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Abstract

In this work, we have proposed a general manner to extend some two-parametric with-memory methods to obtain
simple roots of nonlinear equations. Novel improved methods are two-step without memory and have two self-

accelerator parameters that do not have additional evaluation. The methods have been compared with the nearest

competitions in various numerical examples. Anyway, the theoretical order of convergence is verified. The basins
of attraction of the suggested methods are presented and corresponded to explain their interpretation.
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1. Introduction

1.1. Literature. In recent studies, authors such as Bi et al. [2], Chun et al. [5], Cordero Barbero et al. [8], Lotfi et
al. [12], Neta [16], Sharma and Arora [19], and Soleymani [23] have found the roots of nonlinear equations. They used
the without-memory methods. Torkashvand [31] presented an iterative method without memory based on the family
of Ostrowski’s method to solve nonlinear equations. Kumar et al. [11] suggested an efficient class of fourth-order
derivative-free method for multiple-roots.
In 2023, Moccari et al investigated the stability of a class two-step fourth-order methods [14]. Also, Campos et al.
[7], Cordero et al. [9], Mohamadi Zadeh et al. [15], Soleymani [24], Torkashvand et al. [27–29], and Wang [34] used
the with-memory method. Besides, researchers in [1] focused on the dynamics of the scheme methods. The authors
in references [21] and [22] used repeat techniques for the first time to solve differential equations. Ullah et al. [32]
obtained the convergence order of an adaptive method using the eigenvalue of the matrix.

1.2. Motivation and organization. Our objective in this essay is to study with-memory methods. In addition, we
consider the dynamic behavior of the proposed method and applied to chemistry.
In Section 2, we emanate a family of the with-memory methods and get a new family of three-point Steffensen-
type iterative methods with memory by varying two self-accelerator parameters. Parameters are calculated using
information known from the present and last iterations. The corresponding R-order of convergence is grown from
8 to 12.35. The maximal efficiency index of the with memory method is 12.35

1
3 = 1.87, which is higher than the

efficiency indices of the existing without-memory methods. Numerical instances are offered in Section 3 to display
the convergence conduct of proposed methods for simple roots. Likewise, the application of these methods in solving
chemical problems is given. In Section 4, some dynamic factors associated with the proposed methods are investigated.
Section 5 is a brief conclusion.
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1.3. Definitions.

(1) According to Kung-Traub’s guess, an optimal iterative method without memory-based on k + 1 evaluations
can reach an optimal convergence order of 2k [26]. Methods providing the Kung-Traub guess are called optimal
methods.

(2) Following Traub’s work [26], we propose a natural classification of iterative methods relying on the needed
data from the present and prior iterations.

(a) Without-memory methods.
The category of iterative method (I.M.) is built by entering the expressions w1(xk), w2(xk), ..., wn(xk), where
xk is the global reasoning. The I.M. ϕ, given as

xk+1 = ϕ(xk, w1(xk), ..., wn(xk)), (1.1)

is called a multi-point without-memory method. We see from (1.1) that the novel approximation xk+1 is
gathered by the information of only previous estimate xk, but through the n expressions wi. (b) With-memory
methods.
Let the I.M. have arguments zj , where each such customry represents n+ 1 quantities xj , w1(xj), ...,
wn(xj)(n ≥ 1). Then this I.M. can be reproduced in the general form as

xk+1 = ϕ(zk; zk−1, ..., zk−n). (1.2)

Such an iteration function is called a multi-point with-memory method. Namely, in each iterative step, we must
preserve data of the last n approximations xj , and for each approximation, we must determine n expressions
w1(xj), ..., wn(xj).

1.4. Existing iterative method. One of the famously grasped optimal second-order methods is Steffensen’s method.
This derivative-free method solves the nonlinear problems by two evaluations, as follows (SM) [25]

xm+1 = xm −
f(xm)

f [xm, xm + f(xm)]
, m = 0, 1, 2, · · · . (1.3)

Ostrowski proposed the first two-point method of fourth-order as follows [17]

ym = xm −
f(xm)

f ′(xm)
, m = 0, 1, 2, · · · ,

xm+1 = ym −
f(ym)(ym − xm)

2f(ym)− f(xm)
. (1.4)

Also, Neta [16] suggested a family of iterative method with sixth-order convergence, which is given by

ym = xm −
f(xm)

f ′(xm)
, m = 0, 1, . . . ,

zm = ym −
f(ym)

f ′(xm)

f(xm) + βf(ym)

f(xm) + (β − 2)f(ym)
,

xm+1 = zm −
f(zm)

f ′(xm)

f(xm)− f(ym)

f(xm)− 3f(ym)
. (1.5)

Recently, Torkashvand and Araghi proposed a family of iterative with-memory methods [30] for solving nonlinear
equations with convergence order four, eight, and sixteen as follows. These methods have the most efficient index.
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One-step fourth-order method

γm =
−1

N ′2m(xm)
, qm =

N ′′2m+1(wm)

−2N ′2m+1(wm)
, m = 1, 2, · · · ,

wm = xm + γmf(xm), xm+1 = xm −
f(xm)

f [xm, wm] + qmf [wm]
, m = 0, 1, 2, · · · . (1.6)

Two-step eight-order method

γm = − 1

N ′3m(xm)
, qm = −

N ′′3m+1(wm)

2N ′3m+1(wm)
, λm =

N ′′′3m+2(ym)

6
, m = 1, 2, 3, · · · ,

ym = xm −
f(xm)

f [xm, wm] + qmf(wm)
, m = 0, 1, 2, · · · ,

xm+1 = ym −
f(ym)

f [wm, ym] + qmf(wm) + λm(ym − xm)(ym − wm)
(1 +

f(ym)

f(xm)
). (1.7)

Three-step sixteenth-order method

γm = −
1

N ′4m(xm)
, qm = −

N ′′4m+1(wm)

2N ′4m+1(wm)
, λm =

N ′′′4m+2(ym)

6
, βm =

N ′′′′4m+3(zm)

24
, m = 1, 2, 3, · · · ,

wm = xm + γmf(xm), ym = xm −
f(xm)

f [xm, wm] + qmf(wm)
, m = 0, 1, 2, · · · ,

zm = ym −
f(ym)

f [ym, xm] + f [wm, xm, ym](ym − xm) + λm(ym − xm)(ym − wm)
,

xm+1 = zm −
f(zm)

f [xm, zm] + (f [wm, xm, ym] − f [wm, xm, zm] − f [ym, xm, zm])(xm − zm) + βm(zm − ym)(zm − xm)(zm − wm)
.

(1.8)

2. Description of the methods

In 2011, Soleymani proposed the three-point method following [23]

wm = xm + γf(xm), ym = xm −
f(xm)

f [xm, wm]
, γ ∈ R− {0}, m = 0, 1, 2, · · · ,

zm = ym −
f(ym)

f [xm, ym] + f [ym, wm]− f [xm, wm] + β(ym − xm)(ym − wm)
, β ∈ R,

tm =
f(ym)

f(xm)
, um =

f(ym)

f(wm)
, vm =

f(zm)

f(ym)
, sm =

f(zm)

f(wm)
, pm =

f(zm)

f(xm)
,

xm+1 = zm −
f(zm)(G1(tm) +G2(um) +G3(vm) +G4(sm) +G5(pm))

f [xm, zm] + f [zm, ym]− f [xm, ym] + β(zm − ym)(zm − xm)
. (2.1)

The following theorem shows beneath what conditions on the weight functions in (2.1) convergence order is eight.

Theorem 2.1. If I ⊆ R is an open interval, and f : I → R is a differentiable function that has a simple
zero, say α. If x0 is a primary guess to α, then method (2.1) has eight-order convergence. When the weight functions
G1(tm), G2(um), G3(vm), G4(sm) and G5(pm) satisfy the following conditions:

G1(0) = 1, G′1(0) = G′′1(0) = G′′′1 (0) = 0, |G(4)
1 (0)| <∞,

G2(0) = G′2(0) = G′′2(0) = 0, G
(3)
2 (0) = −(6 + 6γf [xm, wm]), |G(4)

2 (0)| <∞,
G3(0) = G′3(0) = 0, |G′′3(0)| <∞,
G4(0) = 0, G′4(0) = 1, |G′′4(0)| <∞,
G5(0) = G′5(0) = 0, |G′′5(0)| <∞. (2.2)
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And the error equation of method (2.1) can be presented as follows

em+1 = (1 + γf ′(α))3c22(β + f ′(α)c22 − f ′(α)c3)(−f ′(α)(3 + γf ′(α)c32

+ c2(β(4 + 3γf ′(α))− 2f ′(α)(1 + γf ′(α))c3)

+ f ′(α)(1 + γf ′(α))c4)f ′(α)
−2
e8m +O(e9m). (2.3)

Proof. The proof of this theorem is given in [23]. Hence it is omitted. �

2.1. Convergence analysis. From error equation (2.3) can be shown that the convergence order of the family (2.1)
is eight when (1 + γf ′(α)) 6= 0 or (β + f ′(α)c22 − f ′(α)c3) 6= 0. Consequently, it is probable to raise the convergence
rate of the suggested class (2.1), if (1 + γf ′(α)) = 0 or (β + f ′(α)c22 − f ′(α)c3) = 0. As f ′(α), f ′′(α) , and f ′′′(α)
are not available in practice, then increasing the convergence order is not possible. Alternatively, we have used
approximations f̃ ′(α) ≈ f ′(α), f̃ ′′(α) ≈ f ′′(α) , and ˜f ′′′(α) ≈ f ′′′(α) determined by already available information.

Consequently, by selecting γ = 1
f̃ ′(α)

and β =
˜f ′′′(α)
6 − f̃ ′′(α)2

4f̃ ′(α)
convergence order increases without accepting any new

functional evaluation. Thus, the principal idea in constructing with-memory methods consists of the computation of

the parameters γ = γm and β = βm as the iteration yields by the formula γm = 1
f̃ ′(α)

and βm = − f̃
′′(α)2

4f̃ ′(α)
+

˜f ′′′(α)
6 for

m = 1, 2, · · · . Accordingly, we have approximated as follows

γm = − 1

f̃ ′(α)
= − 1

N ′4(xm)
,

βm =
˜f ′′′(α)

6
− f̃ ′′(α)2

4f̃ ′(α)
=
N ′′′6 (ym)

6
− (N ′′6 (ym))2

4N ′6(ym)
. (2.4)

where N ′4(xm), N ′′6 (ym) and N ′′′6 (ym) are Newton’s interpolation polynomials proceed via the nodes {xm, xm−1,
wm−1, ym−1, zm−1}, and {ym, wm, xm, xm−1, wm−1, ym−1, zm−1}, respectively. Currently, we get the new iterative with-
memory method as shadows

γm = − 1

N ′4(xm)
, βm =

N ′′′6 (ym)

6
− (N ′′6 (ym))2

4N ′6(ym)
, m = 1, 2, 3, · · · ,

wm = xm + γmf(xm), ym = xm −
f(xm)

f [xm, wm]
, γm ∈ R− {0},

zm = ym −
f(ym)

f [xm, ym] + f [ym, wm]− f [xm, wm] + βm(ym − xm)(ym − wm)
, βm ∈ R, , m = 0, 1, 2, · · · ,

xm+1 = zm −
f(zm)(1− (1 + γmf [xm, wm])( f(xm)

f(wm) )
3 + f(zm)

f(wm) )

f [xm, zm] + f [zm, ym]− f [xm, ym] + βm(zm − ym)(zm − xm)
. (2.5)

Here, we prove that the new methods (2.5) have R-order of convergence 12.3. For this aim, we state the following
lemma.

Lemma 2.2. Let γm = − 1
N ′4(xm) , βm =

N ′′′6 (ym)
6 − (N ′′6 (ym))2

4N ′6(ym) , then

1 + γmf
′(α) ∼ em−1em−1,wem−1,yem−1,z, (βm + f ′(α)c22 − f ′(α)c3) ∼ em−1em−1,wem−1,yem−1,z. (2.6)

Proof. Assume that there are i + 1 nodes t0, t1, · · · , ti from the interval D = [a, b], where a is the minimum and b
is the maximum of these nodes, respectively. Then the error of Newton’s interpolation polynomial Ni(t) of grade i is
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determined by

f(t)−Ni(t) =
f (i+1)(α)

(i+ 1)!

s∏
j=0

(t− tj). (2.7)

For i = 4, the equation (2.7) takes the form (holding in the sense t0 = xm−1, t1 = wm−1, t2 = ym−1, t3 = zm−1 t4 =
xm)

f(t)−N4(t) =
f (5)(α)

5!
(t− xm)(t− zm−1)(t− ym−1)(t− wm−1)(t− xm−1). (2.8)

Using outcome (2.8) and for t and putting t = xm, we obtain

f ′(xm)−N ′4(xm) =
f (5)(α)

5!
(xm − xm−1)(xm − wm−1)(xm − ym−1)(xm − zm−1). (2.9)

Now

xm − xm−1 = (xm − α)− (xm−1 − α) = em − em−1.
Similarly

xm − wm−1 = em − em−1,w,
xm − ym−1 = em − em−1,y,
xm − zm−1 = em − em−1,z.

Substituting these relations in (2.9), we get

N ′4(xm) = f ′(α)(1 + 2c2em + 3c3e
2
m + ...)

− f (5)(α)

5!
(em − em−1)(em − xm−1,w)(em − xm−1,y)(em − xm−1,z)

∼ f ′(α)(1 + 2c2em − c5em−1em−1,wem−1,yem−1,z). (2.10)

And thus

1 + f ′(α)γm ∼ 1− 1

1 + 2c2em − c5em−1em−1,wem−1,yem−1,z
∼ em−1em−1,wem−1,yem−1,z. (2.11)

Similarly, other result can be proved. �

Theorem 2.3. If an initial conjecture x0 is to the root α of f(x) and the parameters γm and βm in the method (2.5)

is recursively-calculated unexpectedly, the convergence order of with-memory methods (2.5) is at least 1
2 (13 +

√
137) ≈

12.35.

Proof. To prove, we suppose that the convergence order of the sequences wm, ym, zm and xm are at least p, q, s and
r, respectively. Consequently

em+1 ∼ erm ∼ er
2

m−1,

em,z ∼ esm ∼ ersm−1,
em,y ∼ eqm ∼ e

rq
m−1,

em,w ∼ epm ∼ e
rp
m−1. (2.12)

Using Lemma 1, and the (2.3),(2.5),(2.12) we get

em+1 ∼ (1 + γmf
′(α))3(βm + f ′(α)c22 − f ′(α)c3)e

8
m ∼ (em−1em−1,wem−1,yem−1,z)

4e8m ∼ e
4(1+p+q+s)+8r
m−1 ,

em,z ∼ (1 + γmf
′(α))2c2(βm + f ′(α)c22 − f ′(α)c3)e

4
m ∼ (em−1em−1,wem−1,yem−1,z)

3e4m ∼ e
3(1+p+q+s)+4r
m−1 ,

em,y ∼ (1 + γmf
′(α))c2e

2
m ∼ em−1em−1,wem−1,yem−1,ze

2
m ∼ e1+p+q+s+2r

m−1 ,

em,w ∼ (1 + γmf
′(α))em ∼ em−1em−1,wem−1,yem−1,zem ∼ e1+p+q+s+r

m−1 . (2.13)
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Comparing the exponents of em−1 in four expressions (2.12) and (2.13) of
em+1, em,z, em,y, em,w, we get four equations in the system (2.14):

rp− (1 + p+ q + s)− r = 0,

rq − (1 + p+ q + s)− 2r = 0,

rs− 3(1 + p+ q + s)− 4r = 0,

r2 − 4(1 + p+ q + s)− 8r = 0. (2.14)

The retort to the overhead equations system is as follows

p =
1

8
(5 +

√
137), q =

1

8
(13 +

√
137), s =

1

8
(23 + 3

√
137), r =

1

2
(13 +

√
137), (2.15)

which specifies the convergence order of the scheme (2.5) is r = 1
2 (13 +

√
137) ≈ 12.35 (denoted by TAKM). �

Remark 2.4. The novel method (2.5) requires four-function evaluations and has the convergence order of 12.35. Consequently, the

efficiency index of the suggested methods is 12.35
1
4 = 1.87, which is higher than the optimal one until four-point opti-

mal methods without memory having efficiency indexes EI = 21/2 ' 1.41, EI = 41/3 ' 1.59, EI = 81/4 ' 1.68, EI =
161/5 ' 1.74, respectively.

In the next section, we have displayed the effectiveness of with-memory methods with numerical examples for solving
nonlinear equations.

3. Numerical examples

Now, we also want to study the efficiency of the offered scheme and validate the academic results. For this purpose,
we have utilized the following test functions [27] and displayed the approximate.

h1(t) = x log(1 + t sin(t)) + e−1+t
2+x cos(t) sin(πt), α = 0, t0 = 0.6.

h2(t) = 1 +
1

t4
− 1

t
− t2, α = 1, t0 = 1.4.

h3(t) =
√
t4 + 8 sin(

π

t2 + 2
+

t3

t4 + 1
+
√

6 +
8

17
, α = −2, t0 = −2.3. (3.1)

We have selected our suggested scheme (2.5) (for β = 0.1 and γ = 0.1), called by TAKM for comparison with the
existing robust optimal eighth-order method that was offered by Bi et al. (BRWM) [2], Kung-Traub (KTM)[10], Lotfi et
al. (LSSSM) [12], Sharma-Arora(SAM) [20], Soleymani (SM) [23], respectively. For better comparisons of our proposed
methods with other existing ones, we have given of comparison tables in each test function.
The error between the two successive repeats |xn+1 − xn|.
Furthermore, we have shown the approximation errors to the corresponding zeros of test functions in Tables 1-3, where
m(−n) denotes m× 10−n. These tables contain the values of the computational order of convergence COC calculated
by the formula [18]

COC =
Log| f(xm)

f(xm−1)
|

Log| f(xm−1)
f(xm−2)

|
. (3.2)

4. Tables

Tables 1-3 show that method (2.5) costs less computing time than other methods. The main reason is that the
structure of self-accelerating parameters of our method (2.5) is simple.
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Table 1. Results of comparisons for different methods for h1(x)

Methods |x1 − α| |x2 − α| |x3 − α| COC
BRWM [2] 0.40(−2) 0.24(−18) 0.38(−148) 8.00
KTM[10] 0.23(−1) 0.34(−13) 0.14(−107) 8.00
LSSSM [12] 0.42(−2) 0.78(−18) 0.10(−143) 8.00
SAM[20] 0.95(−1) 0.44(−8) 0.60(−67) 8.00
SM[23] 0.22(−1) 0.15(−12) 0.12(−25) 8.00
TAKM (2.5) 0.22(−1) 0.81(−18) 0.27(−216) 12.35

Table 2. Results of comparisons for different methods for h2(x)

Methods |x1 − α| |x2 − α| |x3 − α| COC
BRWM [2] 0.54(−3) 0.13(−23) 0.14(−188) 8.00
KTM, γ = 1[10] 0.11(−1) 0.46(−12) 0.50(−95) 8.00
LSSSM [12] 0.70(−3) 0.19(−22) 0.47(−179) 8.00
SAM[20] 0.39(−3) 0.38(−26) 0.34(−210) 8.00
SM[23] 0.14(−10) 0.12(−82) 0.44(−659) 8.00
TAKM (2.5) 0.19(−3) 0.27(−41) 0.77(−497) 12.35

Table 3. Results of comparisons for different methods for h3(x)

Methods |x1 − α| |x2 − α| |x3 − α| COC
BRWM [2] 0.19(−6) 0.95(−55) 0.38(−441) 8.00
KTM, γ = 1[10] 0.98(−7) 0.47(−57) 0.14(−459) 8.00
LSSSM [12] 0.30(−6) 0.39(−52) 0.28(−419) 8.00
SAM[20] 0.33(1) 0.30(1) 0.30(1) div
SM[23] 0.21(−5) 0.12(−45) 0.14(−367) 8.00
TAKM (2.5) 0.18(−6) 0.79(−83) 0.14(−999) 12.35

4.1. Application. In the following numerical analysis, we have proposed an example of Chemistry and have solved
it. Van Der Waals’ equation proffered by

(P +
n2c1
V 2

)(V + nc2) = nRT. (4.1)

where p is pressure,V is capacity, and the temperature T is in Kelvin units. Also,n the number of moles of the gas.R
is the gas constant equals 0.0820578. c1 and c2 are named Van Der Waals constants that they depend on the gas
kind. This equation is nonlinear in V . It can be humble to the following function of V .

f(V ) = PV 3 − nc2PV 2 − nRTV 2 − n2c1V − n3c1c2. (4.2)

Now, if one wants to earn the volume of 1.4 moles of benzene steam under the pressure of 40 atm and temperature of
500◦C, given that Van Der Waals constants for benzene are c1 = 18 and c2 = 0.1154, then the puzzle that occurs is to
gain roots of the polynomial

g(x) = −5.6998368 + 35.28x− 95.26535116x2 + 40x3. (4.3)

The three roots of the equation are x = ∓0.173507i + 0.205425 and x ≈ 1.97078. As V is a volume, only the positive
real roots are physically significant, and the root x ≈ 1.97078 of the equation is acceptable. We estimated the initial
conjecture 2 for this issue.
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Table 4. Results of comparisons for different methods g(x)

Methods |x1 − α| |x2 − α| |x3 − α| COC
BRWM [2] 0.92(−2) 0.23(−18) 0.32(−151) 8.00
KTM[10] 0.23(−1) 0.34(−13) 0.14(−87) 8.00
LSSSM [12] 0.22(−2) 0.67(−19) 0.10(−58) 8.00
SAM[20] 0.23(−1) 0.25(−8) 0.52(−65) 8.00
SM[23] 0.23(−1) 0.45(−5) 0.42(−15) 8.00
TAKM (2.5) 0.23(−2) 0.14(−25) 0.42(−135) 12.35

5. Some dynamical aspects the proposed methods

Dynamical properties of the iterative methods present us with important information about the numerical aspect
of them as their stableness and validation. In what follows, we have compared the proposed methods by utilizing the
attraction basins for two complex polynomials f(z) = zm − 1,m = 2, 3. Also, we have used a analogous technique
in [5, 6, 13, 33] to generate the basins of attraction. We have caught a gride of 200 × 200 points in a rectangle
= [−5.0, 5.0]×[−5.0, 5.0] ⊂ C. The points as z0 have produced the basins of attraction for the zeros of a polynomial. The
sequence generated by the iterative method reaches a zero z∗ of the polynomial with a tolerance |zm−z∗| < 10−10 and
a maximum of 25 iterations. We conclude that z0 is in the basin of attraction of the zero. The attraction basin shows
the iterations number needed to arrive at the solution. We have defined four values to the self-accelerator parameters,
and in this section, we will select the best amount on the self-accelerator parameter.

(a) β = γ = 1, n = 200 (b) β = γ = 0.1, n = 200

Figure 1. Method TAKM (2.5) for detecting the polynomial roots f(z) = z2 − 1
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(a) β = γ = 0.01, n = 200 (b) β = γ = 0.001, n = 200

Figure 2. Method TAKM (2.5) for detecting the polynomial roots f(z) = z2 − 1

(a) β = γ = 0.001, n = 200 (b) β = γ = 0.001, n = 20

Figure 3. Method TAKM (2.5) for detecting the polynomial roots f(z) = z2 − 1
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(a) β = γ = 0.1, n = 200 (b) β = γ = 0.01, n = 200 (c) β = γ = 0.001, n = 200

Figure 4. Method TAKM (2.5) for detecting the polynomial roots f(z) = z3 − 1

(a) Kung-Traub’s method (b) β = γ = 0.001, n = 200, TAKM (2.5)

Figure 5. Comparison of methods for finding the roots of f(z) = z2 − 1
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(a) Kung-Traub’s method (b) β = γ = 0.001, n = 200, TAKM (2.5)

Figure 6. Comparison of methods for finding the roots of f(z) = z3 − 1

Remark 5.1. Comparing Figures 1-4, one can conclude that the accelerator parameter plays an important role in
increasing and decreasing the adsorption region, just as it plays an essential role in improving the convergence order. The
highest absorption region is related to the minimum parameter, which is γ = 0.001, and the lowest absorption region
is when the self-accelerating parameter is equal to γ = 1. Also, the higher the number of square points, the higher the
percentage of transparency of the adsorption areas. The basins of attraction of Kung-Traub optimal methods and our
method are considered to find roots quadratic polynomial f(z) = z2−1 and cubic polynomial f(z) = z3−1 in Figures
5 and 6. The basin of attraction for TAKM is better than Kung-Traub.

6. Conclusions

In this work, we first converted a family of the eighth-order method into a with-memory method. Afterward, by en-
tering bi self-accelerator parameters and approximating them using the available information, we have created methods
with a convergence level of 12.35. The efficiency index of the proposed methods is equal to 1.87. The efficiency index of
proposed methods is higher than the efficiency index of optimal-order methods one, two, three, four, and five. The rate
of convergence improvement of the new-methods (2.5) is 54.40%, which is higher than other methods with memory
and without memory mentioned in [3, 7]. Both numerical and dynamical aspects of iterative plans (2.5) support the
main theorem well within any analysis equations and examples.
Further researches must be done to develop the proposed methods for system of nonlinear equations. These could be
done in the next studies.
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