

(
t

2

)2α

− t4α + y2(t)− y
(
t

2

)
, y(0) = 0. (4.11)

The exact solution is y(t) = t2α. This equation contains one delay p =
1

2
. After applying (2.5) and (3.6) in (4.5) the

1-FLMM and 2-FLMM are obtained as follows

n−1∑
j=0

wjyn−j = bny0 + hα

(
Γ(2α+ 1)

Γ(α+ 1)
tαn−1 +

(
tn−1

2

)2α

− t4αn−1 + y2n−1 − yn−1
2

)
, n = 1, 2, . . . , N, (4.12)
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Figure 4. The graph of numerical solutions for Example 4.4 (α = 0.75), 1-FLMM (left), 2-FLMM (right).

n−1∑
j=0

wjyn−j = bny0 + hα

[
(2− α

2
)

(
Γ(2α+ 1)

Γ(α+ 1)
tαn−1 +

(
tn−1

2

)2α

− t4αn−1 + y2n−1 − yn−1
2

)

+(
α

2
− 1)

(
Γ(2α+ 1)

Γ(α+ 1)
tαn−2 +

(
tn−2

2

)2α

− t4αn−2 + y2n−2 − yn−2
2

)]
, n = 2, 3, . . . , N. (4.13)

The absolute errors and computational orders of convergence for Example 4.4 are illustrated in Table 1. Also, the
numerical results for this example are plotted in Figure 4.

Example 4.5. We consider the initial value problem

CDα
t y(t) =

Γ(2α+ 1)

Γ(α+ 1)
tα − 2

Γ(3− α)
t2−α +

(
t

2

)2α

−
(
t

2

)2

− y
(
t

2

)
, y(0) = 0. (4.14)

The exact solution is y(t) = t2α − t2. This equation contains one delay p =
1

2
. We get the 1-FLMM and 2-FLMM as

follows

n−1∑
j=0

wjyn−j = bny0 + hα

(
Γ(2α+ 1)

Γ(α+ 1)
tαn−1 −

2

Γ(3− α)
t2−αn−1 +

(
tn−1

2

)2α

−
(
tn−1

2

)2

− yn−1
2

)
,

n = 1, 2, . . . , N, (4.15)

n−1∑
j=0

wjyn−j = bny0 + hα

[
(2− α

2
)

(
Γ(2α+ 1)

Γ(α+ 1)
tαn−1 −

2

Γ(3− α)
t2−αn−1 +

(
tn−1

2

)2α

−
(
tn−1

2

)2

− yn−1
2

)

+(
α

2
− 1)

(
Γ(2α+ 1)

Γ(α+ 1)
tαn−2 −

2

Γ(3− α)
tαn−2 +

(
tn−2

2

)2α

−
(
tn−2

2

)2−α

− yn−2
2

)]
, n = 2, 3, . . . , N. (4.16)

Table 2 represents the absolute errors and computational convergence orders for Example 4.5. The numerical results
for this example are plotted in Figure 5.

As the numerical results show, the computational order for 1-FLMM (3.6) is of order one while for 2-FLMM (3.7)
the computational order for α values near one is of order two. This result is slightly worse for smaller values of α.
The plotted graphs show that the numerical solutions tend to exact one.
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Table 1. The absolute error and convergence orders for Example 4.4 at t = 1.

1− FLMM 2− FLMM
α N E2(h) Order2 E2(h) Order2

0.3 100 0.233e-1 − 0.175e-1 −
200 0.115e-1 1.017 0.378e-2 1.532
400 0.659e-2 0.805 0.169e-2 1.160
800 0.356e-2 0.889 0.739e-3 1.195

0.5 100 0.904e-2 − 0.101e-2 −
200 0.456e-2 0.977 0.356e-3 1.510
400 0.232e-2 0.988 0.126e-3 1.499
800 0.116e-2 0.994 0.448e-4 1.495

0.7 100 0.757e-2 − 0.187e-3 −
200 0.380e-2 0.995 0.529e-4 1.820
400 0.190e-2 0.998 0.150e-4 1.817
800 0.952e-3 0.999 0.427e-5 1.815

0.9 100 0.674e-2 − 0.802e-4 −
200 0.337e-2 1.001 0.203e-4 1.978
400 0.168e-2 1.001 0.517e-5 1.975
800 0.841e-3 1.000 0.132e-5 1.973

0.95 100 0.652e-2 − 0.764e-4 −
200 0.326e-2 1.002 0.192e-4 1.995
400 0.123e-2 1.001 0.482e-5 1.992
800 0.813e-3 1.001 0.121e-5 1.991

Figure 5. The graph of numerical solutions for Example 4.5, 1-FLMM (left), 2-FLMM (right).

Example 4.6. Suppose the nonlinear delayed initial value problem

CDα
t y(t) = − exp(−3t)− exp(−t) + 2 exp(− t

3
) + y3(t)− 2y(

t

3
), y(0) = 1. (4.17)

The exact solution for α = 1 is y(t) = exp(−t), while for 0 < α < 1 the exact solution is unknown. This equation

contains one delay p =
1

3
. We get the 1-FLMM and 2-FLMM as follows

n−1∑
j=0

wjyn−j = bny0 + hα
(
− exp(−3tn−1)− exp(−tn−1) + 2 exp(− tn−1

3
) + y3n−1 − 2yn−1

3

)
,

n = 1, 2, . . . , N. (4.18)
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Table 2. The absolute error and convergence orders for Example 4.5 at t = 1.

1− FLMM 2− FLMM
α N E2(h) Order2 E2(h) Order2

0.3 100 0.879e-2 − 0.843e-2 −
200 0.438e-2 1.006 0.367e-2 1.201
400 0.218e-2 1.009 0.163e-2 1.166
800 0.109e-2 1.001 0.739e-3 1.145

0.5 100 0.446e-2 − 0.100e-2 −
200 0.220e-2 1.020 0.354e-3 1.506
400 0.109e-2 1.012 0.125e-3 1.498
800 0.543e-3 1.007 0.444e-4 1.494

0.7 100 0.232e-2 − 0.165e-3 −
200 0.115e-2 1.013 0.470e-4 1.810
400 0.573e-3 1.007 0.134e-4 1.808
800 0.286e-3 1.004 0.384e-5 1.807

0.9 100 0.623e-3 − 0.259e-4 −
200 0.309e-3 1.010 0.666e-5 1.961
400 0.154e-3 1.005 0.172e-5 1.955
800 0.769e-4 1.003 0.444e-6 1.951

0.95 100 0.291e-3 − 0.115e-4 −
200 0.145e-3 1.009 0.293e-5 1.971
400 0.721e-4 1.005 0.750e-6 1.964
800 0.360e-4 1.002 0.193e-6 1.959

Figure 6. The graph of numerical solutions for Example 4.6, 1-FLMM (left), 2-FLMM (right).

n−1∑
j=0

wjyn−j = bny0 + hα
[
(2− α

2
)

(
− exp(−3tn−1)− exp(−tn−1) + 2 exp(− tn−1

3
) + y3n−1 − 2yn−1

3

)

+(
α

2
− 1)

(
− exp(−3tn−2)− exp(−tn−2) + 2 exp(− tn−2

3
) + y3n−2 − 2yn−2

3

)]
, n = 2, 3, . . . , N. (4.19)

The numerical results for this example are plotted in Figure 6. The graphs show that the numerical solutions tend to
the exact one as α tends 1.
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5. Conclusion

In conclusion, this paper has introduced explicit fractional linear multi-step methods (FLMMs) for effectively
solving fractional multi-delay pantograph differential equations. These methods denoted as 1-FMLM and 2-FLMM,
maintain their convergence properties when the delayed components of the equations are appropriately approximated.
Operating at first and second orders, these techniques have demonstrated their efficacy in solving both linear and
non-linear equations. The numerical results have validated the theoretical findings, emphasizing the practical utility
and reliability of our approach. These contributions enhance the repertoire of tools available for tackling complex
fractional multi-delay pantograph differential equations, providing accurate and efficient solutions for a wide range of
applications. In the continuation of this research, it is recommended to use p-FLMM methods with a higher degree of
convergence and more accurate approximations for delay factors to numerically solve the pantograph equation.
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