Research Paper C M
Computational Methods for Differential Equations

http://cmde.tabrizu.ac.ir

Vol. 12, No. 3, 2024, pp. 502-510

DOI:10.22034/cmde.2023.56037.2339

Some delta ¢—fractional linear dynamic equations and a generalized delta ¢—Mittag-Leffler
function

Nada K. Mahdi* and Ayad R. Khudair

Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq.

Abstract

In this paper, we introduce a generalized delta g—Mittag-Leffler function. Also, we solve some Caputo delta
g—fractional dynamic equations and these solutions are expressed by means of the newly introduced delta
q—Mittag-Leffler function.
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1. INTRODUCTION

Fractional calculus covers the subject of non-integer order derivatives and integrals [26, 43]. Due to fractional
calculus becoming a potent tool with more accurate and successful results in modeling a number of complex phenomena
in numerous seemingly diverse and widespread fields of science and engineering, fractional calculus and its potential
applications have gained much more importance in recent years. Meanwhile, fractional differential equation models
have been used in a variety of fields [6, 8, 11, 12, 14-16, 19-23, 29, 30, 34-36, 49, 50]. In these applications, fractional
differentiation is often used to model phenomena exhibiting nonstandard dynamical behaviors with a long memory
or hereditary effects. At the beginning of the 20th century, Jackson [18] created g—calculus, which is the study of
calculus without limits. Al-Salam [3-5] and Agarwal [2] were the first to investigate the g—fractional integrals and
derivatives. As g—fractional calculus serves as a bridge between g—calculus and fractional calculus, it has garnered
more attention [7, 13, 31-33, 45, 46].

With the development of time scale calculus [9, 10, 17], a number of authors have recently started to concentrate
on and combine the methods of time scale and g—fractional calculus [2, 3, 5, 13, 44]. These results relate fractional
calculus on the time scale Ty := {¢° : ¢ € Z} U {0}, where 0 < ¢ < 1.

The Mittag-Leffler function [24, 25] plays a vital role in the solution of fractional order differential and integral
equations. It has recently become a subject of rich interest in the field of fractional calculus and its applications
[28, 41, 42]. Nowadays some mathematicians consider the classical Mittag-Leffler function as the queen function in
fractional calculus. An enormous amount of research in the theory of Mittag-Leffler functions has been published
in the literature. For a detailed account of the various generalizations, properties, and applications of the Mittag-
Leffler function, readers may refer to the literature [1, 37-40, 48]. For g—fractional calculus, [33] proposed a new
form of g—analogue of the Mittag-Leffler function. Recently, in [47] introduced the g—analogue of the generalized
Mittag-Leffler function. However, there is no paper that has dealt with a generalized delta g—fractional Mittag-Leffler
function on the time scale.

As a contribution in this direction and being motivated by what is mentioned before, in this paper, we present a
generalized delta g—Mittag-Leffler function. Such function is obtained by solving the following linear Caputo delta
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q—fractional dynamical equation:

“DR, o ¥(s) = As — s0)f ¥(g 7<), (1.1)
¢(t0) = 57

where 0 < o < 1, 8 > —a, and A\, £ € R. After that, we generalize to the higher-order case for any o > 0 , where
higher-order ¢g—Mittag-Leffler functions are obtained.

2. PRELIMINARIES

This section provides the fundamental concepts and properties of g—calculus and g—fractional calculus on time
scale, which are covered in [31].

Let T, be the time scale for 0 < ¢ < 1
T, = {¢ s € 2} U {0},

such that Z refers to the set of integers.

The definition of delta g—derivative for the function g : T, — R is

9(gs) — 9(s)
A =20) I e \{0). 2.1
qg<§) (Q71)§ S q\{ } ( )
Now, the higher order delta g—derivatives are defined by:
AQg(s) = 9(s), Alg(s) = Ag(AT719(<)) (n=1,2,3,...). (2.2)
The following definition is the delta g—integral for the function g(s):
S o0
(Lo9)©) = [ 9082 = (1= 0) 3 dlglsa), ¥s € T, (23)
0 =0
and,
S S a
(Lao)©) = [ 92802 = [ 9280z~ [ g(:)8s2 Vas e T, (2.4)
a 0 0
The basic g—calculus theorem provides
<
By [ 92080z = 900). (2.5)
0
Furthermore, if the function g(<) is continuous at zero,
<
| 892802 = 519 = 900). (26)
0
The following identities will also be useful.
S S
By [ ale Bz = [ gl )8z + glas.) (27)
and,
b b
Aq/ 9(¢,2)Agz = / Agg(s,2)Aqz = g(s;5)- (2.8)
S qs
an
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Definition 2.1. For ¢ € N, the definition of delta g—factorial function is

v—1
=20 =1 (-2 =1](-q>) (2.9)
r=1
Also,
(r—2)g ) = o H T+a (2.10)

where « is positive real number but integer.

Lemma 2.2. Suppose 7,6 € R, we have
(1) (=25 = (=2~ q72)5”.

(2) (bs —b2)" =b7(s — 2)5".
(3) Ag(s —2)) = 2L (¢ — 1) Y.
(4) Aglc =2 = =25 (= g2)7 .
Definition 2.3. For v € C\ {—m, m € Ny}, and the delta ¢—Gamma function is
Ty(1)=(1—-qf 01—, (2.11)
which fulfills
1—-¢q"
Ly(T+7) = 1—¢ Lo(7), Tg(1) =1. (2.12)

Definition 2.4. For all continuous functions with continuous delta g—derivatives up to order n — 1, the space [c, d] is
defined as

={9(<) ¢)€C[0,d], V¥ =0,1,...,n}. (2.13)

Definition 2.5. Let ¢,y € T;. The fractional delta g—integral of order o > 0 for the function g : Ty — R is

I}, .9(s) = 9(s),

[ 1 ¢ a—1
I2,090) = 7 /g (¢ —a2) Vg(2)Ag2. (2.14)
For ay,as > 0, then
(IZi,q)IZi,mg)( )= (IZjZ?g)(c), So <¢G. (2.15)

Definition 2.6. Let ¢,y € T;. The Riemann-Lioville fractional delta g—derivative of the function g : T, — R is
DR, 09() = AGIX %, 9(<); (2.16)

Ag, 509
for « real value such that o > 0 and n = [o] + 1.
For 0 < gy <¢, @ € RT. Then

DR,c0l8,,609(6) = 9(5)- (2.17)

(=)=
E)NE
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Definition 2.7. Let ¢,y € Ty. The Caputo delta g—fractional derivatives for the function g : T, — R is

“DR, ,9(¢) = IR, 5, Alg(s)

Ag,50
_ U [ g ang()a,s,
qu—a)/go ) ‘

for a real value such that & > 0 and n = [o] + 1.

Theorem 2.8. For any 0 < a < 1, we have

(e o (§ - g())ia
“DR, ,9(s) = DA, ,9(c) — a

T, o) ")

Lemma 2.9. Let g : T, = R is defined inappropriate domains and o > 0. Then,

n-1 (£)
« [e% S — <
IAq7<oCDAq7§og(§) = g(g) - § : (F (ﬁ _T_)i) Agg(§0)7
=0 1

and if 0 < a < 1, then

%o DX, 09(s) = g(s) — g(s0)-

The following identity will also be utilized:

T,(v+1)
J¢ _ v __ __—a\" @ )
By = 0)g Lyla+v+1)

where v € (—1,00) and a € R™.

(=)t 0<g<z<g,

Definition 2.10. For s, sy € C, the delta g—Mittag-Leffler function is

n
AEaﬁAsfso ZU 0677‘36)

when 8 = 1, we employ Aan()\, 5 —50) = A, Fa,1(A s — 50).

3. MAIN RESULTS
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(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

In this section, we define the generalized delta ¢—Mittag-Lefler function which is analogue to the one used before

in [27].
Definition 3.1. The definition of the generalized delta ¢g—Mittag-Leffler function is
(oo}
Aan’M(/\7 c—q) =1+ Z)\nq—(n(n—l)/2)a(n—1)(ae+a)T (¢ — §o)mm,

n=1
where

n=1,2,3,...,

= a(ik +£) + 1]
1;[ m—|—€—|—1) 1)’ v

for £,\ € C are complex numbers and £ € R such that k > 0, o > 0, and a(ix + ¢) # —1,—2,-3,..

generalized delta ¢g—Mittag-Leffler function of order m, for all m =0,1,2,..., is

AqE;”,M()\, c—c) =1+ Z /\nq*na(ﬁfl)mq*(n(nfl)/2)a(f<*1)(a€+a)yn(g _ qmgo)gmn.
n=1

(3.2)

., while the

(3.3)

(&)
ENE
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Note that A E, . (A6 —0)=a,Far (s —<).

Remark 3.2. If Kk = 1, then the generalized delta ¢—Mittag-Leffler function is specifically reduced to the delta
gq—Mittag-Leffler function, with the exception of a constant factor I'y(af 4 1). Namely,

Aan,LZ()\y S — CO) = Fq(ag + 1)Aqu¢7a€+1()\a S — gO)- (34)
This turns up being the g—analogue of the identity Eq4 1.¢(s) = I'(af + 1)Eq ae+1(s) [26].
Example 3.1. Consider the Caputo delta g—fractional dynamic equation (1.1).

Using Lemma 2.9, we get

U(s) = (s0) + AR, o [(c —<0)f (g %)]. (3.5)
According to the successive applications method,
bie(s) = 1(s0) + MR, o [(s —0)ftbu-1(q7%¢)] VK =1,2,3,..., (3.6)

where o (s) = £.

By using Eq. (2.21), we obtain

Le(B+1)
= AL T 20 (¢— )P, 3.7
P1(s) =€ +¢ Fq(ﬁ+a+1)(c S0)q (3.7)
and
Ly(B+1)  _
MY -1+ A~ Ao —go)Btab]. :
09 = €+ 013, (6 - i {10 At - 35)
Then by using Lemma 2.2
r,8+1) _
— A& — )P LN q Blat+h) (c _ )28+ | 3.9
02(9) = €+ EAT8, ¢ 16 = 00+ A B s e (3.9
Once more, based on Eq. (2.21), we obtain
r,(p+1) r,2864+a+1) _
—£l1+ 2 q 2B+ 4 )2 Blat+B) (¢ _ )2B+2| 3.10
029 = [ A ) (e — e ¢ N EE LA I e 2 (3.10)
Using an inductive approach, for each k = 1,2, ..., we get
U ( 14+ Z Nig—Bnn=1)/2)(a+8)y (s — go)n(aJrﬁ) (3.11)
where
a(ik +£) + 1] B B
=1+2¢r=2n=1,2,3,... 12
HF (ik +£+1)+1]’ - +a’€ T 3, (812)
Let k — oo, we arrive at the solution
(o)
W) =¢ |1+ Z /\nq—ﬁ(n(n—l)/Z)(aW)Tn(g — go)g(aw)] . (3.13)
n=1
Theorem 3.3. The solution of Eq. (1.1) is
¥(<) =€ a,Ea,14(8/a)),8/a(A s — <0)- (3.14)

Remark 3.4.
(1): If in Eq. (1.1) 8 =0, then in accordance with Eq. (3.4) and [31] we have
Aan,l,O()\7§ —<0) = Aan,l()\7§ —0) = Aan(AK —<0)-
B8O
BE
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(2): The solution of the delta ¢g—Cauchy problem

CDiq,gow(Q = As—<0); v(a7%), (3.15)
y(so) =&,
where 0 < a < 1, 8 > —%, and A\, & € R, is given by
¥(s) =€ a,E1142828(A ¢ — <) (3.16)
In order to generalize to the higher-order case, we take into account the fractional delta g—initial value problem:
DY, o, ¥(s) = As — ) (g F), (3.17)

1/1(77)(%):51;7 77:0717"'7U_17
where v — 1 < a <wv, 8> —a, and \, € € R.
Theorem 3.5. The solution of Eq. (3.17) is

Em

v—1

HOEDYS Toim + 1)~ 0 2 By o (ormyjo) (s < = <0)- (3.18)
m=0
Proof. Using Lemma 2.2, Eq. (2.19), and the successive approzimation with
v—1
(s —<o0)y"
= "9 A , 3.19
Yo(s) mzo F (o 1) e (0) (3.19)

Observe that Corollary 3.1 is retrieved when 0 < a < 1, that is, v = 1.
After that, we solve Eq. (1.1) in a nonhomogeneous form.

Lemma 3.6. Let g: Ty = R, and m € N, o > 0. Then

IR, .09 ") = ¢ (IR, 4-me,9)(a” "0), Vs € Ty (3.20)
Proof. Let
fo" —-m 1 * a—1 —m
IR, 9(@ ™) = ) (¢ —aq¥)g g9la"I)A
So
qm q s L
= (¢ —qq™9)g ™ g(9)Agd
Lg(c) /qm<0 ! !
qma q s L
= — qg s —q)S T g() ALY
Fq(a) \/q_mgo ( )q ( ) q
=q" (I3, -mc9) (@ "s).

Now, Consider the following Caputo delta g—fractional dynamic equation
DX, 00(s) = AP P(g7%6) + 9(c), (3.21)
¥(0) =&,
where 0 < a <1, 8 > —a, B € Ny, and A\, ¢ € R.

By applying Lemma 3.6 and the successive approximation as in Example 3.1, we can state the following

Theorem 3.7. The solution of Eq. (3.21) is
(<) = Ea, Ea,a4(8/m).8/a(X:6)

[ee] )\7] IS
Z —ap(n(n+1)/2) — g2 g (g9 ALY, 3.22
’ =0 Ty(an+ Oz)q /0 (6 =)™ ala B 3:22)
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Observe that, if in Eq. (3.21) we set § = 0, then Example 3.1 in [31] is recovered for ¢y = 0.

CONCLUSION

Mittag-Leffler functions are important in studying solutions of fractional differential equations, and they are as-
sociated with a wide range of problems in many areas of mathematics and physics. The importance and great
considerations of Mittag-Leffler functions have led many researchers in the theory of special functions to explore pos-
sible generalizations and applications. However, there is no paper that has dealt with a generalized delta ¢—fractional
Mittag-Leffler function. This paper extends our previous work in the paper [31] and establishes a generalized version
of delta g—fractional Mittag-Leffler function.
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